265
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Relaxed complex scheme and molecular dynamics simulation suggests small molecule inhibitor of human TMPRSS2 for combating COVID-19

, , , , & ORCID Icon
Pages 13925-13935 | Received 17 Aug 2021, Accepted 16 Oct 2021, Published online: 09 Nov 2021

References

  • Al-Shari, N. A. (2020). Tackling covid-19: Identification of potential main protease inhibitors via structural analysis, virtual screening, molecular docking and mm-pbsa calculations. Journal of Biomolecular Structure and Dynamics, 39(17), 1–16.
  • AlAjmi, M. F., Azhar, A., Owais, M., Rashid, S., Hasan, S., Hussain, A., & Rehman, M. T. (2021). Antiviral potential of some novel structural analogs of standard drugs repurposed for the treatment of covid-19. Journal of Biomolecular Structure & Dynamics, 39(17), 6676–6688. https://doi.org/10.1080/07391102.2020.1799865
  • Bussi, G., Donadio, D., & Parrinello, M. (2007). Canonical sampling through velocity rescaling. The Journal of Chemical Physics, 126(1), 014101. https://doi.org/10.1063/1.2408420
  • Cheatham, T. I., Miller, J., Fox, T., Darden, T., & Kollman, P. (1995). Molecular dynamics simulations on solvated biomolecular systems: The particle mesh ewald method leads to stable trajectories of dna, rna, and proteins. Journal of the American Chemical Society, 117(14), 4193–4194. https://doi.org/10.1021/ja00119a045
  • Chen, Y., Huang, W.-C., Yang, C.-S., Cheng, F.-J., Chiu, Y.-F., Chen, H.-F., Huynh, T. K., Huang, C.-F., Chen, C.-H., Wang, H.-C., & Hung, M.-C. (2021). Screening strategy of tmprss2 inhibitors by fret-based enzymatic activity for tmprss2-based cancer and covid-19 treatment. American Journal of Cancer Research, 11(3), 827–836.
  • Chikhale, R. V., Gupta, V. K., Eldesoky, G. E., Wabaidur, S. M., Patil, S. A., & Islam, M. A. (2021). Identification of potential anti-tmprss2 natural products through homology modelling, virtual screening and molecular dynamics simulation studies. Journal of Biomolecular Structure and Dynamics, 39(17), 6660–6675. https://doi.org/10.1080/07391102.2020.1798813
  • Gupta, A., Chaudhary, N., & Aparoy, P. (2018). Mm-pbsa and per-residue decomposition energy studies on 7-phenyl-imidazoquinolin-4(5H)-one derivatives: Identification of crucial site points at microsomal prostaglandin E synthase-1 (mPGES-1) active site. International Journal of Biological Macromolecules, 119, 352–359. https://doi.org/10.1016/j.ijbiomac.2018.07.050
  • Haggag, Y. A., El-Ashmawy, N. E., & Okasha, K. M. (2020). Is hesperidin essential for prophylaxis and treatment of covid-19 infection? Medical Hypotheses, 144, 109957. https://doi.org/10.1016/j.mehy.2020.109957
  • Hempel, T., Raich, L., Olsson, S., Azouz, N. P., Klingler, A. M., Hoffmann, M., Pöhlmann, S., Rothenberg, M. E., & Noé, F. (2021). Molecular mechanism of inhibiting the sars-cov-2 cell entry facilitator tmprss2 with camostat and nafamostat. Chemical Science, 12(3), 983–992. https://doi.org/10.1039/D0SC05064D
  • Hess, B., Bekker, H., Berendsen, H. J., & Fraaije, J. G. (1997). Lincs: A linear constraint solver for molecular simulations. Journal of Computational Chemistry, 18(12), 1463–1472. https://doi.org/10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H
  • Hoffmann, M., Hofmann-Winkler, H., Smith, J. C., Krüger, N., Arora, P., Sørensen, L. K., Søgaard, O. S., Hasselstrøm, J. B., Winkler, M., Hempel, T., Raich, L., Olsson, S., Danov, O., Jonigk, D., Yamazoe, T., Yamatsuta, K., Mizuno, H., Ludwig, S., Noé, F., … Pöhlmann, S. (2021). Camostat mesylate inhibits sars-cov-2 activation by tmprss2-related proteases and its metabolite gbpa exerts antiviral activity. EBioMedicine, 65, 103255. https://doi.org/10.1016/j.ebiom.2021.103255
  • Hoffmann, M., Kleine-Weber, H., Schroeder, S., Krüger, N., Herrler, T., Erichsen, S., Schiergens, T. S., Herrler, G., Wu, N.-H., Nitsche, A., Müller, M. A., Drosten, C., & Pöhlmann, S. (2020). Sars-cov-2 cell entry depends on ace2 and tmprss2 and is blocked by a clinically proven protease inhibitor. Cell, 181(2), 271–280. https://doi.org/10.1016/j.cell.2020.02.052
  • Hu, X., Shrimp, J. H., Guo, H., Xu, M., Chen, C. Z., Zhu, W., Zakharov, A. V., Jain, S., Shinn, P., Simeonov, A., Hall, M. D., & Shen, M. (2021). Discovery of tmprss2 inhibitors from virtual screening as a potential treatment of covid-19. ACS Pharmacology & Translational Science, 4(3), 1124–1135. https://doi.org/10.1021/acsptsci.0c00221
  • Huggins, D. J. (2020). Structural analysis of experimental drugs binding to the sars-cov-2 target tmprss2. Journal of Molecular Graphics & Modelling, 100(107710), 107710.
  • Kumari, R., Kumar, R., Consortium, O. S. D. D., & Lynn, A, Open Source Drug Discovery Consortium (2014). g_mmpbsa-a GROMACS tool for high-throughput MM-PBSA calculations. Journal of Chemical Information and Modeling, 54(7), 1951–1962. https://doi.org/10.1021/ci500020m
  • Newman, D. J., & Cragg, G. M. (2016). Natural products as sources of new drugs from 1981 to 2014. Journal of Natural Products, 79(3), 629–661.
  • Newman, D. J., & Cragg, G. M. (2020). Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. Journal of Natural Products, 83(3), 770–803.
  • Nosé, S. (1986). An extension of the canonical ensemble molecular dynamics method. Molecular Physics, 57(1), 187–191. https://doi.org/10.1080/00268978600100141
  • O’Boyle, N. M., Banck, M., James, C. A., Morley, C., Vandermeersch, T., & Hutchison, G. R. (2011). Open babel: An open chemical toolbox. Journal of Cheminformatics, 3(1), 33. https://doi.org/10.1186/1758-2946-3-33
  • Panoutsopoulos, A. A. (2020). Known drugs and small molecules in the battle for covid-19 treatment. Genes & Diseases, 7(4), 528–534. https://doi.org/10.1016/j.gendis.2020.06.007
  • Parrinello, M., & Rahman, A. (1981). Polymorphic transitions in single crystals: A new molecular dynamics method. Journal of Applied Physics, 52(12), 7182–7190. https://doi.org/10.1063/1.328693
  • Peiffer, A. L., Garlick, J. M., Wu, Y., Soellner, M. B., Brooks, C. L., III, & Mapp, A. K. (2021). Tmprss2 inhibitor discovery facilitated through an in silico and biochemical screening platform. bioRxiv. http://doi.org/10.1101/2021.03.22.436465
  • Sarker, J., Das, P., Sarker, S., Roy, A. K., & Momen, A. (2021). A review on expression, pathological roles, and inhibition of tmprss2, the serine protease responsible for sars-cov-2 spike protein activation. Scientifica, 2021, 2706789 https://doi.org/10.1155/2021/2706789
  • Sgrignani, J., & Cavalli, A. (2021). Computational identification of a putative allosteric binding pocket in tmprss2. Frontiers in Molecular Biosciences, 8(279), 666626. https://doi.org/10.3389/fmolb.2021.666626
  • Shadrack, D. M., Deogratias, G., Kiruri, L. W., Swai, H. S., Vianney, J.-M., & Nyandoro, S. S. (2021). Ensemble-based screening of natural products and fda-approved drugs identified potent inhibitors of sars-cov-2 that work with two distinct mechanisms. Journal of Molecular Graphics & Modelling, 105, 107871.
  • Shadrack, D. M., Swai, H. S., & Hassanali, A. (2020). A computational study on the role of water and conformational fluctuations in hsp90 in response to inhibitors. Journal of Molecular Graphics and Modelling, 96, 107510. https://doi.org/10.1016/j.jmgm.2019.107510
  • Sonawane, K. D., Barale, S. S., Dhanavade, M. J., Waghmare, S. R., Nadaf, N. H., Kamble, S. A., Mohammed, A. A., Makandar, A. M., Fandilolu, P. M., Dound, A. S., Naik, N. M., & More, V. B. (2021). Structural insights and inhibition mechanism of tmprss2 by experimentally known inhibitors camostat mesylate, nafamostat and bromhexine hydrochloride to control sars-coronavirus-2: A molecular modeling approach. Informatics in Medicine Unlocked, 24, 100597. https://doi.org/10.1016/j.imu.2021.100597
  • Tian, D., Liu, Y., Liang, C., Xin, L., Xie, X., Zhang, D., Wan, M., Li, H., Fu, X., Liu, H., & Cao, W. (2021). An update review of emerging small-molecule therapeutic options for covid-19. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie, 137, 111313. https://doi.org/10.1016/j.biopha.2021.111313
  • Trott, O., & Olson, A. J. (2010). Autodock vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31(2), 455–461.
  • Wang, L., Liang, R., Gao, Y., Li, Y., Deng, X., Xiang, R., Zhang, Y., Ying, T., Jiang, S., & Yu, F. (2019). Development of small-molecule inhibitors against zika virus infection. Frontiers in Microbiology, 10(2725), 2725.
  • Wu, S., Skolnick, J., & Zhang, Y. (2007). Ab initio modeling of small proteins by iterative tasser simulations. BMC Biology, 5(1), 1–10. https://doi.org/10.1186/1741-7007-5-17
  • Xiang, R., Yu, Z., Wang, Y., Wang, L., Huo, S., Li, Y., Liang, R., Hao, Q., Ying, T., Gao, Y., Yu, F., & Jiang, S. (2021). Recent advances in developing small-molecule inhibitors against sars-cov-2. Acta Pharmaceutica Sinica B. (In Press) https://doi.org/10.1016/j.apsb.2021.06.016
  • Xu, M., & Lill, M. A. (2011). Significant enhancement of docking sensitivity using implicit ligand sampling. Journal of Chemical Information and Modeling, 51(3), 693–706. https://doi.org/10.1021/ci100457t
  • Zhu, H., Du, W., Song, M., Liu, Q., Herrmann, A., & Huang, Q. (2021). Spontaneous binding of potential covid-19 drugs (camostat and nafamostat) to human serine protease tmprss2. Computational and Structural Biotechnology Journal, 19, 467–476. https://doi.org/10.1016/j.csbj.2020.12.035

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.