174
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

Beta-rich intermediates in denaturation of lysozyme: accelerated molecular dynamics simulations

, , &
Pages 13953-13964 | Received 15 Jun 2021, Accepted 16 Oct 2021, Published online: 09 Nov 2021

References

  • Arnaudov, L. N., & de Vries, R. (2005). Thermally induced fibrillar aggregation of hen egg white lysozyme. Biophysical Journal, 88(1), 515–526.
  • Baltzis, A. S., Koukos, P. I., & Glykos, N. M. (2015). Clustering of molecular dynamics trajectories via peak-picking in multidimensional PCA-derived distributions. arXiv preprint arXiv:.04024.
  • Cao, A., Hu, D., & Lai, L. (2004). Formation of amyloid fibrils from fully reduced hen egg white lysozyme. Protein Science : a Publication of the Protein Society, 13(2), 319–324.
  • Cao, Y., & Mezzenga, R. (2019). Food protein amyloid fibrils: Origin, structure, formation, characterization, applications and health implications. Advances in Colloid and Interface Science, 269, 334–356. https://doi.org/10.1016/j.cis.2019.05.002
  • De Groot, N. S., Pallarés, I., Avilés, F. X., Josep Vendrell, J., & Ventura, S. (2005). Prediction of hot spots. of aggregation in disease-linked polypeptides. BMC Structural Biology, 30, 18.
  • Doshi, U., & Hamelberg, D. (2015). Towards fast, rigorous and efficient conformational sampling of biomolecules: Advances in accelerated molecular dynamics. Biochimica et Biophysica Acta, 1850(5), 878–888. https://doi.org/10.1016/j.bbagen.2014.08.003
  • Ermakova, E. A., Makshakova, O. N., Zuev, Y. F., & Sedov, I. A. (2021). Fibril fragments from the amyloid core of lysozyme: An accelerated molecular dynamics study. Journal of Molecular Graphics & Modelling, 106, 107917.
  • Frare, E., de Laureto, P. P., Zurdo, J., Dobson, C. M., & Fontana, A. (2004). A highly amyloidogenic region of hen lysozyme. Journal of Molecular Biology, 340(5), 1153–1165.
  • Glykos, N. M. (2006). Software news and updates. Carma: a molecular dynamics analysis program. Journal of Computational Chemistry, 27(14), 1765–1768. https://doi.org/10.1002/jcc.20482
  • Hamelberg, D., Mongan, J., & McCammon, J. (2004). Accelerated molecular dynamics: A promising and efficient simulation method for biomolecules. The Journal of Chemical Physics, 120(24), 11919–11929. https://doi.org/10.1063/1.1755656
  • Huang, J., S., Rauscher, S., G., Nawrocki, G., T., Ran, T., Feig, M., de Groot, B. L., Grubmüller, H., & MacKerell, Jr A. D. (2017). CHARMM36m: An improved force field for folded and intrinsically disordered proteins. Nature Methods, 14(1), 71–73.
  • Humphrey, W., Dalke, A. K., & Schulten, K. (1996). VMD – visual molecular dynamics. Journal of Molecular Graphics, 14.1, 33–38.
  • Jafari, M., & Mehrnejad, F. (2016). Molecular insight into human lysozyme and its ability to form amyloid fibrils in high concentrations of sodium dodecyl sulfate: A view from molecular Dynamics Simulations. PLoS One, 11(10), e0165213. https://doi.org/10.1371/journal.pone.0165213
  • Jansens, K. J. A., Lambrecht, M. A., Rombouts, I., Morera, M. M., Brijs, K., Rousseau, F., Schymkowitz, J., & Delcour, J. A. (2019). Conditions governing food protein amyloid fibril formation—Part I: Egg and cereal proteins. Comprehensive Reviews in Food Science and Food Safety, 18(4), 1256–1276.
  • Kalhor, H. R., & Jabbary, M. (2019). Investigating reliable conditions for HEWL as an amyloid model in computational studies and drug interactions. Journal of Chemical Information and Modeling, 59(12), 5218–5229.
  • Krebs, M. R. H., Wilkins, D. K., Chung, E. W., Pitkeathly, M. C., Chamberlain, A. K., Zurdo, J., Robinson, C. V., & Dobson, C. M. (2000). Formation and seeding of amyloid fibrils from wild-type hen lysozyme and a peptide fragment from the b-domain. Journal of Molecular Biology, 300(3), 541–549. https://doi.org/10.1006/jmbi.2000.3862
  • Kulkarni, S. K., Ashcroft, A. E., Carey, M., Masselos, D., Robinson, C. V., & Radford, S. E. (1999). A near-native state on the slow refolding pathway of hen lysozyme. Protein Science: A Publication of the Protein Society, 8(1), 35–44.
  • Markwick, P. R. L., & McCammon, J. A. (2011). Studying functional dynamics in bio-molecules using accelerated molecular dynamics. Physical Chemistry Chemical Physics: PCCP, 13(45), 20053–20065.
  • Miao, Y., Feixas, F., Eun, C., & McCammon, J. A. (2015). Accelerated molecular dynamics simulations of protein folding. Journal of Computational Chemistry, 36(20), 1536–1549. https://doi.org/10.1002/jcc.23964
  • Miao, Y., Baudry, J., Smith, J. C., & McCammon, J. A. (2016). General trends of dihedral conformational transitions in a globular protein. Proteins: Structure, Function, and Bioinformatics, 84(4), 501–514. https://doi.org/10.1002/prot.24996
  • Mishra, R., Sörgjerd, K., Nyström, S., Nordigården, A., Yu, Y. C., & Hammarström, P. (2007). Lysozyme amyloidogenesis is accelerated by specific nicking and fragmentation but decelerated by intact protein binding and conversion. Journal of Molecular Biology, 366(3), 1029–1044.
  • Mocanu, M.-M., Ganea, C., Siposova, K., Filippi, A., Demjen, E., Marek, J., Bednarikova, Z., Antosova, A., Baran, I., & Gazova, Z. (2014). Polymorphism of hen egg white lysozyme amyloid fibrils influences the cytotoxicity in LLC-PK1 epithelial kidney cells. International Journal of Biological Macromolecules, 65, 176–187.
  • Mu, Y., Nguyen, P. H., & Stock, G. (2004). Energy landscape of a small peptide revealed by dihedral angle principal component analysis. Proteins: Structure, Function, and Bioinformatics, 58(1), 45–52. https://doi.org/10.1002/prot.20310
  • Muttathukattil, A. N., Singh, P. C., & Reddy, C. (2019). Role of disulfide bonds and topological frustration in the kinetic partitioning of lysozyme folding pathways. The Journal of Physical Chemistry. B, 123(15), 3232–3241. https://doi.org/10.1021/acs.jpcb.9b00739
  • Pertinhez, T. A., Bouchard, M., Tomlinson, E. J., Wain, R., Ferguson, S. J., Dobson, C. M., & Smith, L. J. (2001). Amyloid fibril formation by a helical cytochrome. FEBS Letters, 495(3), 184–186. https://doi.org/10.1016/S0014-5793(01)02384-5
  • Phillips, J. C., Braun, R., Wang, W., Gumbart, J., Tajkhorshid, E., Villa, E., Chipot, C., Skeel, R. D., Kale, L., & Schulten, K. (2005). Scalable molecular dynamics with NAMD. Journal of Computational Chemistry, 26(16), 1781–1802.
  • Poghosyan, A. H., Shahinyan, A. A., Kirakosyan, G. R., Ayvazyan, N. M., Mamasakhlisov, Y. S., & Papoian, G. A. (2021). A molecular dynamics study of protein denaturation induced by sulfonate based surfactants. Journal of Molecular Modeling, 27(9), 261. https://doi.org/10.1007/s00894-021-04882-2
  • Radford, S. E., Dobson, C. M., & Evans, P. A. (1992). The folding of hen lysozyme involves partially structured intermediates and multiple pathways. Nature, 358(6384), 302–307.
  • Segel, D. J., Bachmann, A., Hofrichter, J., Hodgson, K. O., Doniach, S., & Kiefhaber, T. (1999). Characterization of transient intermediates in lysozyme folding with time-resolved small-angle X-ray scattering. Journal of Molecular Biology, 288(3), 489–499. https://doi.org/10.1006/jmbi.1999.2703
  • Shimizu, M., Kajikawa, Y., Kuwajima, K., Dobson, C. M., & Okamoto, Y. (2019). Determination of the structural ensemble of the molten globule state of a protein by computer simulations. Proteins, 87(8), 635–645.
  • Swaminathan, R., Ravi, V. K., Kumar, S., Kumar, M. V. S., & Chandra, N. (2011). Lysozyme: A model protein for amyloid research. Advances in Protein Chemistry and Structural Biology, 84, 63–111.
  • Trexler, A. J., & Nilsson, M. R. (2007). The formation of amyloid fibrils from proteins in the lysozyme family. Current Protein & Peptide Science, 8(6), 537–557.
  • Walker, A. R., Baddam, N., & Cisneros, G. A. (2019). Unfolding pathways of hen egg-white lysozyme in ethanol. The Journal of Physical Chemistry. B, 123(15), 3267–3271. https://doi.org/10.1021/acs.jpcb.9b01694
  • Zhou, S., Shi, D., Liu, X., Yao, X., Da, L. T., & Liu, H. (2019). pH-induced misfolding mechanism of prion protein: Insights from microsecond-accelerated molecular dynamics simulations. ACS Chemical Neuroscience, 10, 2718–2729.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.