220
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Investigating the structure of the product of graphene oxide reaction with folic acid and chitosan: density functional theory calculations

, , &
Pages 14146-14159 | Received 28 Apr 2021, Accepted 28 Oct 2021, Published online: 18 Nov 2021

References

  • Albertsen, P., Jørgensen, P. l., & Yeager, D. L. (1980). Indirect nuclear spin-spin coupling constants within the coupled multiconfiguration hartree-fock approximation. Chemical Physics Letters, 76(2), 354–358. https://doi.org/10.1016/0009-2614(80)87040-0
  • Armaković, S., Armaković, S. J., Vraneš, M., Tot, A., & Gadžurić, S. (2016). Determination of reactive properties of 1-butyl-3-methylimidazolium taurate ionic liquid employing DFT calculations. Journal of Molecular Liquids, 222, 796–803. https://doi.org/10.1016/j.molliq.2016.07.094
  • Castillo, J. J., Rindzevicius, T., Novoa, L. V., Svendsen, W. E., Rozlosnik, N., Boisen, A., Escobar, P., Mart’Inez, F., & Castillo-Le On, J. (2013). Non-covalent conjugates of single-walled carbon nanotubes and folic acid for interaction with cells overexpressing folate receptors. Journal of Materials Chemistry B, 1(10), 1475. https://doi.org/10.1039/c2tb00434h
  • De Sousa, M., Augusto, L., De Luna, V., Fonseca, L. C., Giorgioand, S., & Luiz Alves, O. (2018). Folic-acid-functionalized graphene oxide nanocarrier: synthetic approaches, characterization, drug delivery study, and antitumor screening. ACS Applied Nano Materials, 1(2), 922–932. − https://doi.org/10.1021/acsanm.7b00324
  • Deb, A., & Vimala, R. (2018). Loaded graphene oxide nanoparticle functionalized with polyethylene glycol and folic acid for anticancer drug delivery. Journal of Drug Delivery Science and Technology, 43, 333–342. https://doi.org/10.1016/j.jddst.2017.10.025
  • Divya, K., & Jisha, M. S. (2018). Chitosan nanoparticles preparation and applications. Environmental Chemistry Letters, 16(1), 101–112. https://doi.org/10.1007/s10311-017-0670-y
  • Dutta, T., Chattopadhyay, A. P., Ghosh, N. N., Khatua, S., Acharya, K., Kundu, S., · Mitra, D., & Das, M. (2020). Biogenic silver nanoparticle synthesis and stabilization for apoptotic activity; insights from experimental and theoretical studies. Chemical Papers, 74(11), 4089–4101. https://doi.org/10.1007/s11696-020-01216-z
  • Dutta, T., Chattopadhyay, A. P., Mandal, M., Ghosh, N. N., Mandal, V., & Das, M. (2019). Facile Green synthesis of silver bionanocomposite with size dependent antibacterial and synergistic effects: A combined experimental and theoretical studies. Journal of Inorganic and Organometallic Polymers and Materials, 30(5), 1839–1851. https://doi.org/10.1007/s10904-019-01332-8
  • Dutta, T., Chattopadhyay, A. P., Mandal, M., Ghosh, N. N., Mandal, V., & Das, M. (2020). Facile Green synthesis of silver bionanocomposite with size dependent antibacterial and synergistic effects: A combined experimental and theoretical studies. Journal of Inorganic and Organometallic Polymers and Materials, 30(5), 1839–1851. https://doi.org/10.1007/s10904-019-01332-8
  • Dutta, T., Ghosh, N. N., Das, M., Adhikary, R., Mandal, V., & Chattopadhyay, A. P. (2020). Green synthesis of antibacterial and antifungal silver nanoparticles using Citrus limetta peel extract: Experimental and theoretical studies. Journal of Environmental Chemical Engineering, 8(4), 104019. https://doi.org/10.1016/j.jece.2020.104019
  • Dutta, T., Kumar Chowdhury, S., Ghosh, N. N., Chattopadhyay, A. P., Das, M., & Manda, V. (2022). Green synthesis of antimicrobial silver nanoparticles using fruit extract of glycosmis pentaphylla and its theoretical explanations. Journal of Molecular Structure, 1247, 131361. Volume https://doi.org/10.1016/j.molstruc.2021.131361
  • Fernández, M., Javaid, F., & Chudasama, V. (2018). Advances in targeting the folate receptor in the treatment/imaging of cancers. Chemical Science, 9 (4), 790–810.
  • Frisch, M., Trucks, G., Schlegel, H. B., Scuseria, G., Robb, M., & Cheeseman, J. (2009). Gaussian 09, Revision D. 01. Gaussian, Inc.
  • Gocheva, G., Petkov, N., Garcia Luri, A., Iliev, S., Ivanova, N., Petrova, J., Mitrev, Y., Madjarova, G., & Ivanova, A. (2019). Tautomerism in folic acid: Combined molecular modelling and NMR study. Journal of Molecular Liquids, 292, 111392. https://doi.org/10.1016/j.molliq.2019.111392
  • Hosseini, S. M., Mazinani, S., Abdouss, M., Kalhor, H., Kalantari, K., Sadegh Amiri, I., & Ramezani, Z. (2021). Designing chitosan nanoparticles embedded into graphene oxide as a drug delivery system. Polymer Bulletin, https://doi.org/10.1007/s00289-020-03506-8
  • Jansen, H. B., & Ros, P. (1969). Non-empirical molecular orbital calculations on the protonation of carbon monoxide. Chemical Physics Letters, 3(3), 140–143. https://doi.org/10.1016/0009-2614(69)80118-1
  • Jin, L., Huang, L., Ren, L., He, Y., Tang, J., Wang, S., Yang, W., Wang, H., & Chai, L. (2018). Preparation of stable and high-efficient poly (m-phenylenediamine)/reduced graphene oxide composites for hexavalent chromium removal. Journal of Materials Science, 9, 28–44.
  • Khoei, A. R., & Khorrami, M. S. (2016). Mechanical properties of graphene oxide: A molecular dynamics study. Fullerenes, Nanotubes and Carbon Nanostructures, 24(9), 594–603. https://doi.org/10.1080/1536383X.2016.1208180
  • Kowsari, E., & Mohammadi, M. (2016). Synthesis of reduced and functional graphene oxide with magnetic ionic liquid and its application as an electromagnetic-absorbing coating. Composites Science and Technology, 126, 106–114. https://doi.org/10.1016/j.compscitech.2016.02.019
  • Chowdhury, S.K., Dutta, T., Chattopadhyay, A.P. (2021) Isolation of antimicrobial Tridecanoic acid from Bacillus sp. LBF-01 and its potentialization through silver nanoparticles synthesis: a combined experimental and theoretical studies. Journal of Nanostructure in Chemistry. https://doi.org/10.1007/s40097-020-00385-3
  • Lee, C., Yang, W., & Parr, R. G. (1988). Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Physical Review B, 37(2), 785–789. https://doi.org/10.1103/PhysRevB.37.785
  • Liu, J., Cui, L., & Losic, D. (2013). Graphene and graphene oxide as new nanocarriers for drug delivery applications. Acta Biomaterialia, 9(12), 9243–9257. https://doi.org/10.1016/j.actbio.2013.08.016
  • Mahmoudzadeh, M., Fassihi, A., Emami, J., Davies, N. M., & Dorkoosh, F. (2013). Physicochemical, pharmaceutical and biological approaches toward designing optimized and efficient hydrophobically modified chitosan-based polymeric micelles as a nanocarrier system for targeted delivery of anticancer drugs. Journal of Drug Targeting, 21(8), 693–709. https://doi.org/10.3109/1061186X.2013.824455
  • Maity, A. R., Chakraborty, A., Mondal, A., & Jana, N. R. (2014). Carbohydrate coated, folate functionalized colloidal graphene as a nanocarrier for both hydrophobic and hydrophilic drugs. Nanoscale, 6(5), 2752–2758.
  • Nikfar, Z., & Shariatinia, Z. (2019). The RGD tripeptide anticancer drug carrier: DFT computations and molecular dynamics simulations. Journal of Molecular Liquids, 281, 565–583. https://doi.org/10.1016/j.molliq.2019.02.114
  • Olad, A., & Bakht Khosh Hagh, H. (2019). Graphene oxide and amin-modified graphene oxide incorporated chitosangelatin scaffolds as promising materials for tissue engineering. Composites Part B Engineering, 162, 692–702. https://doi.org/10.1016/j.compositesb.2019.01.040
  • Pena-Bahamonde, J., Nguyen, H. N., Fanourakis, S. K., & Rodrigues, D. F. (2018). Recent advances in graphene-based biosensor technology with applications in life sciences. Journal of Nanobiotechnology, 16(1), 75. https://doi.org/10.1186/s12951-018-0400-z
  • Plachá, D., D., & Jampilek, D. (2019). Graphenic Materials for Biomedical Applications. Nanomaterials ( Nanomaterials, 9(12), 1758. https://doi.org/10.3390/nano9121758
  • Rahbar, M., Morsali, A., Bozorgmehr, M. R., & Beyramabadi, S. A. (2020). Quantum chemical studies of chitosan nanoparticles as effective drug delivery systems for 5-fluorouracil anticancer drug. Journal of Molecular Liquids, 302, 112495. https://doi.org/10.1016/j.molliq.2020.112495
  • Reed, A. E., Curtiss, L. A., & Weinhold, F. (1988). Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. Chemical Reviews, 88(6), 899–926. https://doi.org/10.1021/cr00088a005
  • Saikia, C., Gogoi, P., & Maji, T. K. (2015). Chitosan: A promising biopolymer in drug delivery applications. Journal of Molecular and Genetic Medicine, S4, 006. https://doi.org/10.4172/1747-0862.S4-006
  • Seung, W., Panchanathan, M., Junyoung, K., Van, T. N., Sudip, M., Cao, D. L., Jaebeom, L., Yeon, K., Chang, S. K., & Junghwan, h. (2020). Folic acid–conjugated chitosan-functionalized graphene oxide for highly efficient photoacoustic imaging-guided tumor-targeted photothermal therapy. International Journal of Biological Macromolecules. 155, 961–971.
  • Smith, A. T., L., Chance, A. M., Zeng, S., Liu, B., & Sun, L. (2019). Synthesis, properties, and applications of graphene oxide/reduced graphene oxide and their nanocomposites. Nano Materials Science, 1(1), 31–47. https://doi.org/10.1016/j.nanoms.2019.02.004
  • Vinothini, K., Kumar Rajendran, N., Ramu, A., Elumalai, N., & Rajan, M. (2019). Folate receptor targeted delivery of paclitaxel to breast cancer cells via folic acid conjugated graphene oxide grafted methyl acrylate nanocarrier. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie, 110, 906–917. https://doi.org/10.1016/j.biopha.2018.12.008
  • Xiufen, C., Fuli, F., Yinsong, W., Xiaoying, Y., Hongquan, D., & Yongshen, C. (2013). Folic acid-conjugated graphene oxide as a transporter of chemotherapeutic drug and siRNA for reversal of cancer drug resistance. Journal of Nanoparticle Research, 15, 1965–1978.
  • Yu, I. K. M., Xiong, X., Tsang, D. C. W., Hau Ng, Y., Clark, J. H., Fan, J., Zhang, S., Hu, C., & Sik Ok, Y. (2019). Graphite oxide- and graphene oxide-supported catalysts for microwave-assisted glucose isomerisation in water. The Royal Society of Chemistry, 00734.
  • Zwicke, G. L., Mansoori, G. A., & Jeffery, C. J. (2012). Utilizing the folate receptor for active targeting of cancer nanotherapeutics. Citation: Nano Reviews, 3, 18496.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.