177
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

Disruption of 3CLpro protease self-association by short peptides as a potential route to broad spectrum coronavirus inhibitors

ORCID Icon, ORCID Icon & ORCID Icon
Pages 13901-13911 | Received 02 Apr 2021, Accepted 16 Oct 2021, Published online: 01 Nov 2021

References

  • Agrawal, P., Singh, H., Srivastava, H. K., Singh, S., Kishore, G., & Raghava, G. P. S. (2019). Benchmarking of different molecular docking methods for protein-peptide docking. BMC Bioinformatics, 19(S13),105-124 .https://doi.org/10.1186/s12859-018-2449-y
  • Alamri, M. A., Tahir Ul Qamar, M., Mirza, M. U., Bhadane, R., Alqahtani, S. M., Muneer, I., Froeyen, M., & Salo-Ahen, O. M. H. (2020). Pharmacoinformatics and molecular dynamics simulation studies reveal potential covalent and FDA-approved inhibitors of SARS-CoV-2 main protease 3CL(pro). Journal of Biomolecular Structure and Dynamics, 39(13), 4936–4948.
  • Al-Tawfiq, J. A., Momattin, H., Dib, J., & Memish, Z. A. (2014). Ribavirin and interferon therapy in patients infected with the Middle East respiratory syndrome coronavirus: An observational study. International Journal of Infectious Diseases : IJID : Official Publication of the International Society for Infectious Diseases, 20, 42–46.
  • Al-Tawfiq, J. A., Zumla, A., & Memish, Z. A. (2014). Coronaviruses: Severe acute respiratory syndrome coronavirus and Middle East respiratory syndrome coronavirus in travelers. Current Opinion in Infectious Diseases, 27(5), 411–417.
  • Anand, K., Palm, G. J., Mesters, J. R., Siddell, S. G., Ziebuhr, J., & Hilgenfeld, R. (2002). Structure of coronavirus main proteinase reveals combination of a chymotrypsin fold with an extra alpha-helical domain. The EMBO Journal, 21(13), 3213–3224. https://doi.org/10.1093/emboj/cdf327
  • Anand, K., Ziebuhr, J., Wadhwani, P., Mesters, J. R., & Hilgenfeld, R. (2003). Coronavirus main proteinase (3CLpro) structure: Basis for design of anti-SARS drugs. Science (New York, N.Y.), 300(5626), 1763–1767. https://doi.org/10.1126/science.1085658
  • Arkin, M. R., & Wells, J. A. (2004). Small-molecule inhibitors of protein-protein interactions: Progressing towards the dream. Nature Reviews Drug Discovery, 3(4), 301–317. https://doi.org/10.1038/nrd1343
  • Baranov, P. V., Henderson, C. M., Anderson, C. B., Gesteland, R. F., Atkins, J. F., & Howard, M. T. (2005). Programmed ribosomal frameshifting in decoding the SARS-CoV genome. Virology, 332(2), 498–510. https://doi.org/10.1016/j.virol.2004.11.038
  • Barnard, D. L., & Kumaki, Y. (2011). Recent developments in anti-severe acute respiratory syndrome coronavirus chemotherapy. Future Virology, 6(5), 615–631. https://doi.org/10.2217/fvl.11.33
  • Bogan, A. A., & Thorn, K. S. (1998). Anatomy of hot spots in protein interfaces. Journal of Molecular Biology, 280(1), 1–9.
  • Chen, S., Zhang, J., Hu, T., Chen, K., Jiang, H., & Shen, X. (2008). Residues on the dimer interface of SARS coronavirus 3C-like protease: Dimer stability characterization and enzyme catalytic activity analysis. Journal of Biochemistry, 143(4), 525–536. https://doi.org/10.1093/jb/mvm246
  • Chiou, H.-E., Liu, C.-L., Buttrey, M. J., Kuo, H.-P., Liu, H.-W., Kuo, H.-T., & Lu, Y.-T. (2005). Adverse effects of ribavirin and outcome in severe acute respiratory syndrome: Experience in two medical centers. Chest, 128(1), 263–272. https://doi.org/10.1378/chest.128.1.263
  • Ciccotti, G., & Ryckaert, J. P. (1986). Molecular dynamics simulation of rigid molecules. Computer Physics Reports, 4(6), 346–392. https://doi.org/10.1016/0167-7977(86)90022-5
  • Czodrowski, P., Dramburg, I., Sotriffer, C. A., & Klebe, G. (2006). Development, validation, and application of adapted PEOE charges to estimate pKa values of functional groups in protein–ligand complexes. Proteins: Structure, Function, and Bioinformatics, 65(2), 424–437. https://doi.org/10.1002/prot.21110
  • Darden, T., York, D., & Pedersen, L. (1993). Particle mesh Ewald: An N⋅log(N) method for Ewald sums in large systems. The Journal of Chemical Physics, 98(12), 10089–10092. https://doi.org/10.1063/1.464397
  • Dolinsky, T. J., Czodrowski, P., Li, H., Nielsen, J. E., Jensen, J. H., Klebe, G., & Baker, N. A. (2007). PDB2PQR: Expanding and upgrading automated preparation of biomolecular structures for molecular simulations. Nucleic Acids Research, 35(suppl_2), W522–W525.
  • Dong, N., Yang, X., Kaichao, C., Chan, E., Yang, M., & Chen, S. (2020). Genomic and protein structure modelling analysis depicts the origin and infectivity of 2019-nCoV, a new coronavirus which caused a pneumonia outbreak in Wuhan, China.
  • ElSawy, K. M., Lane, D. P., Verma, C. S., & Caves, L. S. D. (2016). Recognition dynamics of p53 and MDM2: Implications for peptide design. The Journal of Physical Chemistry B, 120(2), 320–328. https://doi.org/10.1021/acs.jpcb.5b11162
  • ElSawy, K. M., Twarock, R., Verma, C. S., & Caves, L. S. D. (2012). Peptide inhibitors of viral assembly: A novel route to broad-spectrum antivirals. Journal of Chemical Information and Modeling, 52(3), 770–776. https://doi.org/10.1021/ci200467s
  • ElSawy, K. M., Verma, C. S., Joseph, T. L., Lane, D. P., Twarock, R., & Caves, L. S. (2013). On the interaction mechanisms of a p53 peptide and nutlin with the MDM2 and MDMX proteins: A Brownian dynamics study. Cell Cycle (Georgetown, Tex.), 12(3), 394–404. https://doi.org/10.4161/cc.23511
  • Fan, Y., Zhao, K., Shi, Z.-L., & Zhou, P. (2019). Bat Coronaviruses in China. Viruses, 11(3), 210. https://doi.org/10.3390/v11030210
  • FDA Remdesivir EUA: letter of authorization. https://www.fda.gov/media/137564/download
  • Fox, J. L. (2007). Antivirals become a broader enterprise. Nature Biotechnology, 25(12), 1395–1402.
  • Garrett, M. M., David, S. G., Robert, S. H., Ruth, H., William, E. H., Richard, K. B., & Arthur, J. O. (1998). Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. Journal of Computational Chemistry, 19, 1639–1662.
  • Gil, C., Ginex, T., Maestro, I., Nozal, V., Barrado-Gil, L., Cuesta-Geijo, M. Á., Urquiza, J., Ramírez, D., Alonso, C., Campillo, N. E., & Martinez, A. (2020). COVID-19: Drug targets and potential treatments. Journal of Medicinal Chemistry, 63(21), 12359–12386.
  • Gonzalez-Ruiz, D., & Gohlke, H. (2006). Targeting protein-protein interactions with small molecules: Challenges and perspectives for computational binding epitope detection and ligand finding. Current Medicinal Chemistry, 13(22), 2607–2625.
  • Grum-Tokars, V., Ratia, K., Begaye, A., Baker, S. C., & Mesecar, A. D. (2008). Evaluating the 3C-like protease activity of SARS-Coronavirus: Recommendations for standardized assays for drug discovery. Virus Research, 133(1), 63–73.
  • Hauser, A. S., & Windshügel, B. (2016). LEADS-PEP: A benchmark data set for assessment of peptide docking performance. Journal of Chemical Information and Modeling, 56(1), 188–200.
  • Herschlag, D., & Pinney, M. M. (2018). Hydrogen bonds: Simple after all? Biochemistry, 57(24), 3338–3352. https://doi.org/10.1021/acs.biochem.8b00217
  • Hetenyi, C., & van der Spoel, D. (2002). Efficient docking of peptides to proteins without prior knowledge of the binding site. Protein Science : A Publication of the Protein Society, 11(7), 1729–1737.
  • Hetényi, C., & van der Spoel, D. (2006). Blind docking of drug-sized compounds to proteins with up to a thousand residues. FEBS Letters, 580(5), 1447–1450.
  • Hwang, H., Dey, F., Petrey, D., & Honig, B. (2017). Structure-based prediction of ligand-protein interactions on a genome-wide scale. Proceedings of the National Academy of Sciences of the United States of America, 114(52), 13685–13690. https://doi.org/10.1073/pnas.1705381114
  • James, C. P., Rosemary, B., Wei, W., James, G., Emad, T., Elizabeth, V., Christophe, C., Robert, D. S., Laxmikant, K., & Klaus, S. (2005). Scalable molecular dynamics with NAMD. Journal of Computational Chemistry, 26, 1781–1802.
  • Jorgensen, W. L., Madura, J. D., & Swenson, C. J. (1984). Optimized intermolecular potential functions for liquid hydrocarbons. Journal of the American Chemical Society, 106(22), 6638–6646. [Database] https://doi.org/10.1021/ja00334a030
  • Lai, L., Han, X., Chen, H., Wei, P., Huang, C., Liu, S., Fan, K., Zhou, L., Liu, Z., Pei, J., & Liu, Y. (2006). Quaternary structure, substrate selectivity and inhibitor design for SARS 3C-like proteinase. Current Pharmaceutical Design, 12(35), 4555–4564.
  • Liu, W. S., Li, H. G., Ding, C. H., Zhang, H. X., Wang, R. R., & Li, J. Q. (2021). Screening potential FDA-approved inhibitors of the SARS-CoV-2 major protease 3CLpro through high-throughput virtual screening and molecular dynamics simulation . Aging, 13(5), 6258–6272. https://doi.org/10.18632/aging.202703
  • Liu, W., Morse, J. S., Lalonde, T., & Xu, S. (2020). Learning from the past: Possible urgent prevention and treatment options for severe acute respiratory infections caused by 2019‐nCoV. ChemBioChem.
  • MacKerell, A. D., Bashford, D., Bellott, M., Dunbrack, R. L., Evanseck, J. D., Field, M. J., Fischer, S., Gao, J., Guo, H., Ha, S., Joseph-McCarthy, D., Kuchnir, L., Kuczera, K., Lau, F. T. K., Mattos, C., Michnick, S., Ngo, T., Nguyen, D. T., Prodhom, B., … Karplus, M. (1998). All-atom empirical potential for molecular modeling and dynamics studies of proteins. The Journal of Physical Chemistry B, 102(18), 3586–3616. https://doi.org/10.1021/jp973084f
  • Mackerell, A. D., Jr.; Feig, M., & Brooks, C. L. (2004). Extending the treatment of backbone energetics in protein force fields: Limitations of gas-phase quantum mechanics in reproducing protein conformational distributions in molecular dynamics simulations. Journal of Computational Chemistry, 25(11), 1400–1415. [Database] https://doi.org/10.1002/jcc.20065
  • Moreira, I. S., Fernandes, P. A., & Ramos, M. J. (2007). Hot spots—A review of the protein–protein interface determinant amino-acid residues. Proteins: Structure, Function, and Bioinformatics, 68(4), 803–812. https://doi.org/10.1002/prot.21396
  • Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S., & Olson, A. J. (2009). AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. Journal of Computational Chemistry, 30(16), 2785–2791.
  • Muller, M. P., Dresser, L., Raboud, J., McGeer, A., Rea, E., Richardson, S. E., Mazzulli, T., Loeb, M., & Louie, M. (2007). Adverse events associated with high‐dose ribavirin: Evidence from the toronto outbreak of severe acute respiratory syndrome. Pharmacotherapy, 27(4), 494–503. https://doi.org/10.1592/phco.27.4.494
  • Nguyen, N. T., Nguyen, T. H., Pham, T. N. H., Huy, N. T., Bay, M. V., Pham, M. Q., Nam, P. C., Vu, V. V., & Ngo, S. T. (2020). Autodock vina adopts more accurate binding poses but autodock4 forms better binding affinity. Journal of Chemical Information and Modeling, 60(1), 204–211. https://doi.org/10.1021/acs.jcim.9b00778
  • Shamsi, A., Mohammad, T., Anwar, S., AlAjmi, M. F., Hussain, A., Rehman, M. T., Islam, A., & Hassan, M. I. (2020). Glecaprevir and Maraviroc are high-affinity inhibitors of SARS-CoV-2 main protease: Possible implication in COVID-19 therapy. Bioscience Reports, 40.
  • Shamsi, A., Mohammad, T., Anwar, S., Amani, S., Khan, M. S., Husain, F. M., Rehman, M. T., Islam, A., & Hassan, M. I. (2021). Potential drug targets of SARS-CoV-2: From genomics to therapeutics. International Journal of Biological Macromolecules, 177, 1–9.
  • Shi, J., Sivaraman, J., & Song, J. (2008). Mechanism for controlling the dimer-monomer switch and coupling dimerization to catalysis of the severe acute respiratory syndrome coronavirus 3C-like protease. Journal of Virology, 82(9), 4620–4629.
  • Siemieniuk, R., Rochwerg, B., Agoritsas, T., Lamontagne, F., Leo, Y. S., Macdonald, H., Agarwal, A., Zeng, L., Lytvyn, L., Appiah, J. A., & Amin, W. (2020). A living WHO guideline on drugs for Covid-19. Bmj, 371, m4475. https://doi.org/10.1136/bmj.m4475
  • Song, Z., Xu, Y., Bao, L., Zhang, L., Yu, P., Qu, Y., Zhu, H., Zhao, W., Han, Y., & Qin, C. (2019). From SARS to MERS, thrusting coronaviruses into the spotlight. Viruses, 11(1), 59. https://doi.org/10.3390/v11010059
  • Tan, J., Verschueren, K. H. G., Anand, K., Shen, J., Yang, M., Xu, Y., Rao, Z., Bigalke, J., Heisen, B., Mesters, J. R., Chen, K., Shen, X., Jiang, H., & Hilgenfeld, R. (2005). pH-dependent conformational flexibility of the SARS-CoV main proteinase (Mpro) dimer: Molecular dynamics simulations and multiple X-ray structure analyses. Journal of Molecular Biology, 354(1), 25–40. https://doi.org/10.1016/j.jmb.2005.09.012
  • Team, R. C. (2020). R: A language and environment for statistical computing. R Foundation for Statistical Computing.
  • Tuncbag, N., Gursoy, A., & Keskin, O. (2009). Identification of computational hot spots in protein interfaces: Combining solvent accessibility and inter-residue potentials improves the accuracy. Bioinformatics (Oxford, England), 25(12), 1513–1520. https://doi.org/10.1093/bioinformatics/btp240
  • Tuncbag, N., Keskin, O., & Gursoy, A. (2010). HotPoint: Hot spot prediction server for protein interfaces. Nucleic Acids Research, 38(suppl_2), W402–406.
  • Verlet, L. (1967). Computer "experiments" on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules. Physical Review, 159(1), 98–103. https://doi.org/10.1103/PhysRev.159.98
  • Wang, C., Horby, P. W., Hayden, F. G., & Gao, G. F. (2020). A novel coronavirus outbreak of global health concern. The Lancet), 395(10223), 470–473. https://doi.org/10.1016/S0140-6736(20)30185-9
  • Wang, Q., Zhao, Y., Chen, X., & Hong, A. (2020). Virtual screening of approved clinic drugs with main protease (3CL(pro)) reveals potential inhibitory effects on SARS-CoV-2. Journal of Biomolecular Structure and Dynamics, 1–11. https://doi.org/10.1080/07391102.2020.1817786
  • WHO Coronavirus disease (COVID-19) dashboard. https://covid19.who.int/
  • WHO Naming the coronavirus disease (COVID-19) and the virus that causes it. https://www.who.int/emergencies/diseases/novel-coronavirus-2019/technical-guidance/naming-the-coronavirus-disease-(covid-2019)-and-the-virus-that-causes-it
  • WHO recommends against the use of remdesivir in COVID-19 patients. https://www.who.int/news-room/feature-stories/detail/who-recommends-against-the-use-of-remdesivir-in-covid-19-patients
  • Wójcik, P., & Berlicki, Ł. (2016). Peptide-based inhibitors of protein–protein interactions. Bioorganic & Medicinal Chemistry Letters, 26(3), 707–713.
  • Woo, P. C., Huang, Y., Lau, S. K., & Yuen, K.-Y. (2010). Coronavirus genomics and bioinformatics analysis. Viruses, 2(8), 1804–1820. https://doi.org/10.3390/v2081803
  • Wu, F., Zhao, S., Yu, B., Chen, Y.-M., Wang, W., Song, Z.-G., Hu, Y., Tao, Z.-W., Tian, J.-H., & Pei, Y.-Y. (2020). A new coronavirus associated with human respiratory disease in China. Nature, 579, 265–269.
  • Xia, B., & Kang, X. (2011). Activation and maturation of SARS-CoV main protease. Protein & Cell, 2(4), 282–290. https://doi.org/10.1007/s13238-011-1034-1
  • Xu, X., Liu, Y., Weiss, S., Arnold, E., Sarafianos, S. G., & Ding, J. (2003). Molecular model of SARS coronavirus polymerase: Implications for biochemical functions and drug design. Nucleic Acids Research, 31(24), 7117–7130.
  • Yang, H., Bartlam, M., & Rao, Z. (2006). Drug design targeting the main protease, the Achilles' heel of coronaviruses. Current Pharmaceutical Design, 12(35), 4573–4590.
  • Yang, H., Yang, M., Ding, Y., Liu, Y., Lou, Z., Zhou, Z., Sun, L., Mo, L., Ye, S., Pang, H., Gao, G. F., Anand, K., Bartlam, M., Hilgenfeld, R., & Rao, Z. (2003). The crystal structures of severe acute respiratory syndrome virus main protease and its complex with an inhibitor. Proceedings of the National Academy of Sciences of the United States of America, 100(23), 13190–13195. https://doi.org/10.1073/pnas.1835675100
  • Zehra, Z., Luthra, M., Siddiqui, S. M., Shamsi, A., Gaur, N. A., & Islam, A. (2020). Corona virus versus existence of human on the earth: A computational and biophysical approach. International Journal of Biological Macromolecules, 161, 271–281.
  • Zhang, W., Bell, E. W., Yin, M., & Zhang, Y. (2020). EDock: Blind protein-ligand docking by replica-exchange Monte Carlo simulation . Journal of Cheminformatics, 12(1), 37. https://doi.org/10.1186/s13321-020-00440-9
  • Zhang, Y., & Sanner, M. F. (2019). AutoDock CrankPep: Combining folding and docking to predict protein-peptide complexes. Bioinformatics (Oxford, England), 35(24), 5121–5127. https://doi.org/10.1093/bioinformatics/btz459
  • Zhou, P., Yang, X.-L., Wang, X.-G., Hu, B., Zhang, L., Zhang, W., Si, H.-R., Zhu, Y., Li, B., & Huang, C.-L. (2020). A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature, 579, 270–273.
  • Zhu, N., Zhang, D., Wang, W., Li, X., Yang, B., Song, J., Zhao, X., Huang, B., Shi, W., & Lu, R. (2020). A novel coronavirus from patients with pneumonia in China, 2019. New England Journal of Medicine, 382, 727-33.
  • Ziebuhr, J., Snijder, E. J., & Gorbalenya, A. E. (2000). Virus-encoded proteinases and proteolytic processing in the Nidovirales. The Journal of General Virology, 81(Pt 4), 853–879.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.