192
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

An insight into the simulation directed understanding of the mechanism in SARS CoV-2 N-CTD, dimer integrity, and RNA-binding: Identifying potential antiviral inhibitors

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, , ORCID Icon, ORCID Icon, , ORCID Icon & ORCID Icon show all
Pages 13912-13924 | Received 08 Jul 2021, Accepted 16 Oct 2021, Published online: 09 Nov 2021

References

  • Avti, P., Chauhan, A., Shekhar, N., Prajapat, M., Sarma, P., Kaur, H., Bhattacharyya, A., Kumar, S., Prakash, A., Sharma, S., & Medhi, B. (2021). Computational basis of SARS-CoV 2 main protease inhibition: An insight from molecular dynamics simulation based findings. Journal of Biomolecular Structure and Dynamics, 1–11. https://doi.org/10.1080/07391102.2021.1922310
  • Bowers, K. J., Chow, D. E., Xu, H., Dror, R. O., Eastwood, M. P., & Gregersen, B. A. (2006). Scalable algorithms for molecular dynamics simulations on commodity clusters [Paper presentation]. In SC'06: Proceedings of the 2006 ACM/IEEE Conference on Supercomputing (p. 43). IEEE.
  • Calligari, P., Bobone, S., Ricci, G., & Bocedi, A. (2020). Molecular investigation of SARS–CoV-2 proteins and their interactions with antiviral drugs. Viruses, 12(4), 445. https://doi.org/10.3390/v12040445
  • Chang, C., Hou, M.-H., Chang, C.-F., Hsiao, C.-D., & Huang, T. (2014). The SARS coronavirus nucleocapsid protein-forms and functions. Antiviral Research, 103, 39–50. https://doi.org/10.1016/j.antiviral.2013.12.009
  • Chauhan, A., Avti, P., Shekhar, N., Prajapat, M., Sarma, P., Bhattacharyya, A., Kumar, S., Kaur, H., Prakash, A., & Medhi, B. (2021). Structural and conformational analysis of SARS CoV 2 N-CTD revealing monomeric and dimeric active sites during the RNA-binding and stabilization: Insights towards potential inhibitors for N-CTD. Computers in Biology and Medicine, 134, 104495. https://doi.org/10.1016/j.compbiomed.2021.104495
  • Dai, L., & Gao, G. F. (2021). Viral targets for vaccines against COVID-19. Nature Reviews. Immunology, 21(2), 73–82. https://doi.org/10.1038/s41577-020-00480-0
  • Dinesh, D. C., Chalupska, D., Silhan, J., Koutna, E., Nencka, R., Veverka, V., & Boura, E. (2020). Structural basis of RNA recognition by the SARS-CoV-2 nucleocapsid phosphoprotein. PLoS Pathogens, 16(12), e1009100. https://doi.org/10.1371/journal.ppat.1009100
  • Gao, T., Gao, Y., Liu, X., Nie, Z., Sun, H., Lin, K., Peng, H., & Wang, S. (2021). Identification and functional analysis of the SARS-COV-2 nucleocapsid protein. BMC Microbiology, 21(1), 1–10. https://doi.org/10.1186/s12866-021-02107-3
  • Grant, B. J., Rodrigues, A. P., ElSawy, K. M., McCammon, J. A., & Caves, L. S. (2006). Bio3d: An R package for the comparative analysis of protein structures. Bioinformatics (Oxford, England), 22(21), 2695–2696. https://doi.org/10.1093/bioinformatics/btl461
  • Hu, X., Zhou, Z., Li, F., Xiao, Y., Wang, Z., Xu, J., Dong, F., Zheng, H., & Yu, R. (2021). The study of antiviral drugs targeting SARS-CoV-2 nucleocapsid and spike proteins through large-scale compound repurposing. Heliyon, 7(3), e06387. https://doi.org/10.1016/j.heliyon.2021.e06387
  • Kadioglu, O., Saeed, M., Greten, H. J., & Efferth, T. (2021). Identification of novel compounds against three targets of SARS CoV-2 coronavirus by combined virtual screening and supervised machine learning. Computers in Biology and Medicine, 133, 104359. https://doi.org/10.1016/j.compbiomed.2021.104359
  • Kedersha, N., & Anderson, P. (2002). Stress granules: Sites of mRNA triage that regulate mRNA stability and translatability. Biochemical Society Transactions, 30(Pt 6), 963–969. doi =https://doi.org/10.1042/bst0300963
  • Khan, A., Tahir Khan, M., Saleem, S., Junaid, M., Ali, A., Shujait Ali, S., Khan, M., & Wei, D.-Q. (2020). Structural Insights into the mechanism of RNA recognition by the N-terminal RNA-binding domain of the SARS-CoV-2 nucleocapsid phosphoprotein. Computational and Structural Biotechnology Journal, 18, 2174–2184. https://doi.org/10.1016/j.csbj.2020.08.006
  • Krissinel, E., & Henrick, K. (2007). Inference of macromolecular assemblies from crystalline state. Journal of Molecular Biology, 372(3), 774–797. https://doi.org/10.1016/j.jmb.2007.05.022
  • McBride, R., Van Zyl, M., & Fielding, B. C. (2014). The coronavirus nucleocapsid is a multifunctional protein. Viruses, 6(8), 2991–3018. https://doi.org/10.3390/v6082991
  • Prajapat, M., Sarma, P., Shekhar, N., Avti, P., Sinha, S., Kaur, H., Kumar, S., Bhattacharyya, A., Kumar, H., Bansal, S., & Medhi, B. (2020). Drug targets for corona virus: A systematic review. Indian Journal of Pharmacology, 52(1), 56–65. https://doi.org/10.4103/ijp.IJP_115_20
  • Prajapat, M., Sarma, P., Shekhar, N., Prakash, A., Avti, P., Bhattacharyya, A., Kaur, H., Kumar, S., Bansal, S., Sharma, A. R., & Medhi, B. (2020). Update on the target structures of SARS-CoV-2: A systematic review. Indian Journal of Pharmacology, 52(2), 142–149. https://doi.org/10.4103/ijp.IJP_338_20
  • Sarma, P., Prajapat, M., Avti, P., Kaur, H., Kumar, S., & Medhi, B. (2020). Therapeutic options for the treatment of 2019-novel coronavirus: An evidence-based approach. Indian Journal of Pharmacology, 52(1), 1–5. https://doi.org/10.4103/ijp.IJP_119_20
  • Sarma, P., Shekhar, N., Prajapat, M., Avti, P., Kaur, H., Kumar, S., Singh, S., Kumar, H., Prakash, A., Dhibar, D. P., & Medhi, B. (2021). In-silico homology assisted identification of inhibitor of RNA binding against 2019-nCoV N-protein (N terminal domain). Journal of Biomolecular Structure & Dynamics, 39(8), 2724–2732. https://doi.org/10.1080/07391102.2020.1753580
  • Singh, J., Malik, D., & Raina, A. (2020). Computational investigation for identification of potential phytochemicals and antiviral drugs as potential inhibitors for RNA-dependent RNA polymerase of COVID-19. Journal of Biomolecular Structure and Dynamics, 4(4), e114. https://doi.org/10.1080/07391102.2020.1847688
  • Singh, J., Raina, A., Sangwan, N., Chauhan, A., Khanduja, K. L., & Avti, P. K. (2021). Identification of homologous human miRNAs as antivirals towards COVID‐19 genome. Advances in Cell and Gene Therapy, 4(4), e114. https://doi.org/10.1002/acg2.114
  • Yang, M., He, S., Chen, X., Huang, Z., Zhou, Z., Zhou, Z., Chen, Q., Chen, S., & Kang, S. (2020). Structural insight into the SARS-CoV-2 nucleocapsid protein C-terminal domain reveals a novel recognition mechanism for viral transcriptional regulatory sequences. Frontiers in Chemistry, 8, 624765. https://doi.org/10.3389/fchem.2020.624765
  • Zhou, B., Liu, J., Wang, Q., Liu, X., Li, X., Li, P., Ma, Q., & Cao, C. (2008). The nucleocapsid protein of severe acute respiratory syndrome coronavirus inhibits cell cytokinesis and proliferation by interacting with translation elongation factor 1alpha. Journal of Virology, 82(14), 6962–6971. doi =https://doi.org/10.1128/JVI.00133-08

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.