712
Views
7
CrossRef citations to date
0
Altmetric
Review Articles

Imidazopyridine, a promising scaffold with potential medicinal applications and structural activity relationship (SAR): recent advances

, , &
Pages 14279-14302 | Received 18 Aug 2021, Accepted 16 Oct 2021, Published online: 15 Nov 2021

References

  • Abdelrazek, F., Gomha, S. M., Abdelrahman, A. H., Metz, P., & Sayed, M. A. (2017). A facile synthesis and drug design of some new heterocyclic compounds incorporating pyridine moiety and their antimicrobial evaluation. Letters in Drug Design & Discovery, 14(7), 752–762.
  • Almeida, G. M., Rafique, J., Saba, S., Siminski, T., Mota, N. S., Wilhelm Filho, D., Braga, A. L., Pedrosa, R. C., & Ourique, F. (2018). Novel selenylated imidazo [1, 2-a] pyridines for breast cancer chemotherapy: Inhibition of cell proliferation by Akt-mediated regulation, DNA cleavage and apoptosis. Biochemical and Biophysical Research Communications, 503(3), 1291–1297. https://doi.org/10.1016/j.bbrc.2018.07.039
  • Almirante, L., Polo, L., Mugnaini, A., Provinciali, E., Rugarli, P., Biancotti, A., Gamba, A., & Murmann, W. (1965). Derivatives of imidazole. I. Synthesis and reactions of imidazo [1,2-α] pyridines with analgesic, anti-inflammatory, antipyretic, and anticonvulsant activity. Journal of Medicinal Chemistry, 8, 305–312. https://doi.org/10.1021/jm00327a007
  • Al-Tel, T. H., & Al-Qawasmeh, R. A. (2010). Post Groebke-Blackburn multicomponent protocol: Synthesis of new polyfunctional imidazo[1,2-a]pyridine and imidazo[1,2-a]pyrimidine derivatives as potential antimicrobial agents. European Journal of Medicinal Chemistry, 45(12), 5848–5855. https://doi.org/10.1016/j.ejmech.2010.09.049
  • Al-Tel, T. H., Al-Qawasmeh, R. A., & Zaarour, R. (2011). Design, synthesis and in vitro antimicrobial evaluation of novel Imidazo[1,2-a]pyridine and imidazo[2,1-b][1,3]benzothiazole motifs. European Journal of Medicinal Chemistry, 46(5), 1874–1881. https://doi.org/10.1016/j.ejmech.2011.02.051
  • Althagafi, I., & Abdel-Latif, E. (2021). Synthesis and antibacterial activity of new imidazo [1, 2-a] pyridines festooned with pyridine, thiazole or pyrazole moiety. Polycyclic Aromatic Compounds, 1–14. https://doi.org/10.1080/10406638.2021.1894185
  • Alzheimer’s Association. (2018). Alzheimer’s disease facts and figures. Alzheimer’s & Dementia, 14(3), 367–429.
  • Anaflous, A., Benchat, N., Mimouni, M., Abouricha, S., Ben-Hadda, T., El-Bali, B., Hakkou, A., & Hacht, B. (2004). Armed imidazo [1, 2-a] pyrimidines (pyridines): Evaluation of antibacterial activity. Letters in Drug Design & Discovery, 1(3), 224–229. https://doi.org/10.2174/1570180043398885
  • Aridoss, G., Balasubramanian, S., Parthiban, P., & Kabilan, S. (2006). Synthesis and in vitro microbiological evaluation of imidazo(4,5-b)pyridinylethoxypiperidones. European Journal of Medicinal Chemistry, 41(2), 268–275. https://doi.org/10.1016/j.ejmech.2005.10.014
  • Ashwell, M. A., Lapierre, J. M., Brassard, C., Bresciano, K., Bull, C., Cornell-Kennon, S., Eathiraj, S., France, D. S., Hall, T., Hill, J., & Kelleher, E., (2012). Discovery and optimization of a series of 3-(3-phenyl-3 H-imidazo [4, 5-b] pyridin-2-yl) pyridin-2-amines: Orally bioavailable, selective, and potent ATP-independent Akt inhibitors. Journal of Medicinal Chemistry, 55, 5291–5310.
  • Assone, A., Madeo, G., Schirinzi, T., Vita, D., Puglisi, F., Ponterio, G., Borsini, F., Pisani, A., & Bonsi, P. (2011). Activation of 5-HT6 receptors inhibits corticostriatal glutamatergic transmission. Neuropharmacology, 61(4), 632–637. https://doi.org/10.1016/j.neuropharm.2011.05.004
  • Baladi, T., Aziz, J., Dufour, F., Abet, V., Stoven, V., Radvanyi, F., Poyer, F., Wu, T.-D., Guerquin-Kern, J.-L., Bernard-Pierrot, I., Garrido, S. M., & Piguel, S. (2018). Design, synthesis, biological evaluation and cellular imaging of imidazo [4, 5-b] pyridine derivatives as potent and selective TAM inhibitors. Bioorganic and Medicinal Chemistry, 26(20), 5510–5530. https://doi.org/10.1016/j.bmc.2018.09.031
  • Bassyouni, F. A., Tawfik, H. A., Soliman, A. M., & Rehim, M. A. (2012). Synthesis and anticancer activity of some new pyridine derivatives. Research on Chemical Intermediates, 38(7), 1291–1310. https://doi.org/10.1007/s11164-011-0413-9
  • Bavetsias, V., Crumpler, S., Sun, C., Avery, S., Atrash, B., Faisal, A., Moore, A. S., Kosmopoulou, M., Brown, N., Sheldrake, P. W., Bush, K., Henley, A., Box, G., Valenti, M., de Haven Brandon, A., Raynaud, F. I., Workman, P., Eccles, S. A., Bayliss, R., … Blagg, J. (2012). Optimization of imidazo [4, 5-b] pyridine-based kinase inhibitors: Identification of a dual FLT3/Aurora kinase inhibitor as an orally bioavailable preclinical development candidate for the treatment of acute myeloid leukemia. Journal of Medicinal Chemistry, 55(20), 8721–8734. https://doi.org/10.1021/jm300952s
  • Bavetsias, V., Faisal, A., Crumpler, S., Brown, N., Kosmopoulou, M., Joshi, A., Atrash, B., Pérez-Fuertes, Y., Schmitt, J. A., Boxall, K. J., Burke, R., Sun, C., Avery, S., Bush, K., Henley, A., Raynaud, F. I., Workman, P., Bayliss, R., Linardopoulos, S., & Blagg, J. (2013). Aurora isoform selectivity: Design and synthesis of imidazo[4,5-b]pyridine derivatives as highly selective inhibitors of Aurora-A kinase in cells. Journal of Medicinal Chemistry, 56(22), 9122–9135. https://doi.org/10.1021/jm401115g
  • Bavetsias, V., Large, J. M., Sun, C., Bouloc, N., Kosmopoulou, M., Matteucci, M., Wilsher, N. E., Martins, V., Reynisson, J., Atrash, B., Faisal, A., Urban, F., Valenti, M., de Haven Brandon, A., Box, G., Raynaud, F. I., Workman, P., Eccles, S. A., Bayliss, R., … McDonald, E. (2010). Imidazo [4, 5-b] pyridine derivatives as inhibitors of Aurora kinases: Lead optimization studies toward the identification of an orally bioavailable preclinical development candidate. Journal of Medicinal Chemistry, 53(14), 5213–5228. https://doi.org/10.1021/jm100262j
  • Berner, H., Reinshagen, H., & Koch, M. A. (1973). Antivirals. 1. 2-(Alpha-hydroxybenzyl)imidazo(4,5-C)pyridine. Journal of Medicinal Chemistry, 16(11), 1296–1298. https://doi.org/10.1021/jm00269a017
  • Bhale, P. S. (2013). Synthesis and antimicrobial screening of Mannich bases of imidazo [1, 2-a] pyridine, Golden Research Thoughts, 2, 1–6.
  • Bhale, P. S., Dongare, S. B., & Chanshetti, U. B. (2013). Synthesis and antimicrobial screening of chalcones containing imidazo [1, 2-a] pyridine nucleus. Research Journal of Chemical Sciences, 3(12), 38–42.
  • Bian, Y., Ren, L., Wang, L., Xu, S., Tao, J., Zhang, X., Huang, Y., Qian, Y., Zhang, X., Song, Z., Wu, W., Wang, Y., & Liang, G. (2015). A novel imidazopyridine derivative, X22, prevents the retinal ischemia-reperfusion injury via inhibition of MAPKs. Experimental Eye Research, 135, 26–36. https://doi.org/10.1016/j.exer.2015.04.010
  • Bochis, R. J., Dybas, R. A., Eskola, P., Kulsa, P., Linn, B. O., Lusi, A., Meitzner, E. P., Milkowski, J., Mrozik, H., Olen, L. E., Peterson, L. H., Tolman, R. L., Wagner, A. F., Waksmunski, F. S., Egerton, J. R., & Ostlind, D. A. (1978). Methyl 6-(phenylsulfinyl)imidazo[1,2-a]pyridine-2-carbamate, a potent, new anthelmintic. Journal of Medicinal Chemistry, 21(2), 235–237. https://doi.org/10.1021/jm00200a020
  • Bode, M. L., Gravestock, D., Moleele, S. S., Van der Westhuyzen, C. W., Pelly, S. C., Steenkamp, P. A., Hoppe, H. C., Khan, T., & Nkabinde, L. A. (2011). Imidazo[1,2-a]pyridin-3-amines as potential HIV-1 non-nucleoside reverse transcriptase inhibitors. Bioorganic & Medicinal Chemistry, 19(14), 4227–4237. https://doi.org/10.1016/j.bmc.2011.05.062
  • Bourichi, S., Misbahi, H., Rodi, Y. K., Chahdi, F. O., Essassi, E. M., Szabó, S., Szalontai, B., Gajdács, M., Molnár, J., & Spengler, G. (2018). In vitro evaluation of the multidrug resistance reversing activity of novel imidazo[4, 5-b]pyridine derivatives. Anticancer Research, 38(7), 3999–4003. https://doi.org/10.21873/anticanres.12687
  • Bukowski, L., & Kaliszan, R. (1991). Imidazo[4,5-b]pyridine derivatives of potential tuberculostatic activity, II: Synthesis and bioactivity of designed and some other 2-cyanomethylimidazo[4,5-b]pyridine derivatives. Archiv Der Pharmazie, 324(9), 537–542. https://doi.org/10.1002/ardp.2503240903
  • Bukowski, L., Zwolska, Z., & Augustynowicz-Kopec, E. (2006). Synthesis and antituberculotic activity of some new imidazo [4, 5-b] pyridine derivatives. Chemistry of Heterocyclic Compounds, 42(10), 1358–1365. https://doi.org/10.1007/s10593-006-0249-1
  • Cappelli, A., Pericot Mohr, G. l., Giuliani, G., Galeazzi, S., Anzini, M., Mennuni, L., Ferrari, F., Makovec, F., Kleinrath, E. M., Langer, T., Valoti, M., Giorgi, G., & Vomero, S. (2006). Further studies on imidazo[4,5-b]pyridine AT1 angiotensin II receptor antagonists. Effects of the transformation of the 4-phenylquinoline backbone into 4-phenylisoquinolinone or 1-phenylindene scaffolds. Journal of Medicinal Chemistry, 49(22), 6451–6464. https://doi.org/10.1021/jm0603163
  • Casimiro-Garcia, A., Filzen, G. F., Flynn, D., Bigge, C. F., Chen, J., Davis, J. A., Dudley, D. A., Edmunds, J. J., Esmaeil, N., Geyer, A., Heemstra, R. J., Jalaie, M., Ohren, J. F., Ostroski, R., Ellis, T., Schaum, R. P., & Stoner, C. (2011). Discovery of a series of imidazo[4,5-b]pyridines with dual activity at angiotensin II type 1 receptor and peroxisome proliferator-activated receptor-γ . Journal of Medicinal Chemistry, 54(12), 4219–4233. https://doi.org/10.1021/jm200409s
  • Casimiro-Garcia, A., Heemstra, R. J., Bigge, C. F., Chen, J., Ciske, F. A., Davis, J. A., Ellis, T., Esmaeil, N., Flynn, D., Han, S., Jalaie, M., Ohren, J. F., & Powell, N. A. (2013). Design, synthesis, and evaluation of imidazo[4,5-c]pyridin-4-one derivatives with dual activity at angiotensin II type 1 receptor and peroxisome proliferator-activated receptor-γ. Bioorganic & Medicinal Chemistry Letters, 23(3), 767–772. https://doi.org/10.1016/j.bmcl.2012.11.088
  • Chojnacki, K., Lindenblatt, D., Wińska, P., Wielechowska, M., Toelzer, C., Niefind, K., & Bretner, M. (2021). Synthesis, biological properties and structural study of new halogenated azolo [4, 5-b] pyridines as inhibitors of CK2 kinase. Bioorganic Chemistry, 106, 104502. https://doi.org/10.1016/j.bioorg.2020.104502
  • Cirignotta, F., Mondini, S., Zucconi, M., Gerardi, R., Farolfi, A., & Lugaresi, E. (1988). Zolpidem-polysomnographic study of the effect of a new hypnotic drug in sleep apnea syndrome. Pharmacology Biochemistry and Behavior, 29(4), 807–809. https://doi.org/10.1016/0091-3057(88)90212-2
  • Dahan-Farkas, N., Langley, C., Rousseau, A. L., Yadav, D. B., Davids, H., & de Kon Ing, C. B. (2011). 6-Substituted imidazo[1,2-a]pyridines: Synthesis and biological activity against colon cancer cell lines HT-29 and Caco-2. European Journal of Medicinal Chemistry, 46(9), 4573–4583. https://doi.org/10.1016/j.ejmech.2011.07.036
  • Dam, J., Ismail, Z., Kurebwa, T., Gangat, N., Harmse, L., Marques, H. M., Lemmerer, A., Bode, M. L., & de Koning, C. B. (2017). Synthesis of copper and zinc 2-(pyridin-2-yl)imidazo[1,2-a]pyridine complexes and their potential anticancer activity . European Journal of Medicinal Chemistry, 126, 353–368. https://doi.org/10.1016/j.ejmech.2016.10.041
  • Damghani, T., Moosavi, F., Khoshneviszadeh, M., Mortazavi, M., Pirhadi, S., Kayani, Z., Saso, L., Edraki, N., & Firuzi, O. (2021). Imidazopyridine hydrazone derivatives exert antiproliferative effect on lung and pancreatic cancer cells and potentially inhibit receptor tyrosine kinases including c-Met. Scientific Reports, 11, 1–20.
  • Dar, A. M., & Gatoo, M. A. (2015). Synthesis of new steroidal imidazo [1, 2-a] pyridines: DNA binding studies, cleavage activity and in vitro cytotoxicity. Steroids, 104, 163–175.
  • De, A., Sarkar, S., & Majee, A. (2021). Recent advances on heterocyclic compounds with antiviral properties. Chemistry of Heterocyclic Compounds, 57, 410–416.
  • Depoortere, H., Zivkovic, B., Lloyd, K. G., Sanger, D. J., Perrault, G., Langer, S. Z., & Bartholini, G. (1986). Zolpidem, a novel nonbenzodiazepine hypnotic. I. Neuropharmacological and behavioral effects. The Journal of Pharmacology and Experimental Therapeutics, 237(2), 649–658.
  • Di Chiacchio, A., Rimoli, M. G., Avallone, L., Arena, F., Abignente, E., Filippelli, W., Filippelli, A., & Falcone, G. (1998). 2‐Phenylimidazo [1, 2‐a] pyridine‐3‐carboxylic acid derivatives: Synthesis and antiinflammatory activity. Archiv Der Pharmazie, 331(9), 273–278. https://doi.org/10.1002/(SICI)1521-4184(19989)331:9<273::AID-ARDP273>3.0.CO;2-R
  • Domingues, M., Casaril, A. M., Birmann, P. T., Lourenço, D. D. A., Vieira, B., Begnini, K., Lenardão, E. J., Collares, T., Seixas, F. K., & Savegnago, L. (2018). Selanylimidazopyridine prevents lipopolysaccharide-induced depressive-like behavior in mice by targeting neurotrophins and inflammatory/oxidative mediators. Frontiers in Neuroscience, 12, 486. https://doi.org/10.3389/fnins.2018.00486
  • Dubey, P. K., Kumar, R. V., Naidu, A., & Kulkarni, S. M. (2009). A review on the biological activity of imidazo (4, 5-b) pyridines and related compounds. Asian Journal of Chemistry, 14, 1129–1152.
  • Durand, A., Thénot, J. P., Bianchetti, G., & Morselli, P. L. (1992). Comparative pharmacokinetic profile of two imidazopyridine drugs: Zolpidem and alpidem. Drug Metabolism Reviews, 24(2), 239–266. https://doi.org/10.3109/03602539208996294
  • El-Sayed, W. M., Hussin, W. A., Al-Faiyz, Y. S., & Ismail, M. A. (2013). The position of imidazopyridine and metabolic activation are pivotal factors in the antimutagenic activity of novel imidazo[1,2-a]pyridine derivatives. European Journal of Pharmacology, 715(1–3), 212–218. https://doi.org/10.1016/j.ejphar.2013.05.018
  • Endoori, S., Gulipalli, K. C., Bodige, S., Ravula, P., & Seelam, N. (2021). Design, synthesis, anticancer activity, and in silico studies of novel imidazo [1, 2‐a] pyridine based 1 H‐1, 2, 3‐triazole derivatives. Journal of Heterocyclic Chemistry, 58(6), 1311–1320. https://doi.org/10.1002/jhet.4259
  • Enguehard-Gueiffier, C., Musiu, S., Henry, N., Véron, J. B., Mavel, S., Neyts, J., Leyssen, P., Paeshuyse, J., & Gueiffier, A. (2013). 3-Biphenylimidazo[1,2-a]pyridines or [1,2-b]pyridazines and analogues, novel Flaviviridae inhibitors . European Journal of Medicinal Chemistry, 64, 448–463. https://doi.org/10.1016/j.ejmech.2013.03.054
  • Fancelli, D., Moll, J., Varasi, M., Bravo, R., Artico, R., Berta, D., Bindi, S., Cameron, A., Candiani, I., Cappella, P., Carpinelli, P., Croci, W., Forte, B., Giorgini, M. L., Klapwijk, J., Marsiglio, A., Pesenti, E., Rocchetti, M., Roletto, F., … Vianello, P. (2006). 1,4,5,6-Tetrahydropyrrolo[3,4-c]pyrazoles: Identification of a potent aurora kinase inhibitor with a favorable antitumor kinase inhibition profile. Journal of Medicinal Chemistry, 49(24), 7247–7251. https://doi.org/10.1021/jm060897w
  • Feng, S., Hong, D., Wang, B., Zheng, X., Miao, K., Wang, L., Yun, H., Gao, L., Zhao, S., & Shen, H. C. (2015). Discovery of imidazopyridine derivatives as highly potent respiratory syncytial virus fusion inhibitors. ACS Medicinal Chemistry Letters, 6(3), 359–362. https://doi.org/10.1021/acsmedchemlett.5b00008
  • Gamage, S. A., Spicer, J. A., Tsang, K. Y., O'Connor, P. D., Flanagan, J. U., Lee, W. J., Dickson, J. M., Shepherd, P. R., Denny, W. A., & Rewcastle, G. W. (2019). Synthesis and evaluation of imidazo [1, 2‐a] pyridine analogues of the ZSTK474 class of phosphatidylinositol 3‐kinase inhibitors. Chemistry – An Asian Journal, 14(8), 1249–1261. https://doi.org/10.1002/asia.201801762
  • Gangireddy, M. R., Mantipally, M., Gundla, R., Badavath, V. N., Paidikondala, K., & Yamala, A., (2019). Design and synthesis of piperazine‐linked imidazo [1, 2‐a] pyridine derivatives as potent anticancer agents. ChemistrySelect, 4(46), 13622–13629.
  • Gao, F., Liang, Y., Zhou, P., Cheng, J., Ding, K., & Wang, Y. (2019). Design, synthesis, antitumor activities and biological studies of novel diaryl substituted fused heterocycles as dual ligands targeting tubulin and katanin. European Journal of Medicinal Chemistry, 178, 177–194.
  • Garamvölgyi, R., Dobos, J., Sipos, A., Boros, S., Illyés, E., Baska, F., Kékesi, L., Szabadkai, I., Szántai-Kis, C., Kéri, G., & Őrfi, L. (2016). Design and synthesis of new imidazo [1, 2-a] pyridine and imidazo [1, 2-a] pyrazine derivatives with antiproliferative activity against melanoma cells. European Journal of Medicinal Chemistry, 108, 623–643.
  • Garrigou-Gadenne, D., Burke, J. T., Durand, A., Depoortere, H., Thenot, J. P., & Morselli, P. L. (1989). Pharmacokinetics, brain distribution and pharmaco-electrocorticographic profile of zolpidem, a new hypnotic, in the rat. The Journal of Pharmacology and Experimental Therapeutics, 248(3), 1283–1288.
  • Gerasi, M., Frakolaki, E., Papadakis, G., Chalari, A., Lougiakis, N., Marakos, P., Pouli, N., & Vassilaki, N. (2020). Design, synthesis and anti-HBV activity evaluation of new substituted imidazo [4, 5–b] pyridines. Bioorganic Chemistry, 98, 103580.
  • Girges, M. M., El-Zahab, M. M. A., & Hanna, M. A. (1989). Facile synthesis and biological activity of sulfonate ester-containing imidazolylpyridine, imidazo (4, 5-b) pyridine and imidazo (5', 1': 2, 3) imidazo (4, 5-b) pyridine derivatives. Collection of Czechoslovak Chemical Communications, 54(4), 1096–1103. https://doi.org/10.1135/cccc19891096
  • Greenblatt, D. J., & Roth, T. (2012). Zolpidem for insomnia. Expert Opinion on Pharmacotherapy, 13(6), 879–893.
  • Gu, X., Wang, Y., Wang, M., Wang, J., & Li, N. (2021). Computational investigation of imidazopyridine analogs as protein kinase B (Akt1) allosteric inhibitors by using 3D-QSAR, molecular docking and molecular dynamics simulations. Journal of Biomolecular Structure & Dynamics, 39(1), 63–78. https://doi.org/10.1080/07391102.2019.1705185
  • Gudmundsson, K. S., Boggs, S. D., Catalano, J. G., Svolto, A., Spaltenstein, A., Thomson, M., Wheelan, P., & Jenkinson, S. (2009). Imidazopyridine-5, 6, 7, 8-tetrahydro-8-quinolinamine derivatives with potent activity against HIV-1. Bioorganic and Medicinal Chemistry Letters, 19, 6399–6403.
  • Gueiffier, A., Mavel, S., Lhassani, M., Elhakmaoui, A., Snoeck, R., Andrei, G., Chavignon, O., Teulade, J.-C., Witvrouw, M., Balzarini, J., De Clercq, E., & Chapat, J.-P. (1998). Synthesis of imidazo [1, 2-a] pyridines as antiviral agents. Journal of Medicinal Chemistry, 41(25), 5108–5112. https://doi.org/10.1021/jm981051y
  • Gupta, S. P., Samanta, S., Masand, N., & Patil, V. M. (2013). k nearest neighbor-molecular field analysis on human HCV NS5B polymerase inhibitors: 2, 5-disubstituted imidazo [4, 5-c] pyridines. Medicinal Chemistry Research, 22(1), 330–339. https://doi.org/10.1007/s00044-012-0033-y
  • Haghighijoo, Z., Akrami, S., Saeedi, M., Zonouzi, A., Iraji, A., Larijani, B., Fakherzadeh, H., Sharifi, F., Arzaghi, S. M., Mahdavi, M., & Edraki, N. (2020). N-Cyclohexylimidazo [1, 2-a] pyridine derivatives as multi-target-directed ligands for treatment of Alzheimer’s disease. Bioorganic Chemistry, 103, 104146. https://doi.org/10.1016/j.bioorg.2020.104146
  • Hamdouchi, C., de Blas, J., del Prado, M., Gruber, J., Heinz, B. A., & Vance, L. (1999a). 2-Amino-3-substituted-6-[(E)-1-phenyl-2-(N-methylcarbamoyl)vinyl]imid azo[1,2-a]pyridines as a novel class of inhibitors of human rhinovirus: Stereospecific synthesis and antiviral activity. Journal of Medicinal Chemistry, 42(1), 50–59. https://doi.org/10.1021/jm9810405
  • Hamdouchi, C., Ezquerra, J., Vega, J. A., Vaquero, J. J., Alvarez-Builla, J., & Heinz, B. A. (1999b). Short synthesis and anti-rhinoviral activity of imidazo [1,2-a]pyridines: The effect of acyl groups at 3-position. Bioorganic and Medicinal Chemistry Letters, 9(10), 1391–1394. https://doi.org/10.1016/S0960-894X(99)00193-6
  • Harer, S. L., & Bhatia, M. S. (2014). In-silico docking based design and synthesis of [1H,3H] imidazo[4,5-b] pyridines as lumazine synthase inhibitors for their effective antimicrobial activity. Journal of Pharmacy & Bioallied Sciences, 6(4), 285–296. https://doi.org/10.4103/0975-7406.142962
  • Harrington, E. A., Bebbington, D., Moore, J., Rasmussen, R. K., Ajose-Adeogun, A. O., Nakayama, T., Graham, J. A., Demur, C., Hercend, T., Diu-Hercend, A., Su, M., Golec, J. M. C., & Miller, K. M. (2004). VX-680, a potent and selective small-molecule inhibitor of the aurora kinases, suppresses tumor growth in vivo. Nature Medicine, 10(3), 262–267. https://doi.org/10.1038/nm1003
  • Hartwich, A., Zdzienicka, N., Schols, D., Andrei, G., Snoeck, R., & Głowacka, I. E. (2020). Design, synthesis and antiviral evaluation of novel acyclic phosphonate nucleotide analogs with triazolo [4, 5-b] pyridine, imidazo [4, 5-b] pyridine and imidazo [4, 5-b] pyridin-2 (3 H)-one systems. Nucleosides, Nucleotides & Nucleic Acids, 39(4), 542–591. (https://doi.org/10.1080/15257770.2019.1669046
  • Howard, S., Berdini, V., Boulstridge, J. A., Carr, M. G., Cross, D. M., Curry, J., Devine, L. A., Early, T. R., Fazal, L., Gill, A. L., Heathcote, M., Maman, S., Matthews, J. E., McMenamin, R. L., Navarro, E. F., O'Brien, M. A., O'Reilly, M., Rees, D. C., Reule, M., … Wyatt, P. G. (2009). Fragment-based discovery of the pyrazol-4-yl urea (AT9283), a multitargeted kinase inhibitor with potent aurora kinase activity . Journal of Medicinal Chemistry, 52(2), 379–388. https://doi.org/10.1021/jm800984v
  • Iqbal, M. A., Husain, A., Alam, O., Khan, S. A., Ahmad, A., Haider, M. R., & Alam, M. A. (2020). Design, synthesis, and biological evaluation of imidazopyridine‐linked thiazolidinone as potential anticancer agents. Archiv Der Pharmazie, 353(10), 2000071. https://doi.org/10.1002/ardp.202000071
  • Jose, G., Suresha Kumara, T. H., Nagendrappa, G., Sowmya, H. B. V., Jasinski, J. P., Millikan, S. P., Chandrika, N., More, S. S., & Harish, B. G. (2014). New polyfunctional imidazo [4, 5-c] pyridine motifs: Synthesis, crystal studies, docking studies and antimicrobial evaluation. European Journal of Medicinal Chemistry, 77, 288–297. https://doi.org/10.1016/j.ejmech.2014.03.019
  • Jose, G., Suresha Kumara, T. H., Nagendrappa, G., Sowmya, H. B. V., Sriram, D., Yogeeswari, P., Sridevi, J. P., Guru Row, T. N., Hosamani, A. A., Sujan Ganapathy, P. S., Chandrika, N., & Narendra, L. V. (2015). Synthesis, molecular docking and anti-mycobacterial evaluation of new imidazo[1,2-a]pyridine-2-carboxamide derivatives. European Journal of Medicinal Chemistry, 89, 616–627. https://doi.org/10.1016/j.ejmech.2014.10.079
  • Kaminski, J. J., Bristol, J. A., Puchalski, C., Lovey, R. G., Elliott, A. J., Guzik, H., Solomon, D. M., Conn, D. J., Domalski, M. S., & Wong, S. C. (1985). Antiulcer agents. 1. Gastric antisecretory and cytoprotective properties of substituted imidazo[1,2-a]pyridines. Journal of Medicinal Chemistry, 28(7), 876–892. https://doi.org/10.1021/jm00145a006
  • Kaminski, J. J., Perkins, D. G., Frantz, J. D., Solomon, D. M., Elliott, A. J., Chiu, P. J. S., & Long, J. F. (1987). Antiulcer agents. 3. Structure-activity-toxicity relationships of substituted imidazo[1,2-a]pyridines and a related imidazo[1,2-a]pyrazine. Journal of Medicinal Chemistry, 30(11), 2047–2051. https://doi.org/10.1021/jm00394a019
  • Kang, S. J., Lee, J. W., Song, J., Park, J., Choi, J., Suh, K. H., & Min, K. H. (2020). Synthesis and biological activity of 2-cyanoacrylamide derivatives tethered to imidazopyridine as TAK1 inhibitors. Journal of Enzyme Inhibition and Medicinal Chemistry, 35(1), 1928–1936. https://doi.org/10.1080/14756366.2020.1833876
  • Kaplancikli, Z. A., Turan-Zitouni, G., Ozdemir, A., & Revial, G. (2008). Synthesis and anticandidal activity of some imidazopyridine derivatives. Journal of Enzyme Inhibition and Medicinal Chemistry, 23(6), 866–870. https://doi.org/10.1080/14756360701811114
  • Kirwen, E. M., Batra, T., Karthikeyan, C., Deora, G. S., Rathore, V., Mulakayala, C., Mulakayala, N., Nusbaum, A. C., Chen, J., Amawi, H., & McIntosh, K. (2017). 2,3-Diaryl-3H-imidazo [4, 5-b] pyridine derivatives as potential anticancer and anti-inflammatory agents. Acta Pharmaceutica Sinica B, 7(1), 73–79.
  • Kishore, B. N., Unyala, R., Begum, A., Hepsibha, C., Madhava, B., & Reddy, V. (2017). Synthesis, characterization of some novel pyrazoline incorporated imidazo [1, 2-a] pyridines for anti-inflammatory and anti-bacterial activities. Pharmaceutical Chemistry, 9, 45–49.
  • Kiyama, R., Fuji, M., Hara, M., Fujimoto, M., Kawabata, T., Nakamura, M., & Fujishita, T. (1995). Synthesis and evaluation of novel nonpeptide angiotensin II receptor antagonists: Imidazo[4,5-c]pyridine derivatives with an aromatic substituent. Chemical & Pharmaceutical Bulletin, 43(3), 450–460. https://doi.org/10.1248/cpb.43.450
  • Krenitsky, T. A., Rideout, J. L., Chao, E. Y., Koszalka, G. W., Gurney, F., Crouch, R. C., Cohn, N. K., Wolberg, G., & Vinegar, R. (1986). Imidazo [4, 5-c] pyridines (3-deazapurines) and their nucleosides as immunosuppressive and antiinflammatory agents. Journal of Medicinal Chemistry, 29(1), 138–143. https://doi.org/10.1021/jm00151a022
  • Kumar, V. K., Swamy Puli, V., Prasad, K. R. S., & Sridhar, G. (2021). Synthesis and biological evaluation of chalcone linked structural modified benzothizaole-imidazopyridine derivatives as anticancer agents. Chemical Data Collections, 33, 100696.
  • Kuthyala, S., Sheikh, S., Nagaraja, G. K., Kannika, B. R., Madan Kumar, S., Chandra Nayak, S., & Lokanath, N. K. (2021). Towards the synthesis of imidazopyridine derivatives: Characterization, single crystal XRD, Hirshfeld analysis, and biological evaluation. ChemistrySelect, 6(4), 843–851. https://doi.org/10.1002/slct.202003632
  • Lacroix, L. P., Dawson, L. A., Hagan, J. J., & Heidbreder, C. A. (2004). 5-HT6 receptor antagonist SB-271046 enhances extracellular levels of monoamines in the rat medial prefrontal cortex. Synapse (New York, N.Y.), 51(2), 158–164. https://doi.org/10.1002/syn.10288
  • Laneri, S., Di Ronza, C., Bernardi, A., Ostacolo, C., Sacchi, A., Cervone, C., D'Amico, M., Di Filippo, C., Letizia Trincavelli, M., Panighini, A., & Martini, C. (2011). Synthesis and antihypertensive action of new imidazo [1, 2-a] pyridine derivatives, non peptidic angiotensin II receptor antagonists. Cardiovascular & Haematological Disorders-Drug Targets (Formerly Current Drug Targets-Cardiovascular & Hematological Disorders), 11(2), 87–96.
  • Langtry, H. D., & Benfield, P. (1990). Zolpidem. A review of its pharmacodynamic and pharmacokinetic properties and therapeutic potential. Drugs, 40(2), 291–313. https://doi.org/10.2165/00003495-199040020-00008
  • Lee, B. S., Sviriaeva, E., & Pethe, K. (2020). Targeting the cytochrome oxidases for drug development in mycobacteria. Progress in Biophysics and Molecular Biology, 152, 45–54. https://doi.org/10.1016/j.pbiomolbio.2020.02.001
  • Lee, S.-C., Kim, H. T., Park, C.-H., Lee, D. Y., Chang, H.-J., Park, S., Cho, J. M., Ro, S., & Suh, Y.-G. (2012). Design, synthesis and biological evaluation of novel imidazopyridines as potential antidiabetic GSK3β inhibitors. Bioorganic and Medicinal Chemistry Letters, 22(13), 4221–4224. https://doi.org/10.1016/j.bmcl.2012.05.060
  • Lhassani, M., Chavignon, O., Chezal, J. M., Teulade, J. C., Chapat, J. P., Snoeck, R., Andrei, G., Balzarini, J., De Clercq, E., & Gueiffier, A. (1999). Synthesis and antiviral activity of imidazo [1, 2-a] pyridines. European Journal of Medicinal Chemistry, 34(3), 271–274. https://doi.org/10.1016/S0223-5234(99)80061-0
  • Li, Q., Zhou, M., Han, L., Cao, Q., Wang, X., Zhao, L., Zhou, J., & Zhang, H. (2015). Synthesis and biological evaluation of imidazo [1, 2‐a] pyridine derivatives as novel DPP‐4 inhibitors. Chemical Biology & Drug Design, 86(4), 849–856. https://doi.org/10.1111/cbdd.12560
  • Liszkiewicz, H., Kowalska, M. W., Nawrocka, W., Wójcicka, A., Wietrzyk, J., Nasulewicz, A., Pełlczyńska, M., & Opolski, A. (2003). Synthesis and antiproliferative activity in vitro of new 2-thioxo-1 H, 3 H-imidazo [4, 5-b] pyridine derivatives. Phosphorus, Sulfur, and Silicon, 178(12), 2725–2733. https://doi.org/10.1080/714040984
  • Liszkiewicz, H., Kowalska, M. W., & Wietrzyk, J. (2007). Synthesis and antiproliferative activity in vitro of new tricyclic 2-thioxo-1 H, 3 H-imidazo [4, 5-b] pyridine derivatives. Phosphorus, Sulfur, and Silicon and the Related Elements, 182, 199–208.
  • Liszkiewicz, H., Nawrocka, W. P., Sztuba, B., Wietrzyk, J., Jaroszewicz, J., Nasulewicz, A., & Pełczyńska, M. (2011). Synthesis and antiproliferative activity in vitro of new pyrido [1, 4-b] diazepine derivatives and imidazo [4, 5-b] pyridine. Acta Poloniae Pharmaceutica, 68, 349–355.
  • Liu, L., Xu, P., Zhou, L., & Lei, P. S. (2008). Synthesis of derivatives of imidazo [4, 5-b] pyridine: Novel sulfur contained side chains for macrolide antibiotics. Chinese Chemical Letters, 19(1), 1–4. https://doi.org/10.1016/j.cclet.2007.11.012
  • Liu, M., Quan, C., Dang, M., Ren, Y., Ren, J., Xiang, J., Liu, X., He, L., Liu, W., & Liu, A. (2018). Design, synthesis, and fungicidal activity of novel imidazo [4, 5‐b] pyridine derivatives. Journal of Heterocyclic Chemistry, 55(9), 2061–2068. https://doi.org/10.1002/jhet.3243
  • Lloyd, K. G., & Zivkovic, B. (1988). Specificity within the GABAA receptor supramolecular complex: A consideration of the new omega 1-receptor selective imidazopyridine hypnotic zolpidem. Pharmacology, Biochemistry, and Behavior, 29(4), 781–783. https://doi.org/10.1016/0091-3057(88)90206-7
  • Loddo, R., Briguglio, I., Corona, P., Piras, S., Loriga, M., Paglietti, G., Carta, A., Sanna, G., Giliberti, G., Ibba, C., Farci, P., & La Colla, P. (2014). Synthesis and antiviral activity of new phenylimidazopyridines and N-benzylidenequinolinamines derived by molecular simplification of phenylimidazo [4, 5-g] quinolines. European Journal of Medicinal Chemistry, 84, 8–16. https://doi.org/10.1016/j.ejmech.2014.07.011
  • Mali, S. N., & Pandey, A. (2021). Molecular modeling studies on 2, 4-disubstituted imidazopyridines as anti-malarials: Atom-based 3D-QSAR, molecular docking, virtual screening, in-silico ADMET and theoretical analysis. Journal of Computational Biophysics and Chemistry, 20, 2150012.
  • Mallemula, V. R., Sanghai, N. N., Himabindu, V., & Chakravarthy, A. K. (2015). Synthesis and characterization of antibacterial 2-(pyridin-3-yl)-1 H-benzo [d] imidazoles and 2-(pyridin-3-yl)-3 H-imidazo [4, 5-b] pyridine derivatives. Research on Chemical Intermediates, 41(4), 2125–2138. https://doi.org/10.1007/s11164-013-1335-5
  • Mani, G. S., Shaik, S. P., Tangella, Y., Bale, S., Godugu, C., & Kamal, A. (2017). A facile I 2-catalyzed synthesis of imidazo [1, 2-a] pyridines via sp 3 C–H functionalization of azaarenes and evaluation of anticancer activity. Organic & Biomolecular Chemistry, 15(32), 6780–6791. https://doi.org/10.1039/C7OB01384A
  • Marcinkowska, M., Kołaczkowski, M., Kamiński, K., Bucki, A., Pawłowski, M., Siwek, A., Karcz, T., Mordyl, B., Starowicz, G., Kubowicz, P., Pękala, E., Wesołowska, A., Samochowiec, J., Mierzejewski, P., & Bienkowski, P. (2016). Design, synthesis, and biological evaluation of fluorinated imidazo [1, 2-a] pyridine derivatives with potential antipsychotic activity. European Journal of Medicinal Chemistry, 124, 456–467. https://doi.org/10.1016/j.ejmech.2016.08.059
  • Marhadour, S., Marchand, P., Pagniez, F., Bazin, M. A., Picot, C., Lozach, O., Ruchaud, S., Antoine, M., Meijer, L., Rachidi, N., & Le Pape, P. (2012). Synthesis and biological evaluation of 2, 3-diarylimidazo [1, 2-a] pyridines as antileishmanial agents. European Journal of Medicinal Chemistry, 58, 543–556. https://doi.org/10.1016/j.ejmech.2012.10.048
  • Mavel, S., Renou, J. L., Galtier, C., Allouchi, H., Snoeck, R., Andrei, G., De Clercq, E., Balzarini, J., & Gueiffier, A. (2002). Influence of 2-substituent on the activity of imidazo [1, 2-a] pyridine derivatives against human cytomegalovirus. Bioorganic and Medicinal Chemistry, 10(4), 941–946. https://doi.org/10.1016/S0968-0896(01)00347-9
  • Mereu, G., Carcangiu, G., Concas, A., Passino, N., & Biggio, G. (1990). Reduction of reticulata neuronal activity by zolpidem and alpidem, two imidazopyridines with high affinity for type I benzodiazepine receptors. European Journal of Pharmacology, 179(3), 339–345. https://doi.org/10.1016/0014-2999(90)90174-5
  • Moraski, G. C., Markley, L. D., Chang, M., Cho, S., Franzblau, S. G., Hwang, C. H., Boshoff, H., & Miller, M. J. (2012). Generation and exploration of new classes of antitubercular agents: The optimization of oxazolines, oxazoles, thiazolines, thiazoles to imidazo[1,2-a]pyridines and isomeric 5,6-fused scaffolds. Bioorganic and Medicinal Chemistry, 20(7), 2214–2220. https://doi.org/10.1016/j.bmc.2012.02.025
  • Moraski, G. C., Markley, L. D., Hipskind, P. A., Boshoff, H., Cho, S., Franzblau, S. G., & Miller, M. J. (2011). Advent of imidazo [1, 2-a] pyridine-3-carboxamides with potent multi-and extended drug resistant antituberculosis activity. ACS Medicinal Chemistry Letters, 2, 466–470.
  • Mortlock, A. A., Foote, K. M., Heron, N. M., Jung, F. H., Pasquet, G., Lohmann, J.-J M., Warin, N., Renaud, F., De Savi, C., Roberts, N. J., Johnson, T., Dousson, C. B., Hill, G. B., Perkins, D., Hatter, G., Wilkinson, R. W., Wedge, S. R., Heaton, S. P., Odedra, R., … Green, S. (2007). Green, discovery, synthesis, and invivo activity of a new class of pyrazoloquinazolines as selective inhibitors of Aurora B kinase. Journal of Medicinal Chemistry, 50(9), 2213–2224. https://doi.org/10.1021/jm061335f
  • Nadaf, A. A., Gaonkar, S., Mantur, S., Najare, M. S., Yaseen, M., Sunagar, M. G., Joshi, S., & Khazi, I. A. M. (2020). Synthesis of 2‐chloro‐N‐(4‐(6‐chloroH‐imidazo [1, 2‐a] pyridin‐2‐yl) phenyl) acetamide derivatives as antitubercular agents. ChemistrySelect, 5(45), 14422–14429. https://doi.org/10.1002/slct.202003922
  • Nandikolla, A., Srinivasarao, S., Khetmalis, Y. M., Kumar, B. K., Murugesan, S., Shetye, G., Ma, R., Franzblau, S. G., & Sekhar, K. V. G. C. (2021). Design, synthesis and biological evaluation of novel 1, 2, 3-triazole analogues of Imidazo-[1, 2-a]-pyridine-3-carboxamide against Mycobacterium tuberculosis. Toxicology in Vitro, 74, 105137. https://doi.org/10.1016/j.tiv.2021.105137
  • N'Guessan, J. P. D. U., Delaye, P. O., Pénichon, M., Charvet, C. L., Neveu, C., Ouattara, M., Enguehard-Gueiffier, C., Gueiffier, A., & Allouchi, H. (2017). Discovery of imidazo [1, 2-a] pyridine-based anthelmintic targeting cholinergic receptors of Haemonchus contortus. Bioorganic and Medicinal Chemistry, 25(24), 6695–6706. https://doi.org/10.1016/j.bmc.2017.11.012
  • Nicholson, A. N., & Pascoe, P. A. (1986). Hypnotic activity of an imidazo-pyridine (zolpidem). British Journal of Clinical Pharmacology, 21(2), 205–211. https://doi.org/10.1111/j.1365-2125.1986.tb05176.x
  • Nordqvist, A., Nilsson, M. T., Lagerlund, O., Muthas, D., Gising, J., Yahiaoui, S., Odell, L. R., Srinivasa, B. R., Larhed, M., Mowbray, S. L., & Karlén, A. (2012). Synthesis, biological evaluation and X-ray crystallographic studies of imidazo [1, 2-a] pyridine-based Mycobacterium tuberculosis glutamine synthetase inhibitors. MedChemComm, 3(5), 620–626. https://doi.org/10.1039/c2md00310d
  • Odell, L. R., Nilsson, M. T., Gising, J., Lagerlund, O., Muthas, D., Nordqvist, A., Karlén, A., & Larhed, M. (2009). Functionalized 3-amino-imidazo [1, 2-a] pyridines: A novel class of drug-like Mycobacterium tuberculosis glutamine synthetase inhibitors. Bioorganic and Medicinal Chemistry Letters, 19(16), 4790–4793. https://doi.org/10.1016/j.bmcl.2009.06.045
  • Oslob, J. D., Romanowski, M. J., Allen, D. A., Baskaran, S., Bui, M., Elling, R. A., Flanagan, W. M., Fung, A. D., Hanan, E. J., Harris, S., Heumann, S. A., Hoch, U., Jacobs, J. W., Lam, J., Lawrence, C. E., McDowell, R. S., Nannini, M. A., Shen, W., Silverman, J. A., … Lew, W. (2008). Discovery of a potent and selective aurora kinase inhibitor. Bioorganic and Medicinal Chemistry Letters, 18(17), 4880–4884. https://doi.org/10.1016/j.bmcl.2008.07.073
  • Othman, I. M. M., Gad-Elkareem, M. A. M., Hassane Anouar, E., Aouadi, K., Kadri, A., & Snoussi, M. (2020). Design, synthesis ADMET and molecular docking of new imidazo[4,5-b]pyridine-5-thione derivatives as potential tyrosyl-tRNA synthetase inhibitors. Bioorganic Chemistry, 102, 104105. https://doi.org/10.1016/j.bioorg.2020.104105
  • Özçelik, A., Ulger, M., Aslan, G., Emekdaş, G., & Ozden, T. (2014). Studies on in vitro antimycobacterial activities of some 2-substitutedimidazo [4, 5-b] and [4, 5-c] pyridine derivatives. Revue Roumaine de Chimie, 59, 5–8.
  • Papadakis, G., Gerasi, M., Snoeck, R., Marakos, P., Andrei, G., Lougiakis, N., & Pouli, N. (2020). Synthesis of new imidazopyridine nucleoside derivatives designed as maribavir analogues. Molecules, 25(19), 4531. https://doi.org/10.3390/molecules25194531
  • Payra, S., Saha, A., Wu, C. M., Selvaratnam, B., Dramstad, T., Mahoney, L., Verma, S. K., Thareja, S., Koodali, R., & Banerjee, S. (2016). Fe–SBA-15 catalyzed synthesis of 2-alkoxyimidazo [1, 2-a] pyridines and screening of their in silico selectivity and binding affinity to biological targets. New Journal of Chemistry, 40(11), 9753–9760. https://doi.org/10.1039/C6NJ02134D
  • Pethe, K., Bifani, P., Jang, J., Kang, S., Park, S., Ahn, S., Jiricek, J., Jung, J., Jeon, H. K., Cechetto, J., Christophe, T., Lee, H., Kempf, M., Jackson, M., Lenaerts, A. J., Pham, H., Jones, V., Seo, M. J., Kim, Y. M., … Kim, J. (2013). Discovery of Q203, a potent clinical candidate for the treatment of tuberculosis. Nature Medicine, 19(9), 1157–1160. https://doi.org/10.1038/nm.3262
  • Plewe, M. B., Gantla, V. R., Sokolova, N. V., Shin, Y. J., Naik, S., Brown, E. R., Fetsko, A., Zhang, L., Kalveram, B., Freiberg, A. N., & Henkel, G. (2021). Discovery of a novel highly potent broad-spectrum heterocyclic chemical series of arenavirus cell entry inhibitors. Bioorganic and Medicinal Chemistry Letters, 41, 27983.
  • Pope, A. J., & Parsons, M. E. (1993). Reversible inhibitors of the gastric H+/K+-transporting ATPase: A new class of anti-secretory agent. Trends in Pharmacological Sciences, 14(9), 323–325. https://doi.org/10.1016/0165-6147(93)90004-4
  • Pope, A. J., & Sachs, G. (1992). Reversible inhibitors of the gastric (H+/K+)-ATPase as both potential therapeutic agents and probes of pump function. Biochemical Society Transactions, 20(3), 566–572. https://doi.org/10.1042/bst0200566
  • Potikha, L. M., & Brovarets, V. S. (2020). Synthesis of new antineoplastic agents based on imidazo [2, 1-a] pyridine. Chemistry of Heterocyclic Compounds, 56(11), 1460–1464. https://doi.org/10.1007/s10593-020-02838-7
  • Prezent, M. A., & Baranin, S. V. (2020). Synthesis and biological evaluation of new 4, 5, 6, 7‐tetrahydro‐1H‐imidazo [4, 5‐c] pyridine derivatives. ChemistrySelect, 5(44), 14017–14020. https://doi.org/10.1002/slct.202003440
  • Puerstinger, G., Paeshuyse, J., Herdewijn, P., Rozenski, J., De Clercq, E., & Neyts, J. (2006). Substituted 5-benzyl-2-phenyl-5H-imidazo [4, 5-c] pyridines: A new class of pestivirus inhibitors. Bioorganic and Medicinal Chemistry Letters, 16(20), 5345–5349. https://doi.org/10.1016/j.bmcl.2006.07.081
  • Qian, Y., Zhang, Y., Zhong, P., Peng, K., Xu, Z., Chen, X., Lu, K., Chen, G., Li, X., & Liang, G. (2016). Inhibition of inflammation and oxidative stress by an imidazopyridine derivative X22 prevents heart injury from obesity. Journal of Cellular and Molecular Medicine, 20(8), 1427–1442. https://doi.org/10.1111/jcmm.12832
  • Ramachandran, S., Panda, M., Mukherjee, K., Choudhury, N. R., Tantry, S. J., Kedari, C. K., Ramachandran, V., Sharma, S., Ramya, V. K., Guptha, S., & Sambandamurthy, V. K. (2013). Generation and exploration of new classes of antitubercular agents: The optimization of oxazolines, oxazoles, thiazolines, thiazoles to imidazo [1, 2-a] pyridines and isomeric 5, 6-fused scaffolds. Bioorganic and Medicinal Chemistry Letters, 23(17), 4996–5001. https://doi.org/10.1016/j.bmcl.2013.06.043
  • Ramanatham, V., Chari, M. A., & Dubey, P. K. (2007). An alternate approach for the synthesis of 2‐substituted‐arylimidazo [4, 5‐b] pyridines and their anti‐bacterial activity. Journal of Heterocyclic Chemistry, 44(6), 1537–1541. https://doi.org/10.1002/jhet.5570440649
  • Ramasamy, K., Imamura, N., Hanna, N. B., Finch, R. A., Avery, T. L., Robins, R. K., & Revankar, G. R. (1990). Synthesis and antitumor evaluation in mice of certain 7-deazapurine (pyrrolo[2,3-d]pyrimidine) and 3-deazapurine (imidazo[4,5-c]pyridine) nucleosides structurally related to sulfenosine, sulfinosine, and sulfonosine. Journal of Medicinal Chemistry, 33(4), 1220–1225. https://doi.org/10.1021/jm00166a021
  • Rani, C. S., Reddy, A. G., Susithra, E., Mak, K. K., Pichika, M. R., Reddymasu, S., & Rao, M. V. B. (2021). Synthesis and anticancer evaluation of amide derivatives of imidazo-pyridines. Medicinal Chemistry Research, 30(1), 74–83. https://doi.org/10.1007/s00044-020-02638-w
  • Robertson, D. W., Beedle, E. E., Krushinski, J. H., Pollock, G. D., Wilson, H., Wyss, V. L., & Hayes, J. S. (1985). Structure-activity relationships of arylimidazopyridine cardiotonics: Discovery and inotropic activity of 2-[2-methoxy-4-(methylsulfinyl)phenyl]-1H-imidazo[4,5-c]pyridine. Journal of Medicinal Chemistry, 28(6), 717–727. https://doi.org/10.1021/jm00383a006
  • Rostrup, F., Falk-Petersen, C. B., Harpso E, K., Buchleithner, S., Conforti, I., Jung, S., Gloriam, D. E., Schirmeister, T., Wellendorph, P., & Fro Lund, B. (2021). Structural Determinants for the Mode of Action of Imidazopyridine DS2 at δ-Containing γ-Aminobutyric Acid Type A Receptors. Journal of Medicinal Chemistry, 64(8), 4730–4743. https://doi.org/10.1021/acs.jmedchem.0c02163
  • Ručilová, V., Świerczek, A., Vanda, D., Funk, P., Lemrová, B., Gawalska, A., Bucki, A., Nowak, B., Zadrożna, M., Pociecha, K., Soural, M., Wyska, E., Pawłowski, M., Chłoń-Rzepa, G., & Zajdel, P. (2021). New imidazopyridines with phosphodiesterase 4 and 7 inhibitory activity and their efficacy in animal models of inflammatory and autoimmune diseases. European Journal of Medicinal Chemistry, 209, 112854. https://doi.org/10.1016/j.ejmech.2020.112854
  • Saeedi, M., Raeisi-Nafchi, M., Sobhani, S., Mirfazli, S. S., Zardkanlou, M., Mojtabavi, S., Faramarzi, M. A., & Akbarzadeh, T. (2020). Synthesis of 4-alkylaminoimidazo [1, 2-a] pyridines linked to carbamate moiety as potent α-glucosidase inhibitors. Molecular Diversity, 25, 2399–2409.
  • Sagar, S. R., Singh, D. P., Das, R. D., Panchal, N. B., Sudarsanam, V., Nivsarkar, M., & Vasu, K. K. (2021). Investigations on substituted (2-aminothiazol-5-yl)(imidazo[1,2-a]pyridin-3-yl)methanones for the treatment of Alzheimer's disease. Bioorganic & Medicinal Chemistry, 36, 116091. https://doi.org/10.1016/j.bmc.2021.116091
  • Scribner, A., Dennis, R., Hong, J., Lee, S., McIntyre, D., Perrey, D., Feng, D., Fisher, M., Wyvratt, M., Leavitt, P., Liberator, P., Gurnett, A., Brown, C., Mathew, J., Thompson, D., Schmatz, D., & Biftu, T. (2007). Synthesis and biological activity of imidazopyridine anticoccidial agents: Part I. European Journal of Medicinal Chemistry, 42(11–12), 1334–1357. https://doi.org/10.1016/j.ejmech.2007.02.006
  • Scribner, A., Dennis, R., Lee, S., Ouvry, G., Perrey, D., Fisher, M., Wyvratt, M., Leavitt, P., Liberator, P., Gurnett, A., Brown, C., Mathew, J., Thompson, D., Schmatz, D., & Biftu, T. (2008). Synthesis and biological activity of imidazopyridine anticoccidial agents: Part II. European Journal of Medicinal Chemistry, 43(6), 1123–1151. https://doi.org/10.1016/j.ejmech.2007.09.013
  • Sharma, M. C., & Kohli, D. V. (2013). A comprehensive structure–activity analysis 2, 3, 5-trisubstituted 4, 5-dihydro-4-oxo-3 H-imidazo [4, 5-c] pyridine derivatives as angiotensin II receptor antagonists: Using 2D-and 3D-QSAR approach. Medicinal Chemistry Research, 22(2), 588–605. https://doi.org/10.1007/s00044-012-0040-z
  • Starr, J. T., Sciotti, R. J., Hanna, D. L., Huband, M. D., Mullins, L. M., Cai, H., Gage, J. W., Lockard, M., Rauckhorst, M. R., Owen, R. M., Lall, M. S., Tomilo, M., Chen, H., McCurdy, S. P., & Barbachyn, M. R. (2009). 5-(2-Pyrimidinyl)-imidazo [1, 2-a] pyridines are antibacterial agents targeting the ATPase domains of DNA gyrase and topoisomerase IV. Bioorganic and Medicinal Chemistry Letters, 19(18), 5302–5306. https://doi.org/10.1016/j.bmcl.2009.07.141
  • Taha, M., Alkadi, K. A., Ismail, N. H., Imran, S., Adam, A., Kashif, S. M., Shah, S. A. A., Jamil, W., Sidiqqui, S., & Khan, K. M. (2019). Antiglycation and antioxidant potential of novel imidazo [4, 5-b] pyridine benzohydrazones. Arabian Journal of Chemistry, 12(8), 3118–3128. https://doi.org/10.1016/j.arabjc.2015.08.004
  • Taha, M., Ismail, N. H., Imran, S., Rashwan, H., Jamil, W., Ali, S., Kashif, S. M., Rahim, F., Salar, U., & Khan, K. M. (2016). Synthesis of 6-chloro-2-Aryl-1H-imidazo[4,5-b]pyridine derivatives: Antidiabetic, antioxidant, β-glucuronidase inhibiton and their molecular docking studies. Bioorganic Chemistry, 65, 48–56. https://doi.org/10.1016/j.bioorg.2016.01.007
  • Tomczuk, B. E., Taylor, C. R., Jr., Moses, L. M., Sutherland, D. B., Lo, Y. S., Johnson, D. N., Kinnier, W. B., & Kilpatrick, B. F. (1991). 2-Phenyl-3H-imidazo [4, 5-b] pyridine-3-acetamides as nonbenzodiazepine anticonvulsants and anxiolytics. Journal of Medicinal Chemistry, 34(10), 2993–3006. https://doi.org/10.1021/jm00114a007
  • Ulloora, S., Shabaraya, R., & Adhikari, A. V. (2014). New 6-bromoimidazo [1, 2-a] pyridine-2-carbohydrazide derivatives: Synthesis and anticonvulsant studies. Medicinal Chemistry Research, 23(6), 3019–3028. https://doi.org/10.1007/s00044-013-0887-7
  • Ulloora, S., Shabaraya, R., Aamir, S., & Adhikari, A. V. (2013). New imidazo[1,2-a]pyridines carrying active pharmacophores: Synthesis and anticonvulsant studies. Bioorganic and Medicinal Chemistry Letters, 23(5), 1502–1506. https://doi.org/10.1016/j.bmcl.2012.12.035
  • Upton, N., Chuang, T. T., Hunter, A. J., & Virley, D. J. (2008). 5-HT6 receptor antagonists as novel cognitive enhancing agents for Alzheimer’s disease. Neurotherapeutics, 5(3), 458–469. https://doi.org/10.1016/j.nurt.2008.05.008
  • Valencia-Galicia, N. A., Corona-Sánchez, R., Ballinas-Indili, R., Toscano, R. A., Macías-Rubalcava, M. L., & Álvarez-Toledano, C. (2017). Synthesis of novel N, N′-bis (triflyl)-1, 7-dihydroimidazo [4, 5-b] pyridines and their δ-bromolactone derivatives as antifungal agents. Tetrahedron Letters, 58(32), 3168–3171. https://doi.org/10.1016/j.tetlet.2017.07.004
  • Vanda, D., Canale, V., Chaumont-Dubel, S., Kurczab, R., Satała, G., Koczurkiewicz-Adamczyk, P., Krawczyk, M., Pietruś, W., Blicharz, K., Pękala, E., Bojarski, A. J., Popik, P., Marin, P., Soural, M., & Zajdel, P. (2021). Imidazopyridine-based 5-HT6 receptor neutral antagonists: Impact of N1-benzyl and N1-phenylsulfonyl fragments on different receptor conformational states. Journal of Medicinal Chemistry, 64(2), 1180–1196. https://doi.org/10.1021/acs.jmedchem.0c02009
  • Vanda, D., Soural, M., Canale, V., Chaumont-Dubel, S., Satała, G., Kos, T., Funk, P., Fülöpová, V., Lemrová, B., Koczurkiewicz, P., Pękala, E., Bojarski, A. J., Popik, P., Marin, P., & Zajdel, P. (2018). Novel non-sulfonamide 5-HT6 receptor partial inverse agonist in a group of imidazo [4, 5-b] pyridines with cognition enhancing properties. European Journal of Medicinal Chemistry, 144, 716–729. https://doi.org/10.1016/j.ejmech.2017.12.053
  • Vanda, D., Zajdel, P., & Soural, M. (2019). Imidazopyridine-based selective and multifunctional ligands of biological targets associated with psychiatric and neurodegenerative diseases. European Journal of Medicinal Chemistry, 181, 111569. https://doi.org/10.1016/j.ejmech.2019.111569
  • Véron, J. B., Enguehard-Gueiffier, C., Snoeck, R., Andrei, G., De Clercq, E., & Gueiffier, A., (2007). Influence of 6 or 8-substitution on the antiviral activity of 3-phenethylthiomethylimidazo [1, 2-a] pyridine against human cytomegalovirus (HCMV) and varicella-zoster virus (VZV). Bioorganic and Medicinal Chemistry, 15(22), 7209–7219.
  • Vieira, B. M., Thurow, S., da Costa, M., Casaril, A. M., Domingues, M., Schumacher, R. F., Perin, G., Alves, D., Savegnago, L., & Lenardão, E. J. (2017). Ultrasound‐assisted synthesis and antioxidant activity of 3‐selanyl‐1 H‐indole and 3‐selanylimidazo [1, 2‐a] pyridine derivatives. Asian Journal of Organic Chemistry, 6(11), 1635–1646. https://doi.org/10.1002/ajoc.201700339
  • Vilchis-Reyes, M. A., Zentella, A., Martínez-Urbina, M. A., Guzman, A., Vargas, O., Apan, M. T. R., Gallegos, J. L. V., & Diaz, E. (2010). Synthesis and cytotoxic activity of 2-methylimidazo [1, 2-a] pyridine-and quinoline-substituted 2-aminopyrimidine derivatives. European Journal of Medicinal Chemistry, 45(1), 379–386. https://doi.org/10.1016/j.ejmech.2009.10.002
  • Vlainić, J., & Peričić, D. (2010). Zolpidem is a potent anticonvulsant in adult and aged mice. Brain Research, 1310, 181–188. https://doi.org/10.1016/j.brainres.2009.11.018
  • Wang, J., Wu, H., Song, G., Yang, D., Huang, J., Yao, X., Yao, X., Qin, H., Chen, Z., Xu, Z., & Xu, C. (2020). A novel imidazopyridine derivative exerts anticancer activity by inducing mitochondrial pathway-mediated apoptosis. BioMed Research International, 25, 2020.
  • Wheatley, D. (1988). New hypnotic agents: Clinical studies in general practice. Pharmacology, Biochemistry, and Behavior, 29(4), 811–813. https://doi.org/10.1016/0091-3057(88)90213-4
  • Wicke, K., Haupt, A., & Bespalov, A. (2015). Investigational drugs targeting 5-HT6 receptors for the treatment of Alzheimer’s disease. Expert Opinion on Investigational Drugs, 24(12), 1515–1528. https://doi.org/10.1517/13543784.2015.1102884
  • Wu, D., Liu, M., Li, Z., Dang, M., Liu, X., Li, J., Huang, L., Ren, Y., Zhang, Z., Liu, W., & Liu, A. (2019). Synthesis and fungicidal activity of novel imidazo [4, 5-b] pyridine derivatives. Heterocyclic Communications, 25(1), 8–14. https://doi.org/10.1515/hc-2019-0003
  • Xu, P., Liu, L., Chen, X. Z., Li, Y., Liu, J., Jin, Z. P., Wang, G. Q., & Lei, P. S. (2009). Synthesis of novel macrolide derivatives with imidazo [4, 5-b] pyridinyl sulfur contained alkyl side chains and their antibacterial activity. Bioorganic and Medicinal Chemistry Letters, 19(15), 4079–4083. https://doi.org/10.1016/j.bmcl.2009.06.023
  • Yoshizawa, H., Itani, H., Ishikura, K., Irie, T., Yokoo, K., Kubota, T., Minami, K., Iwaki, T., Miwa, H., & Nishitani, Y. (2002). S-3578, a new broad spectrum parenteral cephalosporin exhibiting potent activity against both methicillin-resistant Staphylococcus aureus (MRSA) and Pseudomonas aeruginosa synthesis and structure-activity relationships. The Journal of Antibiotics, 55(11), 975–992. https://doi.org/10.7164/antibiotics.55.975
  • Zhang, J., Hao, Q. Q., Liu, X., Jing, Z., Jia, W. Q., Wang, S. Q., Xu, W. R., Cheng, X. C., & Wang, R. L. (2017). Molecular docking, 3D-QSAR and structural optimization on imidazo-pyridine derivatives dually targeting AT1 and PPARg. Oncotarget, 8(15), 25612–25627. https://doi.org/10.18632/oncotarget.15778
  • Zhou, S., Chen, G., & Huang, G. (2019). Design, synthesis and biological evaluation of imidazo[1,2-a]pyridine analogues or derivatives as anti-helmintic drug. Chemical Biology & Drug Design, 93(4), 503–510. https://doi.org/10.1111/cbdd.13441
  • Zivkovic, B., Morel, E., Joly, D., Perrault, G., Sanger, D. J., & Lloyd, K. G. (1990). Pharmacological and behavioral profile of alpidem as an anxiolytic. Pharmacopsychiatry, 23(S 3), 108–113. https://doi.org/10.1055/s-2007-1014545

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.