358
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

Suramin, penciclovir, and anidulafungin exhibit potential in the treatment of COVID-19 via binding to nsp12 of SARS-CoV-2

ORCID Icon, , , , , , & ORCID Icon show all
Pages 14067-14083 | Received 10 Nov 2020, Accepted 26 Oct 2021, Published online: 16 Nov 2021

References

  • Ahmad, M., Dwivedy, A., Mariadasse, R., Tiwari, S., Jeyakanthan, J., & Biswal, B. K. (2020). Prediction of small molecule inhibitors targeting the novel 1coronavirus (SARS-CoV-2) RNA-dependent RNA polymerase2. OSF Preprints. https://doi.org/10.31219/osf.io/fjnzc
  • Azam, F., Taban, I. M., Eid, E. E. M., Iqbal, M., Alam, O., Khan, S., Mahmood, D., Anwar, M. J., Khalilullah, H., & Khan, M. U. (2020). An in-silico analysis of ivermectin interaction with potential SARS-CoV-2 targets and host nuclear importin α. Journal of Biomolecular Structure and Dynamics, 1–14. https://doi.org/10.1080/07391102.2020.1841028
  • Bacon, T. H., Levin, M. J., Leary, J. J., Sarisky, R. T., & Sutton, D. (2003). Herpes simplex virus resistance to acyclovir and penciclovir after two decades of antiviral therapy. Clinical Microbiology Reviews, 16(1), 114–128. https://doi.org/10.1128/CMR.16.1.114-128.2003
  • Bereau, T. (2015). Multi-timestep integrator for the modified Andersen barostat. Physics Procedia, 68, 7–15. https://doi.org/10.1016/j.phpro.2015.07.101
  • Bhardwaj, V. K., Singh, R., Das, P., & Purohit, R. (2021). Evaluation of acridinedione analogs as potential SARS-CoV-2 main protease inhibitors and their comparison with repurposed anti-viral drugs. Computers in Biology and Medicine, 128, 104117. https://doi.org/10.1016/j.compbiomed.2020.104117
  • Bhardwaj, V. K., Singh, R., Sharma, J., Rajendran, V., Purohit, R., & Kumar, S. (2021). Identification of bioactive molecules from tea plant as SARS-CoV-2 main protease inhibitors. Journal of Biomolecular Structure & Dynamics, 39(10), 3449. https://doi.org/10.1080/07391102.2020.1766572
  • Bhavesh, N. S. & Patra, A. (2020). Virtual screening and molecular dynamics simulation suggest Valproic acid Co-A could bind to SARS-CoV2 RNA depended RNA polymerase. Preprints. https://doi.org/10.20944/preprints202003.0393.v1
  • Bogoch, I. I., Watts, A., Thomas-Bachli, A., Huber, C., Kraemer, M. U. G., & Khan, K. (2020). Pneumonia of unknown aetiology in Wuhan, China: Potential for international spread via commercial air travel. Journal of Travel Medicine, 27(2), taaa008. https://doi.org/10.1093/jtm/taaa008
  • Boulanger, E., Huang, L., MacKerell, A. D., & Roux, B. (2016). Improved Lennard-Jones parameters for accurate molecular dynamics simulations. Biophysical Journal, 110(3), 646a. https://doi.org/10.1016/j.bpj.2015.11.3458
  • Celik, S., Albayrak, A. T., Akyuz, S., & Ozel, A. E. (2020). Synthesis, molecular docking and ADMET study of ionic liquid as anticancer inhibitors of DNA and COX-2, TOPII enzymes. Journal of Biomolecular Structure & Dynamics, 38(5), 1354–1364. https://doi.org/10.1080/07391102.2019.1604263
  • Cheson, B. D., Levine, A. M., & Mildvan, D. (1987). Suramin therapy in AIDS and related disorders: Report of the US Suramin working group. JAMA, 258(10), 1347–1351. https://doi.org/10.1001/jama.1987.03400100081025
  • Chien, M., Anderson, T.K., Jockusch, S., Tao, C., Li, X., Kumar, S., Russo, J.J., Kirchdoerfer, R.N. and Ju, J. (2020). Nucleotide analogues as inhibitors of SARS-CoV-2 polymerase, a key drug target for COVID-19. Journal of proteome research, 19(11), 4690–4697.
  • Corpet, F. (1988). Multiple sequence alignment with hierarchical clustering. Nucleic Acids Research, 16(22), 10881–10890. https://doi.org/10.1093/nar/16.22.10881
  • Courouble, V. V., Dey, S. K., Yadav, R., Timm, J., Harrison, J. J. E., Ruiz, F. X., Arnold E., and Griffin P. R. (2021). Revealing the Structural Plasticity of SARS-CoV-2 nsp7 and nsp8 Using Structural Proteomics. Journal of the American Society for Mass Spectrometry, 32(7), 1618–1630. https://doi.org/10.1021/jasms.1c00086
  • Croci, R., Pezzullo, M., Tarantino, D., Milani, M., Tsay, S.-C., Sureshbabu, R., Tsai, Y.-J., Mastrangelo, E., Rohayem, J., Bolognesi, M., & Hwu, J. R. (2014). Structural bases of norovirus RNA dependent RNA polymerase inhibition by novel suramin-related compounds. PLoS One, 9(3), e91765. https://doi.org/10.1371/journal.pone.0091765
  • Darden, T., York, D., & Pedersen, L. (1993). Particle mesh Ewald:An N⋅ log (N) method for Ewald sums in large systems. The Journal of Chemical Physics, 98(12), 10089–10092. https://doi.org/10.1063/1.464397
  • Deng, C. X. (2020). The global battle against SARS-CoV-2 and COVID-19. International Journal of Biological Sciences, 16(10), 1676–1677. https://doi.org/10.7150/ijbs.45587
  • Dey, S. K., Saini, M., Dhembla, C., Bhatt, S., Rajesh, A. S., & Anand, V. (2020). Suramin, Penciclovir, and Anidulafungin exhibit potential in the treatment of COVID-19 via binding to nsp12 of SARS-CoV-2. https://doi.org/10.1080/07391102.2021.2000498
  • Elfiky, A. A. (2020). Ribavirin, Remdesivir, Sofosbuvir, Galidesivir, and Tenofovir against SARS-CoV-2 RNA dependent RNA polymerase (RdRp): A molecular docking study. Life Sciences, 253, 117592. https://doi.org/10.1016/j.lfs.2020.117592
  • Elfiky, A. A., & Elshemey, W. M. (2018). Molecular dynamics simulation revealed binding of nucleotide inhibitors to ZIKV polymerase over 444 nanoseconds. Journal of Medical Virology, 90(1), 13–18. https://doi.org/10.1002/jmv.24934
  • Elfiky, A. A., Elshemey, W. M., & Gawad, W. A. (2015). 2′-methylguanosine prodrug (IDX-184), Phosphoramidate Prodrug (Sofosbuvir), Diisobutyryl Prodrug (R7128) are better than their parent nucleotides and Ribavirin in Hepatitis C virus inhibition: A molecular modeling study. Journal of Computational and Theoretical Nanoscience, 12(3), 376–386. https://doi.org/10.1166/jctn.2015.3739
  • Elfiky, A. A., & Ismail, A. M. (2017). Molecular modeling and docking revealed superiority of IDX-184 as HCV polymerase inhibitor. Future Virology, 12(7), 339–347. https://doi.org/10.2217/fvl-2017-0027
  • Elfiky, A. A., & Ismail, A. M. (2018). Molecular docking revealed the binding of nucleotide/side inhibitors to Zika viral polymerase solved structures. SAR and QSAR in Environmental Research, 29(5), 409–418. https://doi.org/10.1080/1062936X.2018.1454981
  • Elfiky, A. A., Mahdy, S. M., & Elshemey, W. M. (2017). Quantitative structure-activity relationship and molecular docking revealed a potency of anti-hepatitis C virus drugs against human corona viruses. Journal of Medical Virology, 89(6), 1040–1047. https://doi.org/10.1002/jmv.24736
  • Fani, M., Teimoori, A., & Ghafari, S. (2020). Comparison of the COVID-2019 (SARS-CoV-2) pathogenesis with SARS-CoV and MERS-CoV infections. Future Virology, 15(5), 317–323. https://doi.org/10.2217/fvl-2020-0050
  • Ganesan, A., & Barakat, K. (2017). Solubility: A speed‒breaker on the drug discovery highway. MOJ Bioequivalence & Bioavailability, 3(3), 56–58.
  • Gao, Y., Yan, L., Huang, Y., Liu, F., Zhao, Y., & Cao, L., Wang, T., Sun, Q., Ming, Z., Zhang, L. & Ge, J. (2020). Structure of the RNA-dependent RNA polymerase from COVID-19 virus. Science, 368(6492), 779-782.
  • Ghosh, R., Chakraborty, A., Biswas, A., & Chowdhuri, S. (2020). Computer aided identification of potential SARS CoV-2 main protease inhibitors from diterpenoids and biflavonoids of Torreya nucifera leaves. Journal of Biomolecular Structure and Dynamics, 1–16. https://doi.org/10.1080/07391102.2020.1841680
  • Grosdidier, A., Zoete, V., & Michielin, O. (2011). SwissDock, a protein-small molecule docking web service based on EADock DSS. Nucleic Acids Research, 39(Web Server issue), W270–W7. https://doi.org/10.1093/nar/gkr366
  • Guvench, O., & MacKerell, A. D. (2008). Comparison of protein force fields for molecular dynamics simulations. Methods in Molecular Biology (Clifton, NJ), 443, 63–88. https://doi.org/10.1007/978-1-59745-177-2_4
  • Harder, E., Damm, W., Maple, J., Wu, C., Reboul, M., Xiang, J. Y., Wang, L., Lupyan, D., Dahlgren, M. K., Knight, J. L., Kaus, J. W., Cerutti, D. S., Krilov, G., Jorgensen, W. L., Abel, R., & Friesner, R. A. (2016). OPLS3: A force field providing broad coverage of drug-like small molecules and proteins. Journal of Chemical Theory and Computation, 12(1), 281–296. https://doi.org/10.1021/acs.jctc.5b00864
  • Hinsen, K. (2000). The molecular modeling toolkit: A new approach to molecular simulations. Journal of Computational Chemistry, 21(2), 79–85. https://doi.org/10.1002/(SICI)1096-987X(20000130)21:2<79::AID-JCC1>3.0.CO;2-B
  • Hui, D. S., I Azhar, E., Madani, T. A., Ntoumi, F., Kock, R., Dar, O., Ippolito, G., Mchugh, T. D., Memish, Z. A., Drosten, C., Zumla, A., & Petersen, E. (2020). The continuing 2019-nCoV epidemic threat of novel coronaviruses to global health - The latest 2019 novel coronavirus outbreak in Wuhan, China. International Journal of Infectious Diseases: IJID: Official Publication of the International Society for Infectious Diseases, 91, 264–266. https://doi.org/10.1016/j.ijid.2020.01.009
  • Jeon, S., Ko, M., Lee, J., Choi, I., Byun, S. Y., Park, S., Shum, D., & Kim, S. (2020). Identification of antiviral drug candidates against SARS-CoV-2 from FDA-approved drugs. Antimicrobial Agents and Chemotherapy, 64(7), e00819-20. https://doi.org/10.1128/AAC.00819-20
  • Kaddoura, M., AlIbrahim, M., Hijazi, G., Soudani, N., Audi, A., Alkalamouni, H., Haddad, S., Eid, A., & Zaraket, H. (2020). COVID-19 therapeutic options under investigation. Frontiers in Pharmacology, 11, 1196. https://doi.org/10.3389/fphar.2020.01196
  • Kathryn, S., & Gumbo, T. (2008). Anidulafungin in the treatment of invasive fungal infections. Therapeutics and Clinical Risk Management, 4(1), 71–78.
  • Kirchdoerfer, R. N., & Ward, A. B. (2019). Structure of the SARS-CoV nsp12 polymerase bound to nsp7 and nsp8 co-factors. Nature Communications, 10(1), 2342. https://doi.org/10.1038/s41467-019-10280-3
  • Kuhn, B., & Kollman, P. A. (2000). Binding of a diverse set of ligands to avidin and streptavidin: An accurate quantitative prediction of their relative affinities by a combination of molecular mechanics and continuum solvent models. Journal of Medicinal Chemistry, 43(20), 3786–3791. https://doi.org/10.1021/jm000241h
  • Kumari, R., & Kumar, R. C. (2014). Open source drug discovery and A. Lynn. Journal of Chemical Information and Modeling, 54(1951), 10–1021.
  • Li, J., Abel, R., Zhu, K., Cao, Y., Zhao, S., & Friesner, R. A. (2011). The VSGB 2.0 model: A next generation energy model for high resolution protein structure modeling. Proteins, 79(10), 2794–2812. https://doi.org/10.1002/prot.23106
  • Li, H., Li, H. L., Qu, H. J., Zhao, M. Z., Yuan, B., Cao, M. H., & Cui, J. (2015). Suramin inhibits cell proliferation in ovarian and cervical cancer by downregulating heparanase expression. Cancer Cell International, 15(1), 52. https://doi.org/10.1186/s12935-015-0196-y
  • Lu, R., Zhao, X., Li, J., Niu, P., Yang, B., Wu, H., Wang, W., Song, H., Huang, B., Zhu, N., Bi, Y., Ma, X., Zhan, F., Wang, L., Hu, T., Zhou, H., Hu, Z., Zhou, W., Zhao, L., … Tan, W. (2020). Genomic characterisation and epidemiology of 2019 novel coronavirus: Implications for virus origins and receptor binding. The Lancet, 395(10224), 565–574. https://doi.org/10.1016/S0140-6736(20)30251-8
  • Maćkowiak, S., Pieprzyk, S., Brańka, A., & Heyes, D. (2017). A Nosé-Hoover thermostat adapted to a slab geometry. Computational Methods in Science and Technology, 23(3), 211–218. https://doi.org/10.12921/cmst.2016.0000060
  • Mirza, M. U., & Froeyen, M. (2020). Structural Elucidation of SARS-CoV-2 Vital Proteins: Computational Methods Reveal Potential Drug Candidates Against Main Protease, Nsp12 RNA-dependent RNA Polymerase and Nsp13 Helicase. Journal of pharmaceutical analysis, 10(4), 320–328.
  • Morens, D. M., Daszak, P., & Taubenberger, J. K. (2020). Escaping pandora's box - another novel coronavirus. The New England Journal of Medicine, 382(14), 1293–1295. https://doi.org/10.1056/NEJMp2002106
  • Mutlu, O., Ugurel, O. M., Sariyer, E., Ata, O., Inci, T. G., Ugurel, E., Kocer, S., & Turgut-Balik, D. (2020). Targeting SARS-CoV-2 Nsp12/Nsp8 interaction interface with approved and investigational drugs: An in silico structure-based approach. Journal of Biomolecular Structure and Dynamics, 1–13. https://doi.org/10.1080/07391102.2020.1819882
  • Narayanan, N., & Nair, D. T. (2020). Vitamin B12 May Inhibit RNA-Dependent-RNA Polymerase Activity of nsp12 from the SARS-CoV-2 Virus. IUBMB life, 72(10), 2112–2120.
  • National Center for Biotechnology Information. PubChem Database. Penciclovir, CID = 135398748.Accessed on 8th August, 2021. https://pubchem.ncbi.nlm.nih.gov/compound/135398748
  • Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., & Ferrin, T. E. (2004). UCSF Chimera-a visualization system for exploratory research and analysis. Journal of Computational Chemistry, 25(13), 1605–1612. https://doi.org/10.1002/jcc.20084
  • Rizwan, T., Kothidar, A., Meghwani, H., Sharma, V., Shobhawat, R., Saini, R., Vaishnav, H. K., Singh, V., Pratap, M., Sihag, H., Kumar, S., Dey, J. K., & Dey, S. K. (2021). Comparative analysis of SARS-CoV-2 envelope viroporin mutations from COVID-19 deceased and surviving patients revealed implications on its ion-channel activities and correlation with patient mortality. Journal of Biomolecular Structure and Dynamics, 1–16. https://doi.org/10.1080/07391102.2021.1944319
  • Robert, X., & Gouet, P. (2014). Deciphering key features in protein structures with the new ENDscript server. Nucleic Acids Research, 42(Web Server issue), W320–W4. https://doi.org/10.1093/nar/gku316
  • Robertson, M. J., Tirado-Rives, J., & Jorgensen, W. L. (2015). Improved peptide and protein torsional energetics with the OPLSAA Force Field . Journal of Chemical Theory and Computation, 11(7), 3499–3509. https://doi.org/10.1021/acs.jctc.5b00356
  • Ruan, Z., Liu, C., Guo, Y., He, Z., Huang, X., Jia, X., & Yang, T. (2020). Potential inhibitors targeting RNA-dependent RNA polymerase activity (NSP12) of SARS-CoV-2. Preprints. https://doi.org/10.20944/preprints202003.0024.v1
  • Salgado-Benvindo, C., Thaler, M., Tas, A., Ogando, N.S., Bredenbeek, P.J., Ninaber, D.K., Wang, Y., Hiemstra, P.S., Snijder, E.J. and Van Hemert, M.J. (2020). Suramin inhibits SARS-CoV-2 infection in cell culture by interfering with early steps of the replication cycle. Antimicrobial Agents and Chemotherapy, 64(8), e00900–20.
  • Schrodinger, L. (2011). Schrodinger software suite. 670. Schrödinger, LLC.
  • Selisko, B., Papageorgiou, N., Ferron, F., & Canard, B. (2018). Structural and functional basis of the fidelity of nucleotide selection by flavivirus RNA-dependent RNA polymerases. Viruses, 10(2), 59. https://doi.org/10.3390/v10020059
  • Sharma, J., Bhardwaj, V. K., Singh, R., Rajendran, V., Purohit, R., & Kumar, S. (2021). An in-silico evaluation of different bioactive molecules of tea for their inhibition potency against non structural protein-15 of SARS-CoV-2. Food Chemistry, 346, 128933. https://doi.org/10.1016/j.foodchem.2020.128933
  • Shivakumar, D., Harder, E., Damm, W., Friesner, R. A., & Sherman, W. (2012). Improving the prediction of absolute solvation free energies using the next generation OPLS force field. Journal of Chemical Theory and Computation, 8(8), 2553–2558. https://doi.org/10.1021/ct300203w
  • Simonis, A., Theobald, S. J., Fätkenheuer, G., Rybniker, J., & Malin, J. J. (2021). A comparative analysis of remdesivir and other repurposed antivirals against SARS‐CoV‐2. EMBO Molecular Medicine, 13(1), e13105. https://doi.org/10.15252/emmm.202013105
  • Stein, C. A. (1993). Suramin: A novel antineoplastic agent with multiple potential mechanisms of action. Cancer Research, 53(10 Suppl), 2239–2248.
  • Te Velthuis, A. J., Arnold, J. J., Cameron, C. E., van den Worm, S. H., & Snijder, E. J. (2010). The RNA polymerase activity of SARS-coronavirus nsp12 is primer dependent. Nucleic Acids Research, 38(1), 203–214. https://doi.org/10.1093/nar/gkp904
  • Vanommeslaeghe, K., Hatcher, E., Acharya, C., Kundu, S., Zhong, S., Shim, J., Darian, E., Guvench, O., Lopes, P., Vorobyov, I., & Mackerell, A. D. (2010). CHARMM general force field: A force field for drug‐like molecules compatible with the CHARMM all‐atom additive biological force fields. Journal of Computational Chemistry, 31(4), 671–690.
  • Wang, J., Wang, W., Kollman, P. A., & Case, D. A. (2006). Automatic atom type and bond type perception in molecular mechanical calculations. Journal of Molecular Graphics & Modelling, 25(2), 247–260. https://doi.org/10.1016/j.jmgm.2005.12.005
  • Wang, M., Cao, R., Zhang, L., Yang, X., Liu, J., Xu, M., Shi, Z., Hu, Z., Zhong, W., & Xiao, G. (2020). Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Research, 30(3), 269–271. https://doi.org/10.1038/s41422-020-0282-0
  • Wang, E., Sun, H., Wang, J., Wang, Z., Liu, H., Zhang, J. Z. H., & Hou, T. (2019). End-point binding free energy calculation with MM/PBSA and MM/GBSA: Strategies and applications in drug design. Chemical Reviews, 119(16), 9478–9508. https://doi.org/10.1021/acs.chemrev.9b00055
  • Wang, Z., Wang, X., Li, Y., Lei, T., Wang, E., Li, D., Kang, Y., Zhu, F., & Hou, T. (2019). farPPI: A webserver for accurate prediction of protein-ligand binding structures for small-molecule PPI inhibitors by MM/PB(GB)SA methods. Bioinformatics (Oxford, England), 35(10), 1777–1779. https://doi.org/10.1093/bioinformatics/bty879
  • Warren, T. K., Jordan, R., Lo, M. K., Ray, A. S., Mackman, R. L., Soloveva, V., Siegel, D., Perron, M., Bannister, R., Hui, H. C., Larson, N., Strickley, R., Wells, J., Stuthman, K. S., Van Tongeren, S. A., Garza, N. L., Donnelly, G., Shurtleff, A. C., Retterer, C. J., … Bavari, S. (2016). Therapeutic efficacy of the small molecule gs-5734 against Ebola virus in rhesus monkeys. Nature, 531(7594), 381–385. https://doi.org/10.1038/nature17180
  • Waterhouse, A., Bertoni, M., Bienert, S., Studer, G., Tauriello, G., Gumienny, R., Heer, F. T., de Beer, T. A. P., Rempfer, C., Bordoli, L., Lepore, R., & Schwede, T. (2018). SWISS-MODEL: Homology modelling of protein structures and complexes. Nucleic Acids Research, 46(W1), W296–W303. https://doi.org/10.1093/nar/gky427
  • Wu, C., Liu, Y., Yang, Y., Zhang, P., Zhong, W., Wang, Y., Wang, Q., Xu, Y., Li, M., Li, X. & Zheng, M., (2020). Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods. Acta Pharmaceutica Sinica B, 10(5), 766–788.
  • Zhang, W., Stephen, P., Thériault, J.-F., Wang, R., & Lin, S.-X. (2020). Novel coronavirus polymerase and nucleotidyl-transferase structures: Potential to target new outbreaks. The Journal of Physical Chemistry Letters, 11(11), 4430–4435. https://doi.org/10.1021/acs.jpclett.0c00571

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.