497
Views
8
CrossRef citations to date
0
Altmetric
Research Articles

Elucidating the role of N440K mutation in SARS-CoV-2 spike – ACE-2 binding affinity and COVID-19 severity by virtual screening, molecular docking and dynamics approach

, , , & ORCID Icon
Pages 912-929 | Received 11 Oct 2021, Accepted 01 Dec 2021, Published online: 14 Dec 2021

References

  • Abraham, M. J., Murtola, T., Schulz, R., Páll, S., Smith, J. C., Hess, B., & Lindahl, E. (2015). GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX, 1–2, 19–25. https://doi.org/10.1016/j.softx.2015.06.001
  • Ambrose, J. M., Veeraraghavan, V. P., Kullappan, M., Chellapandiyan, P., Surapaneni, K. M., & Manivel, V. A. (2021). Comparison of immunological profiles of SARS-CoV-2 Variants in the COVID-19 pandemic trends: An immunoinformatics approach. Antibiotics, 10(5), 535. https://doi.org/10.3390/antibiotics10050535
  • Antony, P., & Vijayan, R. (2021). Role of SARS-CoV-2 and ACE2 variations in COVID-19. Biomedical Journal, 44(3), 235–244. https://doi.org/10.1016/j.bj.2021.04.006
  • Augusto, G., Mohsen, M. O., Zinkhan, S., Liu, X., Vogel, M., & Bachmann, M. F. (2021). In vitro data suggest that Indian delta variant B.1.617 of SARS-CoV-2 escapes neutralization by both receptor affinity and immune evasion. Allergy, https://doi.org/10.1111/all.15065
  • Barnes, C. O., Jette, C. A., Abernathy, M. E., Dam, K.-M A., Esswein, S. R., Gristick, H. B., Malyutin, A. G., Sharaf, N. G., Huey-Tubman, K. E., Lee, Y. E., Robbiani, D. F., Nussenzweig, M. C., West, A. P., & Bjorkman, P. J. (2020). SARS-CoV-2 neutralizing antibody structures inform therapeutic strategies. Nature, 588(7839), 682–687. https://doi.org/10.1038/s41586-020-2852-1
  • Benet, L. Z., Hosey, C. M., Ursu, O., & Oprea, T. I. (2016). BDDCS, the Rule of 5 and drugability. Advanced Drug Delivery Reviews, 101, 89–98. https://doi.org/10.1016/j.addr.2016.05.007
  • Bulka, B., desJardins, M., & Freeland, S. J. (2006). An interactive visualization tool to explore the biophysical properties of amino acids and their contribution to substitution matrices. BMC Bioinformatics, 7, 329. https://doi.org/10.1186/1471-2105-7-329
  • Burley, S. K., Berman, H. M., Kleywegt, G. J., Markley, J. L., Nakamura, H., & Velankar, S. (2017). Protein Data Bank (PDB): The single global macromolecular structure archive. Methods in Molecular Biology, 1607, 627–641. https://doi.org/10.1007/978-1-4939-7000-1_26
  • Chen, J., Xia, L., Liu, L., Xu, Q., Ling, Y., Huang, D., Huang, W., Song, S., Xu, S., Shen, Y., & Lu, H. (2020). Antiviral activity and safety of darunavir/cobicistat for the treatment of COVID-19. Open Forum Infectious Diseases, 7(7), ofaa241. https://doi.org/10.1093/ofid/ofaa241
  • Daina, A., Michielin, O., & Zoete, V. (2017). SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports, 7, 42717. https://doi.org/10.1038/srep42717
  • de Vries, S. J., van Dijk, A. D., Krzeminski, M., van Dijk, M., Thureau, A., Hsu, V., Wassenaar, T., & Bonvin, A. M. (2007). HADDOCK versus HADDOCK: New features and performance of HADDOCK2.0 on the CAPRI targets. Proteins, 69(4), 726–733. https://doi.org/10.1002/prot.21723
  • Dominguez, C., Boelens, R., & Bonvin, AMJJ. (2003). HADDOCK: A protein-protein docking approach based on biochemical or biophysical information. Journal of the American Chemical Society, 125(7), 1731–1737. https://doi.org/10.1021/ja026939x
  • Frediansyah, A., Nainu, F., Dhama, K., Mudatsir, M., & Harapan, H. (2021). Remdesivir and its antiviral activity against COVID-19: A systematic review. Clinical Epidemiology and Global Health, 9, 123–127. https://doi.org/10.1016/j.cegh.2020.07.011
  • Gomez, C. E., Perdiguero, B., & Esteban, M. (2021). Emerging SARS-CoV-2 variants and impact in global vaccination programs against SARS-CoV-2/COVID-19. Vaccines, 9(3), 243. https://doi.org/10.3390/vaccines9030243
  • Hanwell, M. D., Curtis, D. E., Lonie, D. C., Vandermeersch, T., Zurek, E., & Hutchison, G. R. (2012). Avogadro: An advanced semantic chemical editor, visualization, and analysis platform. Journal of Cheminformatics, 4(1), 17. https://doi.org/10.1186/1758-2946-4-17
  • Hsu, K. C., Chen, Y. F., Lin, S. R., & Yang, J. M. (2011). iGEMDOCK: A graphical environment of enhancing GEMDOCK using pharmacological interactions and post-screening analysis. BMC Bioinformatics, 12 Suppl 1, S33. https://doi.org/10.1186/1471-2105-12-S1-S33
  • Indari, O., Jakhmola, S., Manivannan, E., & Jha, H. C. (2021). An update on antiviral therapy against SARS-CoV-2: How far have we come? Frontiers in Pharmacology, 12, 632677. https://doi.org/10.3389/fphar.2021.632677
  • Irwin, J. J., & Shoichet, B. K. (2005). ZINC–a free database of commercially available compounds for virtual screening. Journal of Chemical Information and Modeling, 45(1), 177–182. https://doi.org/10.1021/ci049714+
  • Jafary, F., Jafari, S., & Ganjalikhany, M. R. (2021). In silico investigation of critical binding pattern in SARS-CoV-2 spike protein with angiotensin-converting enzyme 2. Scientific Reports, 11(1), 6927 https://doi.org/10.1038/s41598-021-86380-2
  • Jin, Y., Yang, H., Ji, W., Wu, W., Chen, S., Zhang, W., & Duan, G. (2020). Virology, epidemiology, pathogenesis, and control of COVID-19. Viruses, 12(4), 372. https://doi.org/10.3390/v12040372
  • Johnson, B. A., Xie, X., Bailey, A. L., Kalveram, B., Lokugamage, K. G., Muruato, A., Zou, J., Zhang, X., Juelich, T., Smith, J. K., Zhang, L., Bopp, N., Schindewolf, C., Vu, M., Vanderheiden, A., Winkler, E. S., Swetnam, D., Plante, J. A., Aguilar, P., … Menachery, V. D. (2021). Loss of furin cleavage site attenuates SARS-CoV-2 pathogenesis. Nature, 591(7849), 293–299. https://doi.org/10.1038/s41586-021-03237-4
  • Kaplan, W., & Littlejohn, T. G. (2001). Swiss-PDB viewer (deep view). Briefings in Bioinformatics, 2(2), 195–197. https://doi.org/10.1093/bib/2.2.195
  • Kim, S., Thiessen, P. A., Bolton, E. E., Chen, J., Fu, G., Gindulyte, A., Han, L., He, J., He, S., Shoemaker, B. A., Wang, J., Yu, B., Zhang, J., & Bryant, S. H. (2016). PubChem substance and compound databases. Nucleic Acids Research, 44(D1), D1202–D1213. https://doi.org/10.1093/nar/gkv951
  • Korber, B., Fischer, W. M., Gnanakaran, S., Yoon, H., Theiler, J., Abfalterer, W., Hengartner, N., Giorgi, E. E., Bhattacharya, T., Foley, B., Hastie, K. M., Parker, M. D., Partridge, D. G., Evans, C. M., Freeman, T. M., de Silva, T. I., McDanal, C., Perez, L. G., Tang, H., … Montefiori, D. C, Sheffield COVID-19 Genomics Group. (2020). Tracking changes in SARS-CoV-2 spike: Evidence that D614G increases infectivity of the COVID-19 virus. Cell, 182(4), 812–827.e19. https://doi.org/10.1016/j.cell.2020.06.043
  • Lan, J., Ge, J., Yu, J., Shan, S., Zhou, H., Fan, S., Zhang, Q., Shi, X., Wang, Q., Zhang, L., & Wang, X. (2020). Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature, 581(7807), 215–220. https://doi.org/10.1038/s41586-020-2180-5
  • Li, W., Greenough, T. C., Moore, M. J., Vasilieva, N., Somasundaran, M., Sullivan, J. L., Farzan, M., & Choe, H. (2004). Efficient replication of severe acute respiratory syndrome coronavirus in mouse cells is limited by murine angiotensin-converting enzyme 2. Journal of Virology, 78(20), 11429–11433. https://doi.org/10.1128/JVI.78.20.11429-11433.2004
  • Li, W., Zhang, C., Sui, J., Kuhn, J. H., Moore, M. J., Luo, S., Wong, S.-K., Huang, I.-C., Xu, K., Vasilieva, N., Murakami, A., He, Y., Marasco, W. A., Guan, Y., Choe, H., & Farzan, M. (2005). Receptor and viral determinants of SARS-coronavirus adaptation to human ACE2. The EMBO Journal, 24(8), 1634–1643. https://doi.org/10.1038/sj.emboj.7600640
  • Lo, H. S., Hui, K. P. Y., Lai, H. M., He, X., Khan, K. S., Kaur, S., Huang, J., Li, Z., Chan, A. K. N., Cheung, H. H., Ng, K. C., Ho, J. C. W., Chen, Y. W., Ma, B., Cheung, P. M., Shin, D., Wang, K., Lee, M. H., Selisko, B., Eydoux, C., Guillemot, J. C., … Ng, W. L. (2021). Simeprevir potently suppresses SARS-CoV-2 replication and synergizes with remdesivir. ACS Central Science, 7(5), 792–802. https://doi.org/10.1021/acscentsci.0c01186
  • Lu, R., Zhao, X., Li, J., Niu, P., Yang, B., Wu, H., Wang, W., Song, H., Huang, B., Zhu, N., Bi, Y., Ma, X., Zhan, F., Wang, L., Hu, T., Zhou, H., Hu, Z., Zhou, W., Zhao, L., … Tan, W. (2020). Genomic characterisation and epidemiology of 2019 novel coronavirus: Implications for virus origins and receptor binding. Lancet (London, England), 395(10224), 565–574. https://doi.org/10.1016/S0140-6736(20)30251-8
  • MacKerell, A. D. Jr (2001). Atomistic models and force fields. In O. M. Becker, A. D. MacKerell Jr, B. Roux, & M. Watanabe (Eds.), Computational biochemistry and biophysics (pp. 7–38). Marcel Dekker Inc.: New York.
  • Mehrbod, P., Ande, S. R., Alizadeh, J., Rahimizadeh, S., Shariati, A., Malek, H., Hashemi, M., Glover, K. K. M., Sher, A. A., Coombs, K. M., & Ghavami, S. (2019). The roles of apoptosis, autophagy and unfolded protein response in arbovirus, influenza virus, and HIV infections. Virulence, 10(1), 376–413. https://doi.org/10.1080/21505594.2019.1605803
  • Mei, M., & Tan, X. (2021). Current strategies of antiviral drug discovery for COVID-19. Frontiers in Molecular Biosciences, 8, 671263. https://doi.org/10.3389/fmolb.2021.671263
  • Milani, M., Donalisio, M., Bonotto, R. M., Schneider, E., Arduino, I., Boni, F., Lembo, D., Marcello, A., & Mastrangelo, E. (2021). Combined in silico and in vitro approaches identified the antipsychotic drug lurasidone and the antiviral drug elbasvir as SARS-CoV2 and HCoV-OC43 inhibitors. Antiviral Research, 189, 105055. https://doi.org/10.1016/j.antiviral.2021.105055
  • Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S., & Olson, A. J. (2009). AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. Journal of Computational Chemistry, 30(16), 2785–2791. https://doi.org/10.1002/jcc.21256
  • Rani, P. R., Imran, M., Lakshmi, J. V., Jolly, B., Jain, A., Surekha, A., Senthivel, V., Chandrasekhar, P., Divakar, M. K., Srinivasulu, D., Bhoyar, R. C., Vanaja, P. R., Scaria, V., & Sivasubbu, S. (2021). Symptomatic reinfection of SARS-CoV-2 with spike protein variant N440K associated with immune escape. Journal of Medical Virology, 93(7), 4163–4165. https://doi.org/10.1002/jmv.26997
  • Ratajczak, M. Z., & Kucia, M. (2020). SARS-CoV-2 infection and overactivation of Nlrp3 inflammasome as a trigger of cytokine "storm" and risk factor for damage of hematopoietic stem cells. Leukemia, 34(7), 1726–1729. https://doi.org/10.1038/s41375-020-0887-9
  • Salamanna, F., Maglio, M., Landini, M. P., & Fini, M. (2020). Body localization of ACE-2: On the trail of the keyhole of SARS-CoV-2. Frontiers in Medicine, 7, 594495. https://doi.org/10.3389/fmed.2020.594495
  • Schrors, B., Riesgo-Ferreiro, P., Sorn, P., Gudimella, R., Bukur, T., Rosler, T., Lower, M., & Sahin, U. (2021). Large-scale analysis of SARS-CoV-2 spike-glycoprotein mutants demonstrates the need for continuous screening of virus isolates. PLoS One, 16(9), e0249254. https://doi.org/10.1371/journal.pone.0249254
  • Seeliger, D., & de Groot, B. L. (2010). Ligand docking and binding site analysis with PyMOL and Autodock/Vina. Journal of Computer-Aided Molecular Design, 24(5), 417–422. https://doi.org/10.1007/s10822-010-9352-6
  • Shamsi, A., Mohammad, T., Anwar, S., AlAjmi, M. F., Hussain, A., Rehman, M. T., Islam, A., & Hassan, M. I. (2020). Glecaprevir and Maraviroc are high-affinity inhibitors of SARS-CoV-2 main protease: possible implication in COVID-19 therapy. Bioscience Reports, 40, BSR20201256. https://doi.org/10.1042/BSR20201256
  • Shen, K., Yang, Y., Wang, T., Zhao, D., Jiang, Y., Jin, R., Zheng, Y., Xu, B., Xie, Z., Lin, L., Shang, Y., Lu, X., Shu, S., Bai, Y., Deng, J., Lu, M., Ye, L., Wang, X., Wang, Y., & Gao, L., Global Pediatric Pulmonology Alliance. (2020). Diagnosis, treatment, and prevention of 2019 novel coronavirus infection in children: Experts' consensus statement. World Journal of Pediatrics: WJP, 16(3), 223–231. https://doi.org/10.1007/s12519-020-00343-7
  • Shu, Y., & McCauley, J. (2017). GISAID: Global initiative on sharing all influenza data. From vision to reality. Eurosurveillance, 22, 30494. https://doi.org/10.2807/1560-7917.ES.2017.22.13.30494
  • Singh, T. U., Parida, S., Lingaraju, M. C., Kesavan, M., Kumar, D., & Singh, R. K. (2020). Drug repurposing approach to fight COVID-19. Pharmacological Reports: PR, 72(6), 1479–1508. https://doi.org/10.1007/s43440-020-00155-6
  • Tandel, D., Gupta, D., Sah, V., & Harshan, K. H. (2021). N440K variant of SARS-CoV-2 has higher infectious fitness. bioRxiv. https://doi.org/10.1101/2021.04.30.441434
  • Thomson, E. C., Rosen, L. E., Shepherd, J. G., Spreafico, R., da Silva Filipe, A., Wojcechowskyj, J. A., Davis, C., Piccoli, L., Pascall, D. J., Dillen, J., Lytras, S., Czudnochowski, N., Shah, R., Meury, M., Jesudason, N., De Marco, A., Li, K., Bassi, J., O'Toole, A., … Snell, G., COVID-19 Genomics UK (COG-UK) Consortium. (2021). Circulating SARS-CoV-2 spike N439K variants maintain fitness while evading antibody-mediated immunity. Cell, 184(5), 1171–1187.e20. https://doi.org/10.1016/j.cell.2021.01.037
  • van Dorp, L., Richard, D., Tan, C. C. S., Shaw, L. P., Acman, M., & Balloux, F. (2020). No evidence for increased transmissibility from recurrent mutations in SARS-CoV-2. Nature Communications, 11(1), 5986. https://doi.org/10.1038/s41467-020-19818-2
  • van Zundert, G. C. P., Rodrigues, J. P. G. L. M., Trellet, M., Schmitz, C., Kastritis, P. L., Karaca, E., Melquiond, A. S. J., van Dijk, M., de Vries, S. J., & Bonvin, A. M. J. J. (2016). The HADDOCK2.2 web server: User-friendly integrative modeling of biomolecular complexes. Journal of Molecular Biology, 428(4), 720–725. https://doi.org/10.1016/j.jmb.2015.09.014
  • Vanommeslaeghe, K., Hatcher, E., Acharya, C., Kundu, S., Zhong, S., Shim, J., Darian, E., Guvench, O., Lopes, P., Vorobyov, I., & Mackerell, A. D. (2010). CHARMM general force field: A force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields. Journal of Computational Chemistry, 31(4), 671–690. https://doi.org/10.1002/jcc.21367
  • Walensky, R. P., Walke, H. T., & Fauci, A. S. (2021). SARS-CoV-2 variants of concern in the United States-challenges and opportunities. JAMA, 325(11), 1037–1038. https://doi.org/10.1001/jama.2021.2294
  • Wallace, A. C., Laskowski, R. A., & Thornton, J. M. (1995). LIGPLOT: A program to generate schematic diagrams of protein-ligand interactions. Protein Engineering, 8(2), 127–134. https://doi.org/10.1093/protein/8.2.127
  • Wan, Y., Shang, J., Graham, R., Baric, R. S., & Li, F. (2020). Receptor recognition by novel coronavirus from Wuhan: An analysis based on decade-long structural studies of SARS. Journal of Virology, 94(7), e00127. https://doi.org/10.1128/JVI.00127-20
  • Weisblum, Y., Schmidt, F., Zhang, F., DaSilva, J., Poston, D., Lorenzi, J. C. C., Muecksch, F., Rutkowska, M., Hoffmann, H.-H., Michailidis, E., Gaebler, C., Agudelo, M., Cho, A., Wang, Z., Gazumyan, A., Cipolla, M., Luchsinger, L., Hillyer, C. D., Caskey, M., … Bieniasz, P. D. (2020). Escape from neutralizing antibodies by SARS-CoV-2 spike protein variants. eLife, 9, e61312. https://doi.org/10.7554/eLife.61312
  • World Health Organization. (2020). Coronavirus disease (COVID-2019) situation reports. Retrieved March 20, 2021, from https://wwwwhoint/emergencies/diseases/novel-coronavirus-2019/situation-reports.
  • Xia, H., Cao, Z., Xie, X., Zhang, X., Chen, J. Y.-C., Wang, H., Menachery, V. D., Rajsbaum, R., & Shi, P.-Y. (2020). Evasion of type I interferon by SARS-CoV-2. Cell Reports, 33(1), 108234. https://doi.org/10.1016/j.celrep.2020.108234
  • Xue, X., Shi, J., Xu, H., Qin, Y., Yang, Z., Feng, S., Liu, D., Jian, L., Hua, L., Wang, Y., Zhang, Q., Huang, X., Zhang, X., Li, X., Chen, C., Guo, J., Tang, W., & Liu, J. (2021). Dynamics of binding ability prediction between spike protein and human ACE2 reveals the adaptive strategy of SARS-CoV-2 in humans. Scientific Reports, 11(1), 3187. https://doi.org/10.1038/s41598-021-82938-2
  • Zhang, L., Jackson, C. B., Mou, H., Ojha, A., Peng, H., Quinlan, B. D., Rangarajan, E. S., Pan, A., Vanderheiden, A., Suthar, M. S., Li, W., Izard, T., Rader, C., Farzan, M., & Choe, H. (2020). SARS-CoV-2 spike-protein D614G mutation increases virion spike density and infectivity. Nature Communications, 11(1), 6013. https://doi.org/10.1038/s41467-020-19808-4
  • Zhou, D., Dejnirattisai, W., Supasa, P., Liu, C., Mentzer, A. J., Ginn, H. M., Zhao, Y., Duyvesteyn, H. M. E., Tuekprakhon, A., Nutalai, R., Wang, B., Paesen, G. C., Lopez-Camacho, C., Slon-Campos, J., Hallis, B., Coombes, N., Bewley, K., Charlton, S., Walter, T. S., … Screaton, G. R. (2021). Evidence of escape of SARS-CoV-2 variant B.1.351 from natural and vaccine-induced sera. Cell, 184(9), 2348–2361. https://doi.org/10.1016/j.cell.2021.02.037

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.