208
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

EhSir2c, a Sir2 homolog from the human pathogen Entamoeba histolytica interacts with a DNA repair protein, EhRAD23: Protein-protein interaction, docking and functional study

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 263-279 | Received 24 Jul 2021, Accepted 07 Nov 2021, Published online: 23 Nov 2021

References

  • Alsford, S., Kawahara, T., Isamah, C., & Horn, D. (2007). A sirtuin in the African trypanosome is involved in both DNA repair and telomeric gene silencing but is not required for antigenic variation. Molecular Microbiology, 63(3), 724–736. https://doi.org/10.1111/j.1365-2958.2006.05553.x
  • Altschul, S. F., Madden, T. L., Schaffer, A. A., Zhang, J., Zhang, Z., Miller, W., & Lipman, D. J. (1997). Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Research, 25(17), 3389–3402. https://doi.org/10.1093/nar/25.17.3389
  • Audagnotto, M., & Dal Peraro, M. (2017). Protein post-translational modifications: In silico prediction tools and molecular modeling. Computational and Structural Biotechnology Journal, 15, 307–319. https://doi.org/10.1016/j.csbj.2017.03.004
  • Bartesaghi, S., & Radi, R. (2018). Fundamentals on the biochemistry of peroxynitrite and protein tyrosine nitration. Redox Biology, 14, 618–625. https://doi.org/10.1016/j.redox.2017.09.009
  • Benkert, P., Biasini, M., & Schwede, T. (2011). Toward the estimation of the absolute quality of individual protein structure models. Bioinformatics (Oxford, England), 27(3), 343–350. https://doi.org/10.1093/bioinformatics/btq662
  • Berjanskii, M., Zhou, J., Liang, Y., Lin, G., & Wishart, D. S. (2012). Resolution-by-proxy: A simple measure for assessing and comparing the overall quality of NMR protein structures. Journal of Biomolecular NMR, 53(3), 167–180. https://doi.org/10.1007/s10858-012-9637-2
  • Blom, N., Gammeltoft, S., & Brunak, S. (1999). Sequence and structure-based prediction of eukaryotic protein phosphorylation sites. Journal of Molecular Biology, 294(5), 1351–1362. https://doi.org/10.1006/jmbi.1999.3310
  • Bowie, J. U., Luthy, R., & Eisenberg, D. (1991). A method to identify protein sequences that fold into a known three-dimensional structure. Science (New York, N.Y.), 253(5016), 164–170. https://doi.org/10.1126/science.1853201
  • Brachmann, C. B., Sherman, J. M., Devine, S. E., Cameron, E. E., Pillus, L., & Boeke, J. D. (1995). The SIR2 gene family, conserved from bacteria to humans, functions in silencing, cell cycle progression, and chromosome stability. Genes & Development, 9(23), 2888–2902. https://doi.org/10.1101/gad.9.23.2888
  • Ceroni, A., Passerini, A., Vullo, A., & Frasconi, P. (2006). DISULFIND: A disulfide bonding state and cysteine connectivity prediction server. Nucleic Acids Research, 34(Web Server issue), W177–181. issue):https://doi.org/10.1093/nar/gkl266
  • Chen, F., Liu, H., Sun, H., Pan, P., Li, Y., Li, D., & Hou, T. (2016). Assessing the performance of the MM/PBSA and MM/GBSA methods. 6. Capability to predict protein-protein binding free energies and re-rank binding poses generated by protein-protein docking. Physical Chemistry Chemical Physics: PCCP, 18(32), 22129–22139. https://doi.org/10.1039/c6cp03670h
  • Colovos, C., & Yeates, T. O. (1993). Verification of protein structures: Patterns of nonbonded atomic interactions. Protein Science: A Publication of the Protein Society, 2(9), 1511–1519. https://doi.org/10.1002/pro.5560020916
  • Dam, S., & Lohia, A. (2010). Entamoeba histolytica sirtuin EhSir2a deacetylates tubulin and regulates the number of microtubular assemblies during the cell cycle. Cellular Microbiology, 12(7), 1002–1014. https://doi.org/10.1111/j.1462-5822.2010.01449.x
  • Dam, S., Biswas, P., & Ghosh, R. (2019). Oxidative stress in Entamoeba histolytica. In S. Chakraborti, T. Chakraborti, D. Chattopadhyay, & C. Shaha (Eds.), Oxidative stress in microbial diseases (pp. 257–280). Springer.
  • Deng, W., Wang, C., Zhang, Y., Xu, Y., Zhang, S., Liu, Z., & Xue, Y. (2016). GPS-PAIL: Prediction of lysine acetyltransferase-specific modification sites from protein sequences. Scientific Reports, 6, 39787. https://doi.org/10.1038/srep39787
  • Deng, W., Wang, Y., Ma, L., Zhang, Y., Ullah, S., & Xue, Y. (2017). Computational prediction of methylation types of covalently modified lysine and arginine residues in proteins. Briefings in Bioinformatics, 18(4), 647–658. https://doi.org/10.1093/bib/bbw041
  • Diamond, L. S., Harlow, D. R., & Cunnick, C. C. (1978). Cunnick CC: A new medium for the axenic cultivation of Entamoeba histolytica and other Entamoeba. Transactions of the Royal Society of Tropical Medicine and Hygiene, 72(4), 431–432. https://doi.org/10.1016/0035-9203(78)90144-x
  • Feng, T., Chen, F., Kang, Y., Sun, H., Liu, H., Li, D., Zhu, F., & Hou, T. (2017). HawkRank: A new scoring function for protein-protein docking based on weighted energy terms. Journal of Cheminformatics, 9(1), 66. https://doi.org/10.1186/s13321-017-0254-7
  • Fiser, A. (2010). Template-based protein structure modeling. Methods in Molecular Biology (Clifton, NJ), 673, 73–94. https://doi.org/10.1007/978-1-60761-842-3_6
  • Flick, F., & Luscher, B. (2012). Regulation of sirtuin function by posttranslational modifications. Frontiers in Pharmacology, 3, 29. https://doi.org/10.3389/fphar.2012.00029
  • Frye, R. A. (1999). Characterization of five human cDNAs with homology to the yeast SIR2 gene: Sir2-like proteins (sirtuins) metabolize NAD and may have protein ADP-ribosyltransferase activity. Biochemical and Biophysical Research Communications, 260(1), 273–279. https://doi.org/10.1006/bbrc.1999.0897
  • Frye, R. A. (2000). Phylogenetic classification of prokaryotic and eukaryotic Sir2-like proteins. Biochemical and Biophysical Research Communications, 273(2), 793–798. https://doi.org/10.1006/bbrc.2000.3000
  • Geng, A., Tang, H., Huang, J., Qian, Z., Qin, N., Yao, Y., Xu, Z., Chen, H., Lan, L., Xie, H., Zhang, J., Jiang, Y., & Mao, Z. (2020). The deacetylase SIRT6 promotes the repair of UV-induced DNA damage by targeting DDB2. Nucleic Acids Research, 48(16), 9181–9194. https://doi.org/10.1093/nar/gkaa661
  • Geourjon, C., & Deleage, G. (1995). SOPMA: significant improvements in protein secondary structure prediction by consensus prediction from multiple alignments. Computer Applications in the Biosciences: CABIOS, 11(6), 681–684. https://doi.org/10.1093/bioinformatics/11.6.681
  • Grewal, J. S., Padhan, N., Aslam, S., Bhattacharya, A., & Lohia, A. (2013). The calcium binding protein EhCaBP6 is a microtubular-end binding protein in Entamoeba histolytica. Cellular Microbiology, 15(12), 2020–2033. https://doi.org/10.1111/cmi.12167
  • Hamann, L., Nickel, R., & Tannich, E. (1995). Transfection and continuous expression of heterologous genes in the protozoan parasite Entamoeba histolytica. Proceedings of the National Academy of Sciences of the United States of America, 92(19), 8975–8979. https://doi.org/10.1073/pnas.92.19.8975
  • Heessen, S., Masucci, M. G., & Dantuma, N. P. (2005). The UBA2 domain functions as an intrinsic stabilization signal that protects Rad23 from proteasomal degradation. Molecular Cell, 18(2), 225–235. https://doi.org/10.1016/j.molcel.2005.03.015
  • Hellberg, A., Nickel, R., Lotter, H., Tannich, E., & Bruchhaus, I. (2001). Overexpression of cysteine proteinase 2 in Entamoeba histolytica or Entamoeba dispar increases amoeba-induced monolayer destruction in vitro but does not augment amoebic liver abscess formation in gerbils. Cellular Microbiology, 3(1), 13–20. https://doi.org/10.1046/j.1462-5822.2001.00086.x
  • Hooft, R. W., Vriend, G., Sander, C., & Abola, E. E. (1996). Errors in protein structures. Nature, 381(6580), 272. https://doi.org/10.1038/381272a0
  • Hou, Q., De Geest, P. F. G., Griffioen, C. J., Abeln, S., Heringa, J., & Feenstra, K. A. (2019). SeRenDIP: SEquential REmasteriNg to DerIve profiles for fast and accurate predictions of PPI interface positions. Bioinformatics (Oxford, England), 35(22), 4794–4796. https://doi.org/10.1093/bioinformatics/btz428
  • James, P., Halladay, J., & Craig, E. A. (1996). Genomic libraries and a host strain designed for highly efficient two-hybrid selection in yeast. Genetics, 144(4), 1425–1436. https://doi.org/10.1093/genetics/144.4.1425
  • Kciuk, M., Bukowski, K., Marciniak, B., & Kontek, R. (2020). Advances in DNA repair-emerging players in the arena of eukaryotic DNA repair. International Journal of Molecular Sciences, 21(11), 3934.
  • Ko, J., Park, H., & Seok, C. (2012). GalaxyTBM: Template-based modeling by building a reliable core and refining unreliable local regions. BMC Bioinformatics, 13(1), 198. https://doi.org/10.1186/1471-2105-13-198
  • Ko, J., Park, H., Heo, L., & Seok, C. (2012). GalaxyWEB server for protein structure prediction and refinement. Nucleic Acids Research, 40(Web Server issue), W294–297. issue):https://doi.org/10.1093/nar/gks493
  • Kozakov, D., Hall, D. R., Xia, B., Porter, K. A., Padhorny, D., Yueh, C., Beglov, D., & Vajda, S. (2017). The ClusPro web server for protein-protein docking. Nature Protocols, 12(2), 255–278. https://doi.org/10.1038/nprot.2016.169
  • la Cour, T., Kiemer, L., Molgaard, A., Gupta, R., Skriver, K., & Brunak, S. (2004). Analysis and prediction of leucine-rich nuclear export signals. Protein Engineering, Design & Selection: PEDS, 17(6), 527–536. https://doi.org/10.1093/protein/gzh062
  • Lagunas-Rangel, F. A. (2019). Current role of mammalian sirtuins in DNA repair. DNA Repair, 80, 85–92. https://doi.org/10.1016/j.dnarep.2019.06.009
  • Laskowski, R. A., MacArthur, M. W., Moss, D. S., & Thornton, J. M. (1993). PROCHECK: A program to check the stereochemical quality of protein structures. Journal of Applied Crystallography, 26(2), 283–291. https://doi.org/10.1107/S0021889892009944
  • Laskowski, R. A., Watson, J. D., & Thornton, J. M. (2005). ProFunc: A server for predicting protein function from 3D structure. Nucleic Acids Research, 33(Web Server issue), W89–W93. https://doi.org/10.1093/nar/gki414
  • Liu, Z., Cao, J., Ma, Q., Gao, X., Ren, J., & Xue, Y. (2011). GPS-YNO2: computational prediction of tyrosine nitration sites in proteins. Molecular bioSystems, 7(4), 1197–1204. https://doi.org/10.1039/c0mb00279h
  • Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods (San Diego, CA), 25(4), 402–408. https://doi.org/10.1006/meth.2001.1262
  • Lo Monte, M., Manelfi, C., Gemei, M., Corda, D., & Beccari, A. R. (2018). ADPredict: ADP-ribosylation site prediction based on physicochemical and structural descriptors. Bioinformatics (Oxford, England), 34(15), 2566–2574. https://doi.org/10.1093/bioinformatics/bty159
  • Lovell, S. C., Davis, I. W., Arendall, W. B., 3rd., de Bakker, P. I., Word, J. M., Prisant, M. G., Richardson, J. S., & Richardson, D. C. (2003). Structure validation by Calpha geometry: phi, psi and Cbeta deviation. Proteins: Structure, Function, and Bioinformatics, 50(3), 437–450. https://doi.org/10.1002/prot.10286
  • Lu, S., Wang, J., Chitsaz, F., Derbyshire, M. K., Geer, R. C., Gonzales, N. R., Gwadz, M., Hurwitz, D. I., Marchler, G. H., Song, J. S., Thanki, N., Yamashita, R. A., Yang, M., Zhang, D., Zheng, C., Lanczycki, C. J., & Marchler-Bauer, A. (2020). CDD/SPARCLE: The conserved domain database in 2020. Nucleic Acids Research, 48(D1), D265–D268. https://doi.org/10.1093/nar/gkz991
  • Luthy, R., Bowie, J. U., & Eisenberg, D. (1992). Assessment of protein models with three-dimensional profiles. Nature, 356(6364), 83–85. https://doi.org/10.1038/356083a0
  • Mei, Z., Zhang, X., Yi, J., Huang, J., He, J., & Tao, Y. (2016). Sirtuins in metabolism, DNA repair and cancer. Journal of Experimental & Clinical Cancer Research: CR, 35(1), 182. https://doi.org/10.1186/s13046-016-0461-5
  • Mukherjee, C., Majumder, S., & Lohia, A. (2009). Inter-cellular variation in DNA content of Entamoeba histolytica originates from temporal and spatial uncoupling of cytokinesis from the nuclear cycle. PLoS Neglected Tropical Diseases, 3(4), e409. https://doi.org/10.1371/journal.pntd.0000409
  • North, B. J., & Verdin, E. (2004). Sirtuins: Sir2-related NAD-dependent protein deacetylases. Genome Biology, 5(5), 224. https://doi.org/10.1186/gb-2004-5-5-224
  • North, B. J., Marshall, B. L., Borra, M. T., Denu, J. M., & Verdin, E. (2003). The human Sir2 ortholog, SIRT2, is an NAD+-dependent tubulin deacetylase. Molecular Cell, 11(2), 437–444. https://doi.org/10.1016/s1097-2765(03)00038-8
  • Onn, L., Portillo, M., Ilic, S., Cleitman, G., Stein, D., Kaluski, S., Shirat, I., Slobodnik, Z., Einav, M., Erdel, F., Akabayov, B., & Toiber, D. (2020). SIRT6 is a DNA double-strand break sensor. eLife, 9, 51636. https://doi.org/10.7554/eLife.51636
  • Pears, C. J., Couto, C. A., Wang, H. Y., Borer, C., Kiely, R., & Lakin, N. D. (2012). The role of ADP-ribosylation in regulating DNA double-strand break repair. Cell Cycle (Georgetown, TX), 11(1), 48–56. https://doi.org/10.4161/cc.11.1.18793
  • Pontius, J., Richelle, J., & Wodak, S. J. (1996). Deviations from standard atomic volumes as a quality measure for protein crystal structures. Journal of Molecular Biology, 264(1), 121–136. https://doi.org/10.1006/jmbi.1996.0628
  • Rajendran, R., Garva, R., Krstic-Demonacos, M., & Demonacos, C. (2011). Sirtuins: Molecular traffic lights in the crossroad of oxidative stress, chromatin remodeling, and transcription. Journal of Biomedicine & Biotechnology, 2011, 368276. https://doi.org/10.1155/2011/368276
  • Ringel, A. E., Roman, C., & Wolberger, C. (2014). Alternate deacylating specificities of the archaeal sirtuins Sir2Af1 and Sir2Af2. Protein Science : a Publication of the Protein Society, 23(12), 1686–1697. https://doi.org/10.1002/pro.2546
  • Roy, A., Yang, J., & Zhang, Y. (2012). COFACTOR: an accurate comparative algorithm for structure-based protein function annotation. Nucleic Acids Research, 40(Web Server issue), W471–W477. https://doi.org/10.1093/nar/gks372
  • Sancar, A., Lindsey-Boltz, L. A., Unsal-Kacmaz, K., & Linn, S. (2004). Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints. Annual Review of Biochemistry, 73, 39–85. https://doi.org/10.1146/annurev.biochem.73.011303.073723
  • Schauber, C., Chen, L., Tongaonkar, P., Vega, I., Lambertson, D., Potts, W., & Madura, K. (1998). Rad23 links DNA repair to the ubiquitin/proteasome pathway. Nature, 391(6668), 715–718. https://doi.org/10.1038/35661
  • Sievers, F., & Higgins, D. G. (2018). Clustal Omega for making accurate alignments of many protein sequences. Protein Science: A Publication of the Protein Society, 27(1), 135–145. https://doi.org/10.1002/pro.3290
  • Singh, C. K., Chhabra, G., Ndiaye, M. A., Garcia-Peterson, L. M., Mack, N. J., & Ahmad, N. (2018). The role of sirtuins in antioxidant and redox signaling. Antioxidants & Redox Signaling, 28(8), 643–661. https://doi.org/10.1089/ars.2017.7290
  • Szklarczyk, D., Gable, A. L., Lyon, D., Junge, A., Wyder, S., Huerta-Cepas, J., Simonovic, M., Doncheva, N. T., Morris, J. H., Bork, P., Jensen, L. J., & Mering, C. V. (2019). STRING v11: Protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Research, 47(D1), D607–D613. https://doi.org/10.1093/nar/gky1131
  • Vaquero, A. (2009). The conserved role of sirtuins in chromatin regulation. The International Journal of Developmental Biology, 53(2–3), 303–322. https://doi.org/10.1387/ijdb.082675av
  • Vazquez, B. N., Thackray, J. K., & Serrano, L. (2017). Sirtuins and DNA damage repair: SIRT7 comes to play. Nucleus (Austin, TX), 8(2), 107–115. https://doi.org/10.1080/19491034.2016.1264552
  • Wallace, A. C., Laskowski, R. A., & Thornton, J. M. (1995). LIGPLOT: A program to generate schematic diagrams of protein-ligand interactions. Protein Engineering, 8(2), 127–134. https://doi.org/10.1093/protein/8.2.127
  • Wang, Y., He, J., Liao, M., Hu, M., Li, W., Ouyang, H., Wang, X., Ye, T., Zhang, Y., & Ouyang, L. (2019). An overview of sirtuins as potential therapeutic target: Structure, function and modulators. European Journal of Medicinal Chemistry, 161, 48–77. https://doi.org/10.1016/j.ejmech.2018.10.028
  • Watkins, J. F., Sung, P., Prakash, L., & Prakash, S. (1993). The Saccharomyces cerevisiae DNA repair gene RAD23 encodes a nuclear protein containing a ubiquitin-like domain required for biological function. Molecular and Cellular Biology, 13(12), 7757–7765. https://doi.org/10.1128/mcb.13.12.7757-7765.1993
  • Weber, C., Marchat, L. A., Guillen, N., & Lopez-Camarillo, C. (2009). Effects of DNA damage induced by UV irradiation on gene expression in the protozoan parasite Entamoeba histolytica. Molecular and Biochemical Parasitology, 164(2), 165–169. https://doi.org/10.1016/j.molbiopara.2008.12.005
  • Weng, G., Wang, E., Wang, Z., Liu, H., Zhu, F., Li, D., & Hou, T. (2019). HawkDock: A web server to predict and analyze the protein-protein complex based on computational docking and MM/GBSA. Nucleic Acids Research, 47(W1), W322–W330. https://doi.org/10.1093/nar/gkz397
  • Wiederstein, M., & Sippl, M. J. (2007). ProSA-web: Interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Research, 35(Web Server issue), W407–410. https://doi.org/10.1093/nar/gkm290
  • Wu, X., Cao, N., Fenech, M., & Wang, X. (2016). Role of sirtuins in maintenance of genomic stability: Relevance to cancer and healthy aging. DNA and Cell Biology, 35(10), 542–575. https://doi.org/10.1089/dna.2016.3280
  • Xie, Z., Liu, S., Zhang, Y., & Wang, Z. (2004). Roles of Rad23 protein in yeast nucleotide excision repair. Nucleic Acids Research, 32(20), 5981–5990. https://doi.org/10.1093/nar/gkh934
  • Yang, J., Roy, A., & Zhang, Y. (2013). BioLiP: A semi-manually curated database for biologically relevant ligand-protein interactions. Nucleic Acids Research, 41(Database issue), D1096–D1103. https://doi.org/10.1093/nar/gks966
  • Yu, C. S., Chen, Y. C., Lu, C. H., & Hwang, J. K. (2006). Prediction of protein subcellular localization. Proteins, 64(3), 643–651. https://doi.org/10.1002/prot.21018
  • Zhang, C., Freddolino, P. L., & Zhang, Y. (2017). COFACTOR: Improved protein function prediction by combining structure, sequence and protein-protein interaction information. Nucleic Acids Research, 45(W1), W291–W299. https://doi.org/10.1093/nar/gkx366
  • Zhao, K., & Zhou, Z. (2020). Post-translational modifications of nuclear sirtuins. Genome Instability & Disease, 1(1), 34–45. https://doi.org/10.1007/s42764-019-00001-x
  • Zhao, Q., Xie, Y., Zheng, Y., Jiang, S., Liu, W., Mu, W., Liu, Z., Zhao, Y., Xue, Y., & Ren, J. (2014). GPS-SUMO: A tool for the prediction of sumoylation sites and SUMO-interaction motifs. Nucleic Acids Research, 42(Web Server issue), W325–330. issue):https://doi.org/10.1093/nar/gku383

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.