252
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Structural screening into the recognition of a potent inhibitor against non-structural protein 16: a molecular simulation to inhibit SARS-CoV-2 infection

, , , ORCID Icon, ORCID Icon, ORCID Icon & show all
Pages 14115-14130 | Received 20 May 2021, Accepted 26 Oct 2021, Published online: 11 Nov 2021

References

  • Abraham, M. J., Murtola, T., Schulz, R., Páll, S., Smith, J. C., Hess, B., & Lindahl, E. (2015). GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX, 1–2, 19–25. https://doi.org/10.1016/j.softx.2015.06.001
  • Acter, T., Uddin, N., Das, J., Akhter, A., Choudhury, T. R., & Kim, S. (2020). Evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) as coronavirus disease 2019 (COVID-19) pandemic: A global health emergency. Science of the Total Environment, 730, 138996. https://doi.org/10.1016/j.scitotenv.2020.138996
  • Ardalan, N., Mirzaie, S., Sepahi, A. A., & Khavari-Nejad, R. A. (2018). Novel mutant of Escherichia coli asparaginase II to reduction of the glutaminase activity in treatment of acute lymphocytic leukemia by molecular dynamics simulations and QM-MM studies. Medical Hypotheses, 112, 7–17. https://doi.org/10.1016/j.mehy.2018.01.004
  • Ardalan, N., Sepahi, A. A., & Khavari-Nejad, R. A. (2021). Development of Escherichia coli asparaginase II for the treatment of acute lymphocytic leukemia: In silico reduction of asparaginase II side effects by a novel mutant (V27F). Asian Pacific Journal of Cancer Prevention : APJCP, 22(4), 1137–1147. https://doi.org/10.31557/APJCP.2021.22.4.1137
  • Arnold, G. E., & Ornstein, R. L. (1997). Molecular dynamics study of time-correlated protein domain motions and molecular flexibility: Cytochrome P450BM-3. Biophysical Journal, 73(3), 1147–1159. https://doi.org/10.1016/S0006-3495(97)78147-5
  • Baildya, N., Ghosh, N. N., & Chattopadhyay, A. P. (2021). Inhibitory capacity of chloroquine against SARS-COV-2 by effective binding with angiotensin converting enzyme-2 receptor: An insight from molecular docking and MD-simulation studies. Journal of Molecular Structure, 1230, 129891.
  • Baker, N. A., Sept, D., Joseph, S., Holst, M. J., & McCammon, J. A. (2001). Electrostatics of nanosystems: Application to microtubules and the ribosome. Proceedings of the National Academy of Sciences of the United States of America, 98(18), 10037–10041. https://doi.org/10.1073/pnas.181342398
  • Bera, K. (2021). Binding and inhibitory effect of ravidasvir on 3CLpro of SARS-CoV‐2: A molecular docking, molecular dynamics and MM/PBSA approach. Journal of Biomolecular Structure and Dynamics, 39, 1–8. https://doi.org/10.1080/07391102.2021.1896388
  • Binder, K. (1997). Applications of Monte Carlo methods to statistical physics. Reports on Progress in Physics, 60(5), 487–559. https://doi.org/10.1088/0034-4885/60/5/001
  • Bouvet, M., Debarnot, C., Imbert, I., Selisko, B., Snijder, E. J., Canard, B., & Decroly, E. (2010). In vitro reconstitution of SARS-coronavirus mRNA cap methylation. PLoS Pathogens, 6(4), e1000863. https://doi.org/10.1371/journal.ppat.1000863
  • Cai, X.-C., Kapilashrami, K., & Luo, M. (2016). Synthesis and assays of inhibitors of methyltransferases. Methods in Enzymology, 574, 245–308.
  • Chang, L., Yan, Y., & Wang, L. (2020). Coronavirus disease 2019: Coronaviruses and blood safety. Transfusion Medicine Reviews, 34(2), 75–80. https://doi.org/10.1016/j.tmrv.2020.02.003
  • Chen, Y., & Guo, D. (2016). Molecular mechanisms of coronavirus RNA capping and methylation. Virologica Sinica, 31(1), 3–11. https://doi.org/10.1007/s12250-016-3726-4
  • Chong, S.-H., Im, H., & Ham, S. (2019). Explicit characterization of the free energy landscape of pKID-KIX coupled folding and binding. ACS Central Science, 5(8), 1342–1351. https://doi.org/10.1021/acscentsci.9b00200
  • Chowdhury, P. (2020). In silico investigation of phytoconstituents from Indian medicinal herb ‘Tinospora cordifolia (giloy)’against SARS-CoV-2 (COVID-19) by molecular dynamics approach. Journal of Biomolecular Structure & Dynamics, 39(17), 6792–6718. https://doi.org/10.1080/07391102.2020.1803968
  • Chu, C. K., Gadthula, S., Chen, X., Choo, H., Olgen, S., Barnard, D. L., & Sidwell, R. W. (2006). Antiviral activity of nucleoside analogues against SARS-coronavirus (SARS-CoV). Antiviral Chemistry & Chemotherapy, 17(5), 285–289. https://doi.org/10.1177/095632020601700506
  • Dai, H., & Gu, W. (2020). Small RNA plays important roles in virus-host interactions. Viruses, 12(11), 1271. https://doi.org/10.3390/v12111271
  • Daina, A., Michielin, O., & Zoete, V. (2017). SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports, 7, 42717.
  • Daina, A., Zoete, V., & Boiled, A. ‐ (2016). A BOILED-Egg to predict gastrointestinal absorption and brain penetration of small molecules. ChemMedChem., 11(11), 1117–1121. https://doi.org/10.1002/cmdc.201600182
  • Dalal, V., Kumar, P., Rakhaminov, G., Qamar, A., Fan, X., Hunter, H., Tomar, S., Golemi-Kotra, D., & Kumar, P. (2019). Repurposing an ancient protein core structure: Structural studies on FmtA, a novel esterase of Staphylococcus aureus. Journal of Molecular Biology, 431(17), 3107–3123. https://doi.org/10.1016/j.jmb.2019.06.019
  • Dallakyan, S., O. A. (2015). Small-molecule library screening by docking with PyRx. Methods in Molecular Biology, 1263, 243–250.
  • Darden, T., York, D., & Pedersen, L. (1993). Particle mesh Ewald: An N⋅ log (N) method for Ewald sums in large systems. The Journal of Chemical Physics, 98(12), 10089–10092. https://doi.org/10.1063/1.464397
  • Dash, R., Arifuzzaman, M., Mitra, S., Abdul Hannan, M., Absar, N., & Hosen, S. M. Z. (2019). Unveiling the structural insights into the selective inhibition of protein kinase D1. Current Pharmaceutical Design, 25(10), 1059–1074. https://doi.org/10.2174/1381612825666190527095510
  • Dash, R., Choi, H. J., & Moon, I. S. (2020). Mechanistic insights into the deleterious roles of Nasu-Hakola disease associated TREM2 variants. Scientific Reports, 10(1), 3663. https://doi.org/10.1038/s41598-020-60561-x
  • David, C. C., & Jacobs, D. J. (2014). Principal component analysis: A method for determining the essential dynamics of proteins. Methods in Molecular Biology (Clifton, N.J, 1084, 193–226. ),
  • Decroly, E., Ferron, F., Lescar, J., & Canard, B. (2011). Conventional and unconventional mechanisms for capping viral mRNA. Nature Reviews. Microbiology, 10(1), 51–65. https://doi.org/10.1038/nrmicro2675
  • Dhankhar, P., Dalal, V., Mahto, J. K., Gurjar, B. R., Tomar, S., Sharma, A. K., & Kumar, P. (2020). Characterization of dye-decolorizing peroxidase from Bacillus subtilis. Archives of Biochemistry and Biophysics, 693, 108590.
  • Dong, J., Wang, N.-N., Yao, Z.-J., Zhang, L., Cheng, Y., Ouyang, D., Lu, A.-P., & Cao, D.-S. (2018). ADMETlab: A platform for systematic ADMET evaluation based on a comprehensively collected ADMET database. Journal of Cheminformatics, 10(1), 29. https://doi.org/10.1186/s13321-018-0283-x
  • Ertl, P., & Schuffenhauer, A. (2009). Estimation of synthetic accessibility score of drug-like molecules based on molecular complexity and fragment contributions. Journal of Cheminformatics, 1(1), 8. https://doi.org/10.1186/1758-2946-1-8
  • Essmann, U., Perera, L., Berkowitz, M. L., Darden, T., Lee, H., & Pedersen, L. G. (1995). A smooth particle mesh Ewald method. The Journal of Chemical Physics, 103(19), 8577–8593. https://doi.org/10.1063/1.470117
  • Farshadfar, C., Mollica, A., Rafii, F., Noorbakhsh, A., Nikzad, M., Seyedi, S. H., Abdi, F., Verki, S. A., & Mirzaie, S. (2020). Novel potential inhibitor discovery against tyrosyl-tRNA synthetase from Staphylococcus aureus by virtual screening, molecular dynamics, MMPBSA and QMMM simulations. Molecular Simulation, 46(7), 507–520. https://doi.org/10.1080/08927022.2020.1726911
  • Feng, S. (2020). Biodegradation mechanism of polycaprolactone by a novel esterase MGS0156: A QM/MM approach. Environmental Science: Processes & Impacts, 22(12), 2332–2344.
  • Fu, M., Chen, L., Zhang, L., Yu, X., & Yang, Q. (2017). Cyclocurcumin, a curcumin derivative, exhibits immune-modulating ability and is a potential compound for the treatment of rheumatoid arthritis as predicted by the MM-PBSA method. International Journal of Molecular Medicine, 39(5), 1164–1172. https://doi.org/10.3892/ijmm.2017.2926
  • Genheden, S., & Ryde, U. (2015). The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. Expert Opinion on Drug Discovery, 10(5), 449–461. https://doi.org/10.1517/17460441.2015.1032936
  • Harcourt, B. H., Jukneliene, D., Kanjanahaluethai, A., Bechill, J., Severson, K. M., Smith, C. M., Rota, P. A., & Baker, S. C. (2004). Identification of severe acute respiratory syndrome coronavirus replicase products and characterization of papain-like protease activity. Journal of Virology, 78(24), 13600–13612. https://doi.org/10.1128/JVI.78.24.13600-13612.2004
  • Hess, B., Kutzner, C., van der Spoel, D., & Lindahl, E. (2008). GROMACS 4: Algorithms for highly efficient, load-balanced, and scalable molecular simulation. Journal of Chemical Theory and Computation, 4(3), 435–447. https://doi.org/10.1021/ct700301q
  • Koushki, E. H., Abolghasemi, S., Mollica, A., Aghaeepoor, M., Moosavi, S. S., Farshadfar, C., Hasanpour, B., Feyzi, B., Abdi, F., & Mirzaie, S. (2020). Structure-based virtual screening, molecular docking and dynamics studies of natural product and classical inhibitors against human dihydrofolate reductase. Network Modeling Analysis in Health Informatics and Bioinformatics, 9(1), 49. https://doi.org/10.1007/s13721-020-00244-9
  • Krafcikova, P., Silhan, J., Nencka, R., & Boura, E. (2020). Structural analysis of the SARS-CoV-2 methyltransferase complex involved in RNA cap creation bound to sinefungin. Nature Communications, 11(1), 3717. https://doi.org/10.1038/s41467-020-17495-9
  • Krafcikova, P., Silhan, J., Nencka, R., & Boura, E. (2020). Structural analysis of the SARS-CoV-2 methyltransferase complex involved in RNA cap creation bound to sinefungin. Nature Communications, 11(1), 1–7. https://doi.org/10.1038/s41467-020-17495-9
  • Kumar, A. (2020). Identification of phytochemical inhibitors against main protease of COVID-19 using molecular modeling approaches. Journal of Biomolecular Structure and Dynamics,39(10), 3760-3770.
  • Kumari, R., Kumar, R., & Lynn, A. (2014). g_mmpbsa-a GROMACS tool for high-throughput MM-PBSA calculations . Journal of Chemical Information and Modeling, 54(7), 1951–1962. https://doi.org/10.1021/ci500020m
  • Li, X., Geng, M., Peng, Y., Meng, L., & Lu, S. (2020). Molecular immune pathogenesis and diagnosis of COVID-19. Journal of Pharmaceutical Analysis, 10(2), 102–108. https://doi.org/10.1016/j.jpha.2020.03.001
  • Lin, S., Chen, H., Ye, F., Chen, Z., Yang, F., Zheng, Y., Cao, Y., Qiao, J., Yang, S., & Lu, G. (2020). Crystal structure of SARS-CoV-2 nsp10/nsp16 2'-O-methylase and its implication on antiviral drug design. Signal Transduction and Targeted Therapy, 5(1), 131. https://doi.org/10.1038/s41392-020-00241-4
  • Liu, C., Zhou, Q., Li, Y., Garner, L. V., Watkins, S. P., Carter, L. J., Smoot, J., Gregg, A. C., Daniels, A. D., Jervey, S., & Albaiu, D. (2020). Research and development on therapeutic agents and vaccines for COVID-19 and related human coronavirus diseases. ACS Central Science, 6(3), 315–331. https://doi.org/10.1021/acscentsci.0c00272
  • Mandal, M., Chowdhury, S. K., Khan, A. A., Baildya, N., Dutta, T., Misra, D., & Ghosh, N. N. (2021). Inhibitory efficacy of RNA virus drugs against SARS-CoV-2 proteins: An extensive study. Journal of Molecular Structure, 1234, 130152.
  • Minasov, G., Shuvalova, L., Rosas-Lemus, M., Kiryukhina, O., Wiersum, G., Godzik, A., Jaroszewski, L., Stogios, P. J., Skarina, T., & Satchell, K. J. F. (2020). Center for Structural Genomics of Infectious Diseases (CSGID), 1.80 Angstrom Resolution Crystal Structure of NSP16 - NSP10 Complex from SARS-CoV-2.
  • Mohseni, S. S., Nasri, F., Davari, K., Mirzaie, S., Moradzadegan, A., Abdi, F., & Farzaneh, F. (2018). Identification of novel inhibitor against endonuclease subunit of Influenza pH1N1 polymerase: A combined molecular docking, molecular dynamics, MMPBSA, QMMM and ADME studies to combat influenza A viruses. Computational Biology and Chemistry, 77, 279–290. https://doi.org/10.1016/j.compbiolchem.2018.08.005
  • Mousavizadeh, L., & Ghasemi, S. (2020). Genotype and phenotype of COVID-19: Their roles in pathogenesis. Journal of Microbiology, Immunology and Infection, 54(2), 159-163.
  • Noorbakhsh, A., Askandar, R. H., Alhagh, M. S., Farshadfar, C., Seyedi, S. H., Ahmadizad, M., Rahimi, A., Ardalan, N., & Koushki, E. H. (2021a). Prevention of SARS-CoV-2 proliferation with a novel and potent main protease inhibitor by docking, ADMET, MM-PBSA, and molecular dynamics simulation. Journal of Computational Biophysics and Chemistry, 20(3), 305–322. https://doi.org/10.1142/S2737416521500149
  • Noorbakhsh, A., Hosseininezhadian Koushki, E., Farshadfar, C., & Ardalan, N. (2021b). Designing a natural inhibitor against human kynurenine aminotransferase type II and a comparison with PF-04859989: A computational effort against schizophrenia. Journal of Biomolecular Structure and Dynamics, 39, 1–14. https://doi.org/10.1080/07391102.2021.1893817
  • Patanè, L., Morotti, D., Giunta, M. R., Sigismondi, C., Piccoli, M. G., Frigerio, L., Mangili, G., Arosio, M., & Cornolti, G. (2020). Vertical transmission of coronavirus disease 2019: Severe acute respiratory syndrome coronavirus 2 RNA on the fetal side of the placenta in pregnancies with coronavirus disease 2019-positive mothers and neonates at birth. American Journal of Obstetrics & Gynecology MFM, 2(3), 100145. https://doi.org/10.1016/j.ajogmf.2020.100145
  • Potts, R. O., & Guy, R. H. (1992). Predicting skin permeability. Pharmaceutical Research, 9(5), 663–669. https://doi.org/10.1023/A:1015810312465
  • Qian, J.-Y., Wang, B., & Liu, B.-C. (2020). acute kidney injury in the 2019 novel coronavirus disease. Kidney Diseases (Basel, Switzerland), 323, 1–6. https://doi.org/10.1159/000509086
  • Rahimi, A., Razmkhah, K., Mehrnia, M., Mohamadnia, A., Sahebjamee, H., Salehi, S., Asl, E. A., Tahmasebi, H., Shandiz, S. A. S., Davouodbeglou, F., Ghasemi, S., Ardalan, N., & Kordkandi, Z. G. (2016). Molecular docking and binding study of harpagoside and harpagide as novel anti-inflammatory and anti-analgesic compound from Harpagophytum procumbens based on their interactions with COX-2 enzyme. Asian Pacific Journal of Tropical Disease, 6(3), 227–231. https://doi.org/10.1016/S2222-1808(15)61019-2
  • Raj, R. (2021). Analysis of non-structural proteins, NSPs of SARS-CoV-2 as targets for computational drug designing. Biochemistry and Biophysics Reports, 25, 100847.
  • Ringnér, M. (2008). What is principal component analysis? Nature Biotechnology, 26(3), 303–304. https://doi.org/10.1038/nbt0308-303
  • Rosas-Lemus, M. (2020). High-resolution structures of the SARS-CoV-2 2′-O-methyltransferase reveal strategies for structure-based inhibitor design. Science Signaling, 13(651), 1–14.
  • Rosas-Lemus, M. (2020). Structure of SARS-CoV-2 2′-O-methyltransferase heterodimer with RNA Cap analog and sulfates bound reveals new strategies for structure-based inhibitor design. bioRxiv, 2, 1–25.
  • Rosas-Lemus, M., Minasov, G., Shuvalova, L., Inniss, N. L., Kiryukhina, O., Brunzelle, J., & Satchell, K. J. F. (2020). High-resolution structures of the SARS-CoV-2 2′-O-methyltransferase reveal strategies for structure-based inhibitor design. Science Signaling, 13(651), 1-14. https://doi.org/10.1126/scisignal.abe1202
  • Saini, G., Dalal, V., Savita, B. K., Sharma, N., Kumar, P., & Sharma, A. K. (2019). Molecular docking and dynamic approach to virtual screen inhibitors against Esbp of Candidatus Liberibacter asiaticus. Journal of Molecular Graphics & Modelling, 92, 329–340. https://doi.org/10.1016/j.jmgm.2019.08.012
  • Sousa da Silva, A. W., & Vranken, W. F. (2012). ACPYPE – AnteChamber PYthon Parser interfacE. BMC Research Notes, 5(1), 367. https://doi.org/10.1186/1756-0500-5-367
  • Subbarao, K., & Mahanty, S. (2020). Respiratory virus infections: Understanding COVID-19. Immunity, 52(6), 905–909. https://doi.org/10.1016/j.immuni.2020.05.004
  • Subissi, L., Imbert, I., Ferron, F., Collet, A., Coutard, B., Decroly, E., & Canard, B. (2014). SARS-CoV ORF1b-encoded nonstructural proteins 12-16: Replicative enzymes as antiviral targets. Antiviral Research, 101, 122–130. https://doi.org/10.1016/j.antiviral.2013.11.006
  • Trott, O., & Olson, A. J. (2010). AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31(2), 455–461. https://doi.org/10.1002/jcc.21334
  • van Aalten, D. M., Amadei, A., Bywater, R., Findlay, J. B., Berendsen, H. J., Sander, C., & Stouten, P. F. (1996). A comparison of structural and dynamic properties of different simulation methods applied to SH3. Biophysical Journal, 70(2), 684–692. https://doi.org/10.1016/S0006-3495(96)79608-X
  • Viswanathan, T. (2020). Structural Basis of RNA Cap Modification by SARS-CoV-2 Coronavirus. Nat Commun., 11(3718), 1–7.
  • Wang, C., Greene, D., Xiao, L., Qi, R., & Luo, R. (2018). Recent developments and applications of the MMPBSA method. Frontiers in Molecular Biosciences, 4, 87–87. https://doi.org/10.3389/fmolb.2017.00087
  • Wang, Y., Xiao, J., Suzek, T. O., Zhang, J., Wang, J., & Bryant, S. H. (2009). PubChem: A public information system for analyzing bioactivities of small molecules. Nucleic Acids Research, 37(Web Server issue), W623–W633. https://doi.org/10.1093/nar/gkp456
  • Warminski, M., Sikorski, P. J., Kowalska, J., & Jemielity, J. (2017). Applications of phosphate modification and labeling to study (m)RNA caps. Topics in Current Chemistry (Cham), 375(1), 16. https://doi.org/10.1007/s41061-017-0106-y
  • Wu, Y.-C., C.-S, C., & Chan, Y.-J. (2020). Overview of the 2019 novel coronavirus (2019-nCoV): The pathogen of severe specific contagious pneumonia (SSCP). Journal of the Chinese Medical Association, 83(3), 1.
  • Wu, A., Peng, Y., Huang, B., Ding, X., Wang, X., Niu, P., Meng, J., Zhu, Z., Zhang, Z., Wang, J., Sheng, J., Quan, L., Xia, Z., Tan, W., Cheng, G., & Jiang, T. (2020). Genome composition and divergence of the novel coronavirus (2019-nCoV) originating in China. Cell Host & Microbe, 27(3), 325–328. https://doi.org/10.1016/j.chom.2020.02.001
  • Yang, B., Lin, S.-J., Ren, J.-Y., Liu, T., Wang, Y.-M., Li, C.-M., Xu, W.-W., He, Y.-W., Zheng, W.-H., Zhao, J., Yuan, X.-H., & Liao, H.-X. (2019). Molecular docking and molecular dynamics (MD) simulation of human anti-complement factor H (CFH) antibody Ab42 and CFH polypeptide. International Journal of Molecular Sciences, 20(10), 2568. https://doi.org/10.3390/ijms20102568

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.