199
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

Identification and design of a multi-epitope subunit vaccine against the opportunistic pathogen Staphylococcus epidermidis: An immunoinformatics approach

, &
Pages 13859-13871 | Received 03 May 2021, Accepted 13 Oct 2021, Published online: 02 Nov 2021

References

  • Abraham, M. J., Murtola, T., Schulz, R., Páll, S., Smith, J. C., Hess, B., & Lindah, E. (2015). Gromacs: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX, 1–2, 19–25. https://doi.org/10.1016/j.softx.2015.06.001
  • Ali, M., Pandey, R. K., Khatoon, N., Narula, A., Mishra, A., & Prajapati, V. K. (2017). Exploring dengue genome to construct a multi-epitope based subunit vaccine by utilizing immunoinformatics approach to battle against dengue infection. Scientific Reports, 7(1), 1–13. https://doi.org/10.1038/s41598-017-09199-w
  • Bappy, S. S., Sultana, S., Adhikari, J., Mahmud, S., Khan, M. A., Kibria, K. M. K., Rahman, M. M., & Shibly, A. Z. (2021). Extensive immunoinformatics study for the prediction of novel peptide-based epitope vaccine with docking confirmation against envelope protein of Chikungunya virus: A computational biology approach. Journal of Biomolecular Structure & Dynamics, 39(4), 1139–1154. https://doi.org/10.1080/07391102.2020.1726815
  • Basto, A. P., & Leitão, A. (2014). Targeting TLR2 for vaccine development. Journal of Immunology Research, 2014, 619410. https://doi.org/10.1155/2014/619410 25057505
  • Becker, K., Heilmann, C., & Peters, G. (2014). Coagulase-negative staphylococci. Clinical Microbiology Reviews, 27(4), 870–926. https://doi.org/10.1128/CMR.00109-13
  • Behmard, E., Soleymani, B., Najafi, A., & Barzegari, E. (2020). Immunoinformatic design of a COVID-19 subunit vaccine using entire structural immunogenic epitopes of SARS-CoV-2. Scientific Reports, 10(1), 1–12. https://doi.org/10.1038/s41598-020-77547-4
  • Bresco, M. S, Harris, L. G., Thompson, K., Stanic, B., Morgenstern, M., O'Mahony, L., Richards, R. G., & Moriarty, T. F. (2017). Pathogenic Mechanisms and Host Interactions in Staphylococcus epidermidis Device-Related Infection. Frontiers in Microbiology, 8, 1401. https://doi.org/10.3389/fmicb.2017.01401
  • Cao, X., Zhu, L., Song, X., Hu, Z., & Cronan, J. E. (2018). Protein moonlighting elucidates the essential human pathway catalyzing lipoic acid assembly on its cognate enzymes. Proceedings of the National Academy of Sciences of the United States of America, 115(30), E7063–E7072. https://doi.org/10.1073/pnas.1805862115
  • Carafa, Y. d A., Brody, E., & Thermes, C. (1990). Prediction of rho-independent Escherichia coli transcription terminators. A statistical analysis of their RNA stem-loop structures. Journal of Molecular Biology, 216(4), 835–858. https://doi.org/10.1016/S0022-2836(99)80005-9
  • Carbone, A., Zinovyev, A., & Képès, F. (2003). Codon adaptation index as a measure of dominating codon bias. Bioinformatics (Oxford, England), 19(16), 2005–2015. https://doi.org/10.1093/bioinformatics/btg272
  • Cerca, N., Jefferson, K. K., Oliveira, R., Pier, G. B., & Azeredo, J. (2006). Comparative antibody-mediated phagocytosis of Staphylococcus epidermidis cells grown in a biofilm or in the planktonic state. Infection and Immunity, 74(8), 4849–4855. https://doi.org/10.1128/IAI.00230-06
  • Chen, X., Zaro, J. L., & Shen, W. C. (2013). Fusion protein linkers: Property, design and functionality. Advanced Drug Delivery Reviews, 65(10), 1357–1369. https://doi.org/10.1016/j.addr.2012.09.039
  • Colovos, C., & Yeates, T. O. (1993). Verification of protein structures: Patterns of nonbonded atomic interactions. Protein Science : a Publication of the Protein Society, 2(9), 1511–1519. https://doi.org/10.1002/pro.5560020916
  • Craig, D. B., & Dombkowski, A. A. (2013). Disulfide by Design 2.0: A web-based tool for disulfide engineering in proteins. BMC Bioinformatics, 14(1), 346–346. https://doi.org/10.1186/1471-2105-14-346
  • Czumaj, A., Szrok-Jurga, S., Hebanowska, A., Turyn, J., Swierczynski, J., Sledzinski, T., & Stelmanska, E. (2020). The pathophysiological role of CoA. International Journal of Molecular Sciences, 21(23), 9030–9057. https://doi.org/10.3390/ijms21239057
  • Dave, U. C., & Kadeppagari, R. K. (2019). Alanine dehydrogenase and its applications – A review. Critical Reviews in Biotechnology, 39(5), 648–664. https://doi.org/10.1080/07388551.2019.1594153
  • de Vor, L., Rooijakkers, S. H. M., & van Strijp, J. A. G. (2020). Staphylococci evade the innate immune response by disarming neutrophils and forming biofilms. FEBS Letters, 594(16), 2556–2569. https://doi.org/10.1002/1873-3468.13767
  • Dimick, J. B., Pelz, R., K., Consunji, R., Swoboda, S. M., Hendrix, C. W., & Lipsett, P. A. (2001). Increased resource use associated with catheter-related bloodstream infection in the surgical intensive care unit. Archives of Surgery, 136(2), 229–234. https://doi.org/10.1001/archsurg.136.2.229
  • Dimitrov, I., Bangov, I., Flower, D. R., & Doytchinova, I. (2014). AllerTOP v.2-a server for in silico prediction of allergens . Journal of Molecular Modeling, 20(6), 2276–2278. https://doi.org/10.1007/s00894-014-2278-5
  • Dimitrov, I., Flower, D. R., & Doytchinova, I. (2013). AllerTOP - A server for in silico prediction of allergens. BMC Bioinformatics, 14(S6), S4. https://doi.org/10.1007/s00894-014-2278-5 https://doi.org/10.1186/1471-2105-14-S6-S4
  • Dong, Y., & Speer, C. P. (2014). The role of Staphylococcus epidermidis in neonatal sepsis: Guarding angel or pathogenic devil? International Journal of Medical Microbiology: IJMM, 304(5–6), 513–520. https://doi.org/10.1016/j.ijmm.2014.04.013
  • Dong, Y., Speer, C. P., & Glaser, K. (2018). Beyond sepsis: Staphylococcus epidermidis is an underestimated but significant contributor to neonatal morbidity. Virulence, 9(1), 621–633. https://doi.org/10.1080/21505594.2017.1419117
  • Doytchinova, I. A., & Flower, D. R. (2007a). Identifying candidate subunit vaccines using an alignment-independent method based on principal amino acid properties. Vaccine, 25(5), 856–866. https://doi.org/10.1016/j.vaccine.2006.09.032
  • Doytchinova, I. A., & Flower, D. R. (2007b). VaxiJen: A server for prediction of protective antigens, tumour antigens and subunit vaccines. BMC Bioinformatics, 8(1), 7. https://doi.org/10.1186/1471-2105-8-4
  • Ehlers, M. M., Strasheim, W., Lowe, M., Ueckermann, V., & Kock, M. M. (2018). Molecular epidemiology of Staphylococcus epidermidis implicated in catheter-related bloodstream infections at an academic hospital in Pretoria, South Africa. Frontiers in Microbiology, 9(MAR), 411–417. https://doi.org/10.3389/fmicb.2018.00417
  • Fleischmann, C., Scherag, A., Adhikari, N. K. J., Hartog, C. S., Tsaganos, T., Schlattmann, P., Angus, D. C., Reinhart, K., & International Forum of Acute Care Trialists. (2016). Assessment of global incidence and mortality of hospital-treated sepsis current estimates and limitations. American Journal of Respiratory and Critical Care Medicine, 193(3), 259–272. https://doi.org/10.1164/rccm.201504-0781OC
  • Gasteiger, E., Gattiker, A., Hoogland, C., Ivanyi, I., Appel, R. D., & Bairoch, A. (2003). ExPASy: The proteomics server for in-depth protein knowledge and analysis. Nucleic Acids Research, 31(13), 3784–3788. https://doi.org/10.1093/nar/gkg563
  • Grote, A., Hiller, K., Scheer, M., Münch, R., Nörtemann, B., Hempel, D. C., & Jahn, D. (2005). JCat: A novel tool to adapt codon usage of a target gene to its potential expression host. Nucleic Acids Research, 33(Web Server issue), W526–W531. https://doi.org/10.1093/nar/gki376
  • Gupta, S., Kapoor, P., Chaudhary, K., Gautam, A., Kumar, R., Raghava, G. P. S, & Open Source Drug Discovery Consortium. (2013). In Silico approach for predicting toxicity of peptides and proteins. PLoS One, 8(9), e73957. https://doi.org/10.1371/journal.pone.0073957
  • Hebditch, M., Carballo-Amador, M. A., Charonis, S., Curtis, R., & Warwicker, J. (2017). Protein-Sol: a web tool for predicting protein solubility from sequence. Bioinformatics (Oxford, England), 33(19), 3098–3100. https://doi.org/10.1093/bioinformatics/btx345
  • Heilmann, C. (2011). Adhesion mechanisms of staphylococci. Advances in Experimental Medicine and Biology, 715, 105–123. https://doi.org/10.1007/978-94-007-0940-9_7
  • Heo, L., Park, H., & Seok, C. (2013). GalaxyRefine: Protein structure refinement driven by side-chain repacking. Nucleic Acids Research, 41(W1), W384–388. https://doi.org/10.1093/nar/gkt458
  • Hoffman, W., Lakkis, F. G., & Chalasani, G. (2016). B cells, antibodies, and more. Clin J Am Soc Nephrol, 11(1), 137–154. https://doi.org/10.2215/CJN.09430915
  • Hofmans, D., Khodaparast, L., Khodaparast, L., Vanstreels, E., Shahrooei, M., Van Eldere, J., & Van Mellaert, L. (2018). Ses proteins as possible targets for vaccine development against Staphylococcus epidermidis infections. The Journal of Infection, 77(2), 119–130. https://doi.org/10.1016/j.jinf.2018.03.013
  • Jeong, J.-A., Park, S. W., Yoon, D., Kim, S., Kang, H.-Y., & Oh, J.-I. (2018). Roles of alanine dehydrogenase and induction of its gene in mycobacterium smegmatis under respiration-inhibitory conditions. Journal of Bacteriology, 200(14), 1–16. https://doi.org/10.1128/JB.00152-18
  • Kalita, P., Lyngdoh, D. L., Padhi, A. K., Shukla, H., & Tripathi, T. (2019). Development of multi-epitope driven subunit vaccine against Fasciola gigantica using immunoinformatics approach. International Journal of Biological Macromolecules, 138, 224–233. https://doi.org/10.1016/j.ijbiomac.2019.07.024
  • Kallberg, M., Wang, H., Wang, S., Peng, J., Wang, Z., Lu, H., & Xu, J. (2012). Template-based protein structure modeling using the RaptorX web server. Nature Protocols, 7(8), 1511–1522. https://doi.org/10.1038/nprot.2012.085
  • Khan, M., Khan, S., Ali, A., Akbar, H., Sayaf, A. M., Khan, A., & Wei, D. Q. (2019). Immunoinformatics approaches to explore helicobacter pylori proteome (virulence factors) to design B and T cell multi-epitope subunit vaccine. Scientific Reports, 9(1), 1–13. https://doi.org/10.1038/s41598-019-49354-z
  • Kitabatake, M., So, M. W., Tumbula, D. L., & Söll, D. (2000). Cysteine biosynthesis pathway in the archaeon Methanosarcina barkeri encoded by acquired bacterial genes? Journal of Bacteriology, 182(1), 143–145. https://doi.org/10.1128/JB.182.1.143-145.2000
  • Kolaskar, A. S., & Tongaonkar, P. C. (1990). A semi-empirical method for prediction of antigenic determinants on protein antigens. FEBS Letters, 276(1–2), 172–174. https://doi.org/10.1016/0014-5793(90)80535-Q
  • Kouza, M., Faraggi, E., Kolinski, A., & Kloczkowski, A. (2017). The GOR method of protein secondary structure prediction and its application as a protein aggregation prediction tool. Methods in Molecular Biology (Clifton, N.J.), 1484, 7–24. https://doi.org/10.1007/978-1-4939-6406-2_2
  • Kozakov, D., Hall, D. R., Xia, B., Porter, K. A., Padhorny, D., Yueh, C., Beglov, D., & Vajda, S. (2017). The ClusPro web server for protein-protein docking. Nature Protocols, 12(2), 255–278. https://doi.org/10.1038/nprot.2016.169
  • Kumar, A., Saranathan, R., Prashanth, K., Tiwary, B. K., & Krishna, R. (2017). Inhibition of the MurA enzyme in Fusobacterium nucleatum by potential inhibitors identified through computational and in vitro approaches. Molecular BioSystems, 13(5), 939–954. https://doi.org/10.1039/c7mb00074j
  • Larsen, M. V., Lundegaard, C., Lamberth, K., Buus, S., Lund, O., & Nielsen, M. (2007). Large-scale validation of methods for cytotoxic T-lymphocyte epitope prediction. BMC Bioinformatics, 8(1), 412–424. https://doi.org/10.1186/1471-2105-8-424
  • Laskowski, R. A., MacArthur, M. W., Moss, D. S., & Thornton, J. M. (1993). PROCHECK: A program to check the stereochemical quality of protein structures. Journal of Applied Crystallography, 26(2), 283–291. https://doi.org/10.1107/S0021889892009944
  • Leonel, C., Sena, I. F. G., Silva, W. N., Prazeres, P. H. D. M., Fernandes, G. R., Mancha Agresti, P., Martins Drumond, M., Mintz, A., Azevedo, V. A. C., & Birbrair, A. (2019). Staphylococcus epidermidis role in the skin microenvironment. Journal of Cellular and Molecular Medicine, 23(9), 5949–5955. https://doi.org/10.1111/jcmm.14415
  • Magnan, C. N., Zeller, M., Kayala, M. A., Vigil, A., Randall, A., Felgner, P. L., & Baldi, P. (2010). High-throughput prediction of protein antigenicity using protein microarray data. Bioinformatics (Oxford, England), 26(23), 2936–2943. https://doi.org/10.1093/bioinformatics/btq551
  • Mahdevar, E., Safavi, A., Abiri, A., Kefayat, A., Hejazi, S. H., Miresmaeili, S. M., & Iranpur Mobarakeh, V. (2021). Exploring the cancer-testis antigen BORIS to design a novel multi-epitope vaccine against breast cancer based on immunoinformatics approaches. Journal of Biomolecular Structure and Dynamics, 1–18. https://doi.org/10.1080/07391102.2021.1883111
  • McGuffin, L. J., Bryson, K., & Jones, D. T. (2000). The PSIPRED protein structure prediction server. Bioinformatics (Oxford, England), 16(4), 404–405. https://doi.org/10.1093/bioinformatics/16.4.404
  • Miller, B. R., McGee, T. D., Swails, J. M., Homeyer, N., Gohlke, H., & Roitberg, A. E. (2012). MMPBSA.py: An efficient program for end-state free energy calculations. Journal of Chemical Theory and Computation, 8(9), 3314–3321. https://doi.org/10.1021/ct300418h
  • Ojha, R., Pandey, R. K., & Prajapati, V. K. (2020). Vaccinomics strategy to concoct a promising subunit vaccine for visceral leishmaniasis targeting sandfly and leishmania antigens. International Journal of Biological Macromolecules, 156, 548–557. https://doi.org/10.1016/j.ijbiomac.2020.04.097
  • Ojha, R., Pareek, A., Pandey, R. K., Prusty, D., & Prajapati, V. K. (2019). Strategic development of a next-generation multi-epitope vaccine to prevent Nipah virus zoonotic infection. ACS Omega, 4(8), 13069–13079. https://doi.org/10.1021/acsomega.9b00944
  • Otto, M. (2009). Staphylococcus epidermidis-the 'accidental' pathogen‘‘’’. Nature Reviews. Microbiology, 7(8), 555–567. https://doi.org/10.1038/nrmicro2182
  • Otto, M. (2013). Staphylococcal infections: mechanisms of biofilm maturation and detachment as critical determinants of pathogenicity. Annual Review of Medicine, 64, 175–188. https://doi.org/10.1146/annurev-med-042711-140023
  • Patronov, A., & Doytchinova, I. (2013). T-cell epitope vaccine design by immunoinformatics. Open Biology, 3(1), 120139. https://doi.org/10.1098/rsob.120139
  • Pavitrakar, D. V., Atre, N. M., Tripathy, A. S., & Shil, P. (2020). Design of a multi-epitope peptide vaccine candidate against Chandipura virus: An immuno-informatics study. Journal of Biomolecular Structure and Dynamics, 1–12. https://doi.org/10.1080/07391102.2020.1816493
  • Pecora, N. D., Gehring, A. J., Canaday, D. H., Boom, W. H., & Harding, C. V. (2006). Mycobacterium tuberculosis LprA is a lipoprotein agonist of TLR2 that regulates innate immunity and APC function. Journal of Immunology, 177(1), 422–429. https://doi.org/10.4049/jimmunol.177.1.422
  • Pietrocola, F., Galluzzi, L., Bravo-San Pedro, J. M., Madeo, F., & Kroemer, G. (2015). Acetyl coenzyme A: A central metabolite and second messenger. Cell Metabolism, 21(6), 805–821. https://doi.org/10.1016/j.cmet.2015.05.014
  • Raafat, D., Otto, M., Iqbal, J., Holtfreter, S., Section, M. G., & Diseases, I. (2019). Fighting Staphylococcus aureus biofilms with monoclonal antibodies. Trends in Microbiology, 27(4), 303–322. https://doi.org/10.1016/j.tim.2018.12.009
  • Rapin, N., Lund, O., Bernaschi, M., & Castiglione, F. (2010). Computational immunology meets bioinformatics: The use of prediction tools for molecular binding in the simulation of the immune system. PLoS One, 5(4), e9862. https://doi.org/10.1371/journal.pone.0009862
  • Rogers, K. L., Fey, P. D., & Rupp, M. E. (2009). Coagulase-negative staphylococcal infections. Infectious Disease Clinics of North America, 23(1), 73–98. https://doi.org/10.1016/j.idc.2008.10.001
  • Safavi, A., Kefayat, A., Abiri, A., Mahdevar, E., Behnia, A. H., & Ghahremani, F. (2019). In silico analysis of transmembrane protein 31 (TMEM31) antigen to design novel multiepitope peptide and DNA cancer vaccines against melanoma . Molecular Immunology, 112(April), 93–102. https://doi.org/10.1016/j.molimm.2019.04.030
  • Safavi, A., Kefayat, A., Mahdevar, E., Abiri, A., & Ghahremani, F. (2020). Exploring the out of sight antigens of SARS-CoV-2 to design a candidate multi-epitope vaccine by utilizing immunoinformatics approaches. Vaccine, 38(48), 7612–7628. https://doi.org/10.1016/j.vaccine.2020.10.016
  • Safavi, A., Kefayat, A., Sotoodehnejadnematalahi, F., Salehi, M., & Modarressi, M. H. (2019). Production, purification, and in vivo evaluation of a novel multiepitope peptide vaccine consisted of immunodominant epitopes of SYCP1 and ACRBP antigens as a prophylactic melanoma vaccine. International Immunopharmacology, 76(June), 105872. https://doi.org/10.1016/j.intimp.2019.105872
  • Saha, S., & Raghava, G. P. S. (2013). Continuous B-cell epitopes in an antigen using recurrent neural network. PROTEINS: Structure, Function, and Bioinformatics, 48(March), 40–48. https://doi.org/10.1002/prot
  • Sanami, S., Zandi, M., Pourhossein, B., Mobini, G. R., Safaei, M., Abed, A., Arvejeh, P. M., Chermahini, F. A., & Alizadeh, M. (2020). Design of a multi-epitope vaccine against SARS-CoV-2 using immunoinformatics approach. International Journal of Biological Macromolecules, 164, 871–883. https://doi.org/10.1016/j.ijbiomac.2020.07.117
  • Sellman, B. R., Howell, A. P., Kelly-Boyd, C., & Baker, S. M. (2005). Identification of immunogenic and serum binding proteins of Staphylococcus epidermidis. Infection and Immunity, 73(10), 6591–6600. https://doi.org/10.1128/IAI.73.10.6591-6600
  • Sharp, P. M., & Li, W.-H. (1987). The codon adaptation index-a measure of directional synonymous codon usage bias, and its potential applications. Nucleic Acids Research, 15(3), 1281–1295. https://doi.org/10.1093/nar/15.3.1281
  • Vajda, S., Yueh, C., Beglov, D., Bohnuud, T., Mottarella, S. E., Xia, B., Hall, D. R., & Kozakov, D. (2017). New additions to the ClusPro server motivated by CAPRI. Proteins, 85(3), 435–444. https://doi.org/10.1002/prot.25219
  • Valles, P. G., Bocanegra, V., Gil Lorenzo, A., & Costantino, V. V. (2015). Physiological functions and regulation of the Na+/H+ exchanger [NHE1] in renal tubule epithelial cells. Kidney & Blood Pressure Research, 40(5), 452–466. https://doi.org/10.1159/000368521
  • Vuong, C., & Otto, M. (2002). Staphylococcus epidermidis infections. Microbes and Infection, 4(4), 481–489. https://doi.org/10.1017/S0021859600009278
  • Wang, P., Sidney, J., Dow, C., Mothé, B., Sette, A., & Peters, B. (2008). A systematic assessment of MHC class II peptide binding predictions and evaluation of a consensus approach. PLoS Computational Biology, 4(4), e1000048. https://doi.org/10.1371/journal.pcbi.1000048
  • Wang, P., Sidney, J., Kim, Y., Sette, A., Lund, O., Nielsen, M., & Peters, B. (2010). Peptide binding predictions for HLA DR, DP and DQ molecules. BMC Bioinformatics, 11, 512–568. https://doi.org/10.1186/1471-2105-11-568
  • Wiederstein, M., & Sippl, M. J. (2007). ProSA-web: Interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res, 35(Web Server issue), W407–W410. https://doi.org/10.1093/nar/gkm290
  • Yao, D., Shi, W., Gou, Y., Zhou, X., Yee Aw, T., Zhou, Y., & Liu, Z. (2005). Fatty acid-mediated intracellular iron translocation: a synergistic mechanism of oxidative injury. Free Radical Biology & Medicine, 39(10), 1385–1398. https://doi.org/10.1016/j.freeradbiomed.2005.07.015
  • Ziebuhr, W., Hennig, S., Eckart, M., Kränzler, H., Batzilla, C., & Kozitskaya, S. (2006). Nosocomial infections by Staphylococcus epidermidis: How a commensal bacterium turns into a pathogen. International Journal of Antimicrobial Agents, 28(SUPPL. 1), 14–20. https://doi.org/10.1016/j.ijantimicag.2006.05.012

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.