395
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Computational designing of a novel subunit vaccine for human cytomegalovirus by employing the immunoinformatics framework

, ORCID Icon, , , ORCID Icon, , , , , , ORCID Icon, ORCID Icon, ORCID Icon, & show all
Pages 833-855 | Received 08 Jun 2021, Accepted 28 Nov 2021, Published online: 04 Jan 2022

References

  • Abraham, M. J., Murtola, T., Schulz, R., Páll, S., Smith, J. C., Hess, B., & Lindahl, E. (2015). GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX, 1–2, 19–25. https://doi.org/10.1016/j.softx.2015.06.001
  • Akhtar, N., Joshi, A., Kaushik, V., Kumar, M., & Mannan, M. A.-U. (2021). In-silico design of a multivalent epitope-based vaccine against Candida auris. Microbial Pathogenesis, 155, 104879. https://doi.org/10.1016/j.micpath.2021.104879
  • Almofti, Y. A., Abd-Elrahman, K. A., Gassmallah, S. A. E., & Salih, M. A. (2018). Multi epitopes vaccine prediction against severe acute respiratory syndrome (SARS) coronavirus using immunoinformatics approaches. American Journal of Microbiological Research, 6(3), 94–114.
  • Anderholm, K. M., Bierle, C. J., & Schleiss, M. R. (2016). Cytomegalovirus vaccines: Current status and future prospects. Drugs, 76(17), 1625–1645. https://doi.org/10.1007/s40265-016-0653-5
  • Andrusier, N., Nussinov, R., & Wolfson, H. J. (2007). FireDock: Fast interaction refinement in molecular docking. Proteins, 69(1), 139–159. https://doi.org/10.1002/prot.21495
  • Arai, R., Ueda, H., Kitayama, A., Kamiya, N., & Nagamune, T. (2001). Design of the linkers which effectively separate domains of a bifunctional fusion protein. Protein Engineering, 14(8), 529–532. https://doi.org/10.1093/protein/14.8.529
  • Arvin, A., Campadelli-Fiume, G., Mocarski, E., Moore, P. S., Roizman, B., Whitley, R., & Yamanishi, K. (Eds.). (2007). Human herpesviruses: Biology, therapy, and immunoprophylaxis. Cambridge University Press.
  • Bacchetta, R., Gregori, S., & Roncarolo, M. G. (2005). CD4+ regulatory T cells: Mechanisms of induction and effector function. Autoimmunity Reviews, 4(8), 491–496. https://doi.org/10.1016/j.autrev.2005.04.005
  • Berendsen, H. J. C., Postma, J. P. M., van Gunsteren, W. F., DiNola, A., & Haak, J. R. (1984). Molecular dynamics with coupling to an external bath. Journal of Chemical Physics., 81(8), 3684–3690. https://doi.org/10.1063/1.448118
  • Biovia, D. S., Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., & Richmond, T. J. (2000). Dassault Systèmes BIOVIA, Discovery Studio Visualizer, v. 17.2, San Diego: Dassault Systèmes, 2016. Journal of Chemical Physics, 10, 0021–9991.
  • Biswal, J. K., Bisht, P., Mohapatra, J. K., Ranjan, R., Sanyal, A., & Pattnaik, B. (2015). Application of a recombinant capsid polyprotein (P1) expressed in a prokaryotic system to detect antibodies against foot-and-mouth disease virus serotype O. Journal of Virological Methods, 215–216, 45–51. https://doi.org/10.1016/j.jviromet.2015.02.008
  • Buchan, D. W. A., & Jones, D. T. (2019). The PSIPRED Protein Analysis Workbench: 20 years on. Nucleic Acids Research, 47(W1), W402–W407. https://doi.org/10.1093/nar/gkz297
  • Cano, R. L. E., & Lopera, H. D. E. (2013). Introduction to T and B lymphocytes. In J.-M. Anaya, Y. Shoenfeld, A. Rojas-Villarraga, R. A. Levy, & R. Cervera (Eds.), Autoimmunity: From bench to bedside [Internet]. El Rosario University Press.
  • Carvalho, L. H., Sano, G-i., Hafalla, J. C., Morrot, A., De Lafaille, M. A. C., & Zavala, F. (2002). IL-4-secreting CD4+ T cells are crucial to the development of CD8+ T-cell responses against malaria liver stages. Nature Medicine, 8(2), 166–170. https://doi.org/10.1038/nm0202-166
  • Castiglione, F., Mantile, F., De Berardinis, P., & Prisco, A. (2012). How the interval between prime and boost injection affects the immune response in a computational model of the immune system. Computational and Mathematical Methods in Medicine, 2012, 842329. https://doi.org/10.1155/2012/842329
  • Chang, K. Y., & Yang, J. R. (2013). Analysis and prediction of highly effective antiviral peptides based on random forests. PLoS One, 8(8), e70166. https://doi.org/10.1371/journal.pone.0070166
  • Chaudhri, G., Quah, B. J., Wang, Y., Tan, A. H., Zhou, J., Karupiah, G., & Parish, C. R. (2009). T cell receptor sharing by cytotoxic T lymphocytes facilitates efficient virus control. Proceedings of the National Academy of Sciences of the United States of America, 106(35), 14984–14989. https://doi.org/10.1073/pnas.0906554106
  • Chong, L. C., & Khan, A. M. (2019). Vaccine target discovery. Encyclopedia of Bioinformatics and Computational Biology, 3, 241–251. https://doi.org/10.1016/B978-0-12-809633-8.20100-3
  • Cooper, N. R., & Nemerow, G. R. (1984). The role of antibody and complement in the control of viral infections. Journal of Investigative Dermatology, 83(1 Suppl), 121s–127s. https://doi.org/10.1111/1523-1747.ep12281847
  • Craig, D. B., & Dombkowski, A. A. (2013). Disulfide by Design 2.0: A web-based tool for disulfide engineering in proteins. BMC Bioinformatics, 14, 346. https://doi.org/10.1186/1471-2105-14-346
  • Darden, T., York, D., & Pedersen, L. (1993). Particle mesh Ewald: An N⋅log(N) method for Ewald sums in large systems. Journal of Chemical Physics., 98(12), 10089–10092. https://doi.org/10.1063/1.464397
  • Dhanda, S. K., Gupta, S., Vir, P., & Raghava, G. P. S. (2013a). Prediction of IL4 inducing peptides. Clinical and Developmental Immunology, 2013, 263952. https://doi.org/10.1155/2013/263952
  • Dhanda, S. K., Vir, P., & Raghava, G. P. S. (2013b). Designing of interferon-gamma inducing MHC class-II binders. Biology Direct, 8, 30. https://doi.org/10.1186/1745-6150-8-30
  • Dimitrov, I., Flower, D. R., & Doytchinova, I. (2013). AllerTOP-a server for in silico prediction of allergens. BMC Bioinformatics, 14(Suppl 6), S4. https://doi.org/10.1186/1471-2105-14-S6-S4
  • Dimitrov, I., Naneva, L., Doytchinova, I., & Bangov, I. (2014). AllergenFP: Allergenicity prediction by descriptor fingerprints. Bioinformatics (Oxford, England), 30(6), 846–851. https://doi.org/10.1093/bioinformatics/btt619
  • Dobbie, A. M. (2017). Evaluation and management of cytomegalovirus-associated congenital hearing loss. Current Opinion in Otolaryngology & Head and Neck Surgery, 25(5), 390–395. https://doi.org/10.1097/MOO.0000000000000401
  • Dolan, A., Cunningham, C., Hector, R. D., Hassan-Walker, A. F., Lee, L., Addison, C., Dargan, D. J., McGeoch, D. J., Gatherer, D., Emery, V. C., Griffiths, P. D., Sinzger, C., McSharry, B. P., Wilkinson, G. W. G., & Davison, A. J. (2004). Genetic content of wild-type human cytomegalovirus. The Journal of General Virology, 85(Pt 5), 1301–1312. https://doi.org/10.1099/vir.0.79888-0
  • Doytchinova, I. A., & Flower, D. R. (2007). VaxiJen: A server for prediction of protective antigens, tumour antigens and subunit vaccines. BMC Bioinformatics, 8(1), 4. https://doi.org/10.1186/1471-2105-8-4
  • Doytchinova, I. A., & Flower, D. R. (2008). Bioinformatic approach for identifying parasite and fungal candidate subunit vaccines. The Open Vaccine Journal, 1(1), 4.
  • Elamin Elhasan, L. M., Hassan, M. B., Elhassan, R. M., Abdelrhman, F. A., Salih, E. A., Ibrahim H, A., Mohamed, A. A., Osman, H. S., Khalil, M. S. M., Alsafi, A. A., Idris, A. B., & Hassan, M. A. (2021). Epitope-based peptide vaccine design against fructose bisphosphate aldolase of Candida glabrata: An immunoinformatics approach. Journal of Immunology Research, 2021, 8280925. https://doi.org/10.1155/2021/8280925
  • Elek, S. D., & Stern, H. (1974). Development of a vaccine against mental retardation caused by cytomegalovirus infection in utero. Lancet (London, England), 1(7845), 1–5. https://doi.org/10.1016/S0140-6736(74)92997-3
  • Feng, T., Chen, F., Kang, Y., Sun, H., Liu, H., Li, D., Zhu, F., & Hou, T. (2017). HawkRank: A new scoring function for protein-protein docking based on weighted energy terms. Journal of Cheminformatics, 9(1), 66. https://doi.org/10.1186/s13321-017-0254-7
  • Garcia, K. C., Teyton, L., & Wilson, I. A. (1999). Structural basis of T cell recognition. Annual Review of Immunology, 17, 369–397. https://doi.org/10.1146/annurev.immunol.17.1.369
  • Gasteiger, E., Hoogland, C., Gattiker, A., Wilkins, M. R., Appel, R. D., & Bairoch, A. (2005). Protein identification and analysis tools on the ExPASy server. In J. M. Walker (Ed.), The proteomics protocols handbook (pp. 571–607). Totowa,NJ: Springer. https://doi.org/10.1385/1-59259-890-0:571
  • Grote, A., Hiller, K., Scheer, M., Munch, R., Nortemann, B., Hempel, D. C., & Jahn, D. (2005). JCat: A novel tool to adapt codon usage of a target gene to its potential expression host. Nucleic Acids Research, 33(Web Server Issue), W526–W531. https://doi.org/10.1093/nar/gki376
  • Gruber, A. R., Lorenz, R., Bernhart, S. H., Neubock, R., & Hofacker, I. L. (2008). The Vienna RNA websuite. Nucleic Acids Research, 36(Web Server issue), W70–W74. https://doi.org/10.1093/nar/gkn188
  • Gu, Y., Sun, X., Li, B., Huang, J., Zhan, B., & Zhu, X. (2017). Vaccination with a paramyosin-based multi-epitope vaccine elicits significant protective immunity against trichinella spiralis infection in mice. Frontiers in Microbiology, 8, 1475. https://doi.org/10.3389/fmicb.2017.01475
  • Gupta, S., Kapoor, P., Chaudhary, K., Gautam, A., Kumar, R., Consortium, O. S. D. D., & Raghava, G. P. S. (2013). In silico approach for predicting toxicity of peptides and proteins. PLOS One, 8(9), e73957. https://doi.org/10.1371/journal.pone.0073957
  • Guruprasad, K., Reddy, B. V., & Pandit, M. W. (1990). Correlation between stability of a protein and its dipeptide composition: A novel approach for predicting in vivo stability of a protein from its primary sequence. Protein Engineering, 4(2), 155–161. https://doi.org/10.1093/protein/4.2.155
  • Halary, F., Amara, A., Lortat-Jacob, H., Messerle, M., Delaunay, T., Houlès, C., Fieschi, F., Arenzana-Seisdedos, F., Moreau, J. F., & Déchanet-Merville, J. (2002). Human cytomegalovirus binding to DC-SIGN is required for dendritic cell infection and target cell trans-infection. Immunity, 17(5), 653–664. https://doi.org/10.1016/S1074-7613(02)00447-8
  • Hamasaki-Katagiri, N., Lin, B. C., Simon, J., Hunt, R. C., Schiller, T., Russek-Cohen, E., Komar, A. A., Bar, H., & Kimchi-Sarfaty, C. (2017). The importance of mRNA structure in determining the pathogenicity of synonymous and non-synonymous mutations in haemophilia. Haemophilia: The Official Journal of the World Federation of Hemophilia, 23(1), e8–e17. https://doi.org/10.1111/hae.13107
  • Hasan, M., Islam, S., Chakraborty, S., Mustafa, A. H., Azim, K. F., Joy, Z. F., Hossain, M. N., Foysal, S. H., & Hasan, M. N. (2020). Contriving a chimeric polyvalent vaccine to prevent infections caused by herpes simplex virus (type-1 and type-2): An exploratory immunoinformatic approach. Journal of Biomolecular Structure and Dynamics, 38(10), 2898–2915. https://doi.org/10.1080/07391102.2019.1647286
  • Hebditch, M., Carballo-Amador, M. A., Charonis, S., Curtis, R., & Warwicker, J. (2017). Protein-Sol: A web tool for predicting protein solubility from sequence. Bioinformatics (Oxford, England), 33(19), 3098–3100. https://doi.org/10.1093/bioinformatics/btx345
  • Hess, B., Bekker, H., Berendsen, H. J. C., & Fraaije, J. G. E. M. (1997). LINCS: A linear constraint solver for molecular simulations. Journal of Computational Chemistry, 18(12), 1463–1472. https://doi.org/10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H
  • Hoque, M. N., Istiaq, A., Clement, R. A., Sultana, M., Crandall, K. A., Siddiki, A. Z., & Hossain, M. A. (2019). Metagenomic deep sequencing reveals association of microbiome signature with functional biases in bovine mastitis. Scientific Reports, 9(1), 13536. https://doi.org/10.1038/s41598-019-49468-4
  • Hou, T., Wang, J., Li, Y., & Wang, W. (2011). Assessing the performance of the MM/PBSA and MM/GBSA methods. 1. The accuracy of binding free energy calculations based on molecular dynamics simulations. Journal of Chemical Information and Modeling, 51(1), 69–82. https://doi.org/10.1021/ci100275a
  • Ikai, A. (1980). Thermostability and aliphatic index of globular proteins. Journal of Biochemistry, 88(6), 1895–1898. https://doi.org/10.1093/oxfordjournals.jbchem.a133168
  • Jones, D. T. (1999). Protein secondary structure prediction based on position-specific scoring matrices. Journal of Molecular Biology, 292(2), 195–202. https://doi.org/10.1006/jmbi.1999.3091
  • Jurtz, V., Paul, S., Andreatta, M., Marcatili, P., Peters, B., & Nielsen, M. (2017). NetMHCpan-4.0: Improved peptide-MHC class I interaction predictions integrating eluted ligand and peptide binding affinity data. Journal of Immunology (Baltimore, MD: 1950), 199(9), 3360–3368. https://doi.org/10.4049/jimmunol.1700893
  • Kagami, L. P., das Neves, G. M., Timmers, L. F. S. M., Caceres, R. A., & Eifler-Lima, V. L. (2020). Geo-Measures: A PyMOL plugin for protein structure ensembles analysis. Computational Biology and Chemistry, 87, 107322. https://doi.org/10.1016/j.compbiolchem.2020.107322
  • Kambayashi, T., & Laufer, T. M. (2014). Atypical MHC class II-expressing antigen-presenting cells: Can anything replace a dendritic cell? Nature Reviews. Immunology, 14(11), 719–730. https://doi.org/10.1038/nri3754
  • Kaminski, G. A., Friesner, R. A., Tirado-Rives, J., & Jorgensen, W. L. (2001). Evaluation and reparametrization of the OPLS-AA force field for proteins via comparison with accurate quantum chemical calculations on peptides. The Journal of Physical Chemistry B, 105(28), 6474–6487. https://doi.org/10.1021/jp003919d
  • Khatoon, N., Pandey, R. K., & Prajapati, V. K. (2017). Exploring Leishmania secretory proteins to design B and T cell multi-epitope subunit vaccine using immunoinformatics approach. Scientific Reports, 7(1), 8285. https://doi.org/10.1038/s41598-017-08842-w
  • Ko, J., Park, H., Heo, L., & Seok, C. (2012). GalaxyWEB server for protein structure prediction and refinement. Nucleic Acids Research, 40(Web Server issue), W294–297. https://doi.org/10.1093/nar/gks493
  • Kozakov, D., Beglov, D., Bohnuud, T., Mottarella, S. E., Xia, B., Hall, D. R., & Vajda, S. (2013). How good is automated protein docking? Proteins, 81(12), 2159–2166. https://doi.org/10.1002/prot.24403
  • Kozakov, D., Hall, D. R., Xia, B., Porter, K. A., Padhorny, D., Yueh, C., Beglov, D., & Vajda, S. (2017). The ClusPro web server for protein-protein docking. Nature Protocols, 12(2), 255–278. https://doi.org/10.1038/nprot.2016.169
  • Krishnan G, S., Joshi, A., Akhtar, N., & Kaushik, V. (2021). Immunoinformatics designed T cell multi epitope dengue peptide vaccine derived from non structural proteome. Microbial Pathogenesis, 150, 104728. https://doi.org/10.1016/j.micpath.2020.104728
  • Krogh, A., Larsson, B., von Heijne, G., & Sonnhammer, E. L. (2001). Predicting transmembrane protein topology with a hidden Markov model: Application to complete genomes. Journal of Molecular Biology, 305(3), 567–580. https://doi.org/10.1006/jmbi.2000.4315
  • Krüger, D. M., & Gohlke, H. (2010). DrugScorePPI webserver: Fast and accurate in silico alanine scanning for scoring protein-protein interactions. Nucleic Acids Research, 38(Web Server issue), W480–W486. https://doi.org/10.1093/nar/gkq471
  • Kyte, J., & Doolittle, R. F. (1982). A simple method for displaying the hydropathic character of a protein. Journal of Molecular Biology, 157(1), 105–132. https://doi.org/10.1016/0022-2836(82)90515-0
  • Larsen, J. E. P., Lund, O., & Nielsen, M. (2006). Improved method for predicting linear B-cell epitopes. Immunome Research, 2(2), 2. https://doi.org/10.1186/1745-7580-2-2
  • Laskowski, R. A., Jabłońska, J., Pravda, L., Vařeková, R. S., & Thornton, J. M. (2018). PDBsum: Structural summaries of PDB entries. Protein Sci, 27(1), 129–134. https://doi.org/10.1002/pro.3289
  • Laskowski, R., MacArthur, M., & Thornton, J. (2006). PROCHECK: Validation of protein-structure coordinates.
  • Lee, S., & Nguyen, M. T. (2015). Recent advances of vaccine adjuvants for infectious diseases. Immune Network, 15(2), 51–57. https://doi.org/10.4110/in.2015.15.2.51
  • Lee, S.-M., Plieskatt, J., & King, C. R. (2018). Disulfide bond mapping of Pfs25, a recombinant malaria transmission blocking vaccine candidate. Analytical Biochemistry, 542, 20–23. https://doi.org/10.1016/j.ab.2017.11.009
  • Lindorff-Larsen, K., Piana, S., Palmo, K., Maragakis, P., Klepeis, J. L., Dror, R. O., & Shaw, D. E. (2010). Improved side-chain torsion potentials for the Amber ff99SB protein force field. Proteins, 78(8), 1950–1958. https://doi.org/10.1002/prot.22711
  • Luckheeram, R. V., Zhou, R., Verma, A. D., & Xia, B. (2012). CD4&T cells: Differentiation and functions. Clinical & Developmental Immunology, 2012, 925135. https://doi.org/10.1155/2012/925135
  • Magnan, C. N., Randall, A., & Baldi, P. (2009). SOLpro: Accurate sequence-based prediction of protein solubility. Bioinformatics (Oxford, England), 25(17), 2200–2207. https://doi.org/10.1093/bioinformatics/btp386
  • Mashiach, E., Schneidman-Duhovny, D., Andrusier, N., Nussinov, R., & Wolfson, H. J. (2008). FireDock: A web server for fast interaction refinement in molecular docking. Nucleic Acids Research, 36(Web Server issue), W229–W232. https://doi.org/10.1093/nar/gkn186
  • Mathews, D. H., Sabina, J., Zuker, M., & Turner, D. H. (1999). Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure. Journal of Molecular Biology, 288(5), 911–940. https://doi.org/10.1006/jmbi.1999.2700
  • Mathews, D. H., Turner, D. H., & Zuker, M. (2007). RNA secondary structure prediction. Current Protocols in Nucleic Acid Chemistry, 28, 11.2.1–11.2.17. https://doi.org/10.1002/0471142700.nc1102s28
  • McDonald, I. K., & Thornton, J. M. (1994). Satisfying hydrogen bonding potential in proteins. Journal of Molecular Biology, 238(5), 777–793. https://doi.org/10.1006/jmbi.1994.1334
  • Mehla, K., & Ramana, J. (2016). Identification of epitope-based peptide vaccine candidates against enterotoxigenic Escherichia coli: A comparative genomics and immunoinformatics approach. Molecular bioSystems, 12(3), 890–901. https://doi.org/10.1039/c5mb00745c
  • Meza, B., Ascencio, F., Sierra-Beltran, A. P., Torres, J., & Angulo, C. (2017). A novel design of a multi-antigenic, multistage and multi-epitope vaccine against Helicobacter pylori: An in silico approach. Infection, Genetics and Evolution, 49, 309–317. https://doi.org/10.1016/j.meegid.2017.02.007
  • Morris, A. L., MacArthur, M. W., Hutchinson, E. G., & Thornton, J. M. (1992). Stereochemical quality of protein structure coordinates. Proteins, 12(4), 345–364. https://doi.org/10.1002/prot.340120407
  • Nagpal, G., Usmani, S. S., Dhanda, S. K., Kaur, H., Singh, S., Sharma, M., & Raghava, G. P. (2017). Computer-aided designing of immunosuppressive peptides based on IL-10 inducing potential. Scientific Reports, 7, 42851. https://doi.org/10.1038/srep42851
  • Nogalski, M. T., Collins-McMillen, D., & Yurochko, A. D. (2014). Overview of human cytomegalovirus pathogenesis. Methods in Molecular Biology, 1119, 15–28. https://doi.org/10.1007/978-1-62703-788-4_2
  • Nugent, T., Cozzetto, D., & Jones, D. T. (2014). Evaluation of predictions in the CASP10 model refinement category. Proteins, 82(Suppl 2), 98–111. https://doi.org/10.1002/prot.24377
  • Panda, S., & Chandra, G. (2012). Physicochemical characterization and functional analysis of some snake venom toxin proteins and related non-toxin proteins of other chordates. Bioinformation, 8(18), 891–896. https://doi.org/10.6026/97320630008891
  • Pandey, R. K., Sundar, S., & Prajapati, V. K. (2016). Differential expression of miRNA regulates T cell differentiation and plasticity during visceral leishmaniasis infection. Frontiers in Microbiology, 7, 206. https://doi.org/10.3389/fmicb.2016.00206
  • Parrinello, M., & Rahman, A. (1982). Strain fluctuations and elastic constants. Journal of Chemical Physics., 76(5), 2662–2666. https://doi.org/10.1063/1.443248
  • Petersen, M. T., Jonson, P. H., & Petersen, S. B. (1999). Amino acid neighbours and detailed conformational analysis of cysteines in proteins. Protein Engineering, 12(7), 535–548. https://doi.org/10.1093/protein/12.7.535
  • Plotkin, S. A., & Boppana, S. B. (2019). Vaccination against the human cytomegalovirus. Vaccine, 37(50), 7437–7442. https://doi.org/10.1016/j.vaccine.2018.02.089
  • Ponomarenko, J., Bui, H. H., Li, W., Fusseder, N., Bourne, P. E., Sette, A., & Peters, B. (2008). ElliPro: A new structure-based tool for the prediction of antibody epitopes. BMC Bioinformatics, 9, 514. https://doi.org/10.1186/1471-2105-9-514
  • Rapin, N., Lund, O., Bernaschi, M., & Castiglione, F. (2010). Computational immunology meets bioinformatics: The use of prediction tools for molecular binding in the simulation of the immune system. PLoS One, 5(4), e9862. https://doi.org/10.1371/journal.pone.0009862
  • Rappuoli, R. (2000). Reverse vaccinology. Current Opinion in Microbiology, 3(5), 445–450. https://doi.org/10.1016/S1369-5274(00)00119-3
  • Saadi, M., Karkhah, A., & Nouri, H. R. (2017). Development of a multi-epitope peptide vaccine inducing robust T cell responses against brucellosis using immunoinformatics based approaches. Infection, Genetics and Evolution, 51, 227–234. https://doi.org/10.1016/j.meegid.2017.04.009
  • Saha, S., & Raghava, G. P. (2006). AlgPred: prediction of allergenic proteins and mapping of IgE epitopes. Nucleic Acids Res, 34(Web Server issue), W202–209. https://doi.org/10.1093/nar/gkl343
  • Sarkar, B., Ullah, M. A., Araf, Y., & Rahman, M. S. (2020). Engineering a novel subunit vaccine against SARS-CoV-2 by exploring immunoinformatics approach. Informatics in Medicine Unlocked, 21, 100478. https://doi.org/10.1016/j.imu.2020.100478
  • Schleiss, M. R. (2008). Cytomegalovirus vaccine development. Current Topics in Microbiology and Immunology, 325, 361–382. https://doi.org/10.1007/978-3-540-77349-8_20
  • Schleiss, M. R. (2010). Cytomegalovirus vaccines and methods of production (WO20009049138): The emerging recognition of the importance of virus neutralization at the epithelial/endothelial interface. Expert Opinion on Therapeutic Patents, 20(4), 597–602. https://doi.org/10.1517/13543770903584882
  • Schneidman-Duhovny, D., Inbar, Y., Nussinov, R., & Wolfson, H. J. (2005). PatchDock and SymmDock: Servers for rigid and symmetric docking. Nucleic Acids Research , 33(Web Server issue), W363–7. https://doi.org/10.1093/nar/gki481
  • Shey, R. A., Ghogomu, S. M., Esoh, K. K., Nebangwa, N. D., Shintouo, C. M., Nongley, N. F., Asa, B. F., Ngale, F. N., Vanhamme, L., & Souopgui, J. (2019). In-silico design of a multi-epitope vaccine candidate against onchocerciasis and related filarial diseases . Scientific Reports, 9(1), 4409. https://doi.org/10.1038/s41598-019-40833-x
  • Solanki, V., & Tiwari, V. (2018). Subtractive proteomics to identify novel drug targets and reverse vaccinology for the development of chimeric vaccine against Acinetobacter baumannii. Scientific Reports, 8(1), 9044. https://doi.org/10.1038/s41598-018-26689-7
  • The UniProt Consortium. (2015). UniProt: A hub for protein information. Nucleic Acids Research, 43(Database issue), D204–D212. https://doi.org/10.1093/nar/gku989
  • Thomsen, M., Lundegaard, C., Buus, S., Lund, O., & Nielsen, M. (2013). MHCcluster, a method for functional clustering of MHC molecules. Immunogenetics, 65(9), 655–665. https://doi.org/10.1007/s00251-013-0714-9
  • Ullah, M. A., Sarkar, B., & Islam, S. S. (2020). Exploiting the reverse vaccinology approach to design novel subunit vaccines against Ebola virus. Immunobiology, 225(3), 151949.
  • Vadlapudi, A. D., Vadlapatla, R. K., & Mitra, A. K. (2012). Current and emerging antivirals for the treatment of cytomegalovirus (CMV) retinitis: An update on recent patents. Recent Patents on Anti-Infective Drug Discovery, 7(1), 8–18. https://doi.org/10.2174/157489112799829765
  • Vajda, S., Yueh, C., Beglov, D., Bohnuud, T., Mottarella, S. E., Xia, B., Hall, D. R., & Kozakov, D. (2017). New additions to the ClusPro server motivated by CAPRI. Proteins, 85(3), 435–444. https://doi.org/10.1002/prot.25219
  • Vangone, A., & Bonvin, A. M. J. J. (2015). Contacts-based prediction of binding affinity in protein-protein complexes. eLife, 4, e07454. https://doi.org/10.7554/eLife.07454
  • Vita, R., Mahajan, S., Overton, J. A., Dhanda, S. K., Martini, S., Cantrell, J. R., Wheeler, D. K., Sette, A., & Peters, B. (2019). The Immune Epitope Database (IEDB): 2018 update. Nucleic Acids Research, 47(D1), D339–D343. https://doi.org/10.1093/nar/gky1006
  • Wang, S., Li, W., Liu, S., & Xu, J. (2016). RaptorX-Property: A web server for protein structure property prediction. Nucleic Acids Res, 44(W1), W430–435. https://doi.org/10.1093/nar/gkw306
  • Wang, P., Sidney, J., Kim, Y., Sette, A., Lund, O., Nielsen, M., & Peters, B. (2010). Peptide binding predictions for HLA DR, DP and DQ molecules. BMC Bioinformatics, 11, 568. https://doi.org/10.1186/1471-2105-11-568
  • Weng, G., Wang, E., Wang, Z., Liu, H., Zhu, F., Li, D., & Hou, T. (2019). HawkDock: A web server to predict and analyze the protein-protein complex based on computational docking and MM/GBSA. Nucleic Acids Research, 47(W1), W322–W330. https://doi.org/10.1093/nar/gkz397
  • Wiederstein, M., & Sippl, M. J. (2007). ProSA-web: Interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Research, 35(Web Server issue), W407–410. https://doi.org/10.1093/nar/gkm290
  • Wu, C. Y., Monie, A., Pang, X., Hung, C. F., & Wu, T. C. (2010). Improving therapeutic HPV peptide-based vaccine potency by enhancing CD4+ T help and dendritic cell activation. Journal of Biomedical Science, 17, 88. https://doi.org/10.1186/1423-0127-17-88
  • Xue, L. C., Rodrigues, J. P., Kastritis, P. L., Bonvin, A. M., & Vangone, A. (2016). PRODIGY: A web server for predicting the binding affinity of protein-protein complexes. Bioinformatics (Oxford, England), 32(23), 3676–3678. https://doi.org/10.1093/bioinformatics/btw514
  • Yazdani, Z., Rafiei, A., Valadan, R., Ashrafi, H., Pasandi, M., & Kardan, M. (2020). Designing a potent L1 protein-based HPV peptide vaccine: A bioinformatics approach. Computational Biology and Chemistry, 85, 107209. https://doi.org/10.1016/j.compbiolchem.2020.107209
  • Young, J. W., Locke, J. C. W., Altinok, A., Rosenfeld, N., Bacarian, T., Swain, P. S., Mjolsness, E., & Elowitz, M. B. (2011). Measuring single-cell gene expression dynamics in bacteria using fluorescence time-lapse microscopy. Nature Protocols, 7(1), 80–88. https://doi.org/10.1038/nprot.2011.432
  • Zhang, L. (2018). Multi-epitope vaccines: A promising strategy against tumors and viral infections. Cellular & Molecular Immunology, 15(2), 182–184. https://doi.org/10.1038/cmi.2017.92
  • Zhong, J., & Khanna, R. (2007). Vaccine strategies against human cytomegalovirus infection. Expert Review of anti-Infective Therapy, 5(3), 449–459. https://doi.org/10.1586/14787210.5.3.449
  • Zhu, J., & Paul, W. E. (2008). CD4 T cells: Fates, functions, and faults. Blood, the Journal of the American Society of Hematology, 112(5), 1557–1569.
  • Zuker, M. (2003). Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Research, 31(13), 3406–3415. https://doi.org/10.1093/nar/gkg595

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.