247
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

Reverse vaccinology approach to design a vaccine targeting membrane lipoproteins of Salmonella typhi

, & ORCID Icon
Pages 954-969 | Received 13 Apr 2021, Accepted 02 Dec 2021, Published online: 23 Dec 2021

Reference

  • Doytchinova, I. A., & Flower, D. R. (2007). VaxiJen: A server for prediction of protective antigens, tumour antigens and subunit vaccines. BMC Bioinformatics, 8(1), 4. https://doi.org/10.1186/1471-2105-8-4
  • Galen, J. E., Buskirk, A. D., Tennant, S. M., & Pasetti, M. F. (2016). Live attenuated human Salmonella vaccine candidates: Tracking the pathogen in natural infection and stimulation of host immunity. EcoSal Plus, 7(1). https://doi.org/10.1128/ecosalplus.ESP-0010-2016
  • Garmory, H. S., Brown, K. A., & Titball, R. W. (2002). Salmonella vaccines for use in humans: Present and future perspectives. FEMS Microbiology Reviews, 26(4), 339–353. https://doi.org/10.1111/j.1574-6976.2002.tb00619.x
  • Grote, A., Hiller, K., Scheer, M., Münch, R., Nörtemann, B., Hempel, D. C., & Jahn, D. (2005). JCat: A novel tool to adapt codon usage of a target gene to its potential expression host. Nucleic Acids Research, 33(Web Server issue), W526–531. https://doi.org/10.1093/nar/gki376
  • Gupta, S., Kapoor, P., Chaudhary, K., Gautam, A., Kumar, R., Raghava, G. P., & Open Source Drug Discovery Consortium. (2013). In silico approach for predicting toxicity of peptides and proteins. PLoS One, 8(9), e73957. https://doi.org/10.1371/journal.pone.0073957
  • He, Y., Xiang, Z., & Mobley, H. L. (2010). Vaxign: The first web-based vaccine design program for reverse vaccinology and applications for vaccine development. Journal of Biomedicine & Biotechnology, 2010, 297505. https://doi.org/10.1155/2010/297505
  • Jebastin, T., & Narayanan, S. (2019). In silico epitope identification of unique multidrug resistance proteins from Salmonella Typhi for vaccine development. Computational Biology and Chemistry, 78, 74–80. https://doi.org/10.1016/j.compbiolchem.2018.11.020
  • Jensen, K. K., Andreatta, M., Marcatili, P., Buus, S., Greenbaum, J. A., Yan, Z., Sette, A., Peters, B., & Nielsen, M. (2018). Improved methods for predicting peptide binding affinity to MHC class II molecules. Immunology, 154(3), 394–406. https://doi.org/10.1111/imm.12889
  • Johnson, R., Mylona, E., & Frankel, G. (2018). Typhoidal Salmonella: Distinctive virulence factors and pathogenesis. Cellular Microbiology, 20(9), e12939. https://doi.org/10.1111/cmi.12939
  • Juncker, A. S., Willenbrock, H., Von Heijne, G., Brunak, S., Nielsen, H., & Krogh, A. (2003). Prediction of lipoprotein signal peptides in Gram-negative bacteria. Protein Science, 12(8), 1652–1662. https://doi.org/10.1110/ps.0303703
  • Kelley, L. A., Mezulis, S., Yates, C. M., Wass, M. N., & Sternberg, M. J. (2015). The Phyre2 web portal for protein modeling, prediction and analysis. Nature Protocols, 10(6), 845–858. https://doi.org/10.1038/nprot.2015.053
  • Krogh, A., Larsson, B., von Heijne, G., & Sonnhammer, E. L. (2001). Predicting transmembrane protein topology with a hidden Markov model: Application to complete genomes. Journal of Molecular Biology, 305(3), 567–580. https://doi.org/10.1006/jmbi.2000.4315
  • Liu, B., Zheng, D., Jin, Q., Chen, L., & Yang, J. (2019). VFDB 2019: A comparative pathogenomic platform with an interactive web interface. Nucleic Acids Research, 47(D1), D687–d692. https://doi.org/10.1093/nar/gky1080
  • Luo, H., Lin, Y., Gao, F., Zhang, C. T., & Zhang, R. (2014). DEG 10, an update of the database of essential genes that includes both protein-coding genes and noncoding genomic elements. Nucleic Acids Research, 42(Database issue), D574–580. https://doi.org/10.1093/nar/gkt1131
  • Mahdevar, E., Safavi, A., Abiri, A., Kefayat, A., Hejazi, S. H., Miresmaeili, S. M., & Iranpur Mobarakeh, V. (2021). Exploring the cancer-testis antigen BORIS to design a novel multi-epitope vaccine against breast cancer based on immunoinformatics approaches. Journal of Biomolecular Structure and Dynamics, 1–18. https://doi.org/10.1080/07391102.2021.1883111
  • Mirela-Bota, P., Aguirre-Plans, J., Meseguer, A., Galletti, C., Segura, J., Planas-Iglesias, J., Garcia-Garcia, J., Guney, E., Oliva, B., & Fernandez-Fuentes, N. (2021). Galaxy InteractoMIX: An integrated computational platform for the study of protein-protein interaction data. Journal of Molecular Biology., 433(11), 166656. https://doi.org/10.1016/j.jmb.2020.09.015
  • Nielsen, M., & Andreatta, M. (2016). NetMHCpan-3.0; improved prediction of binding to MHC class I molecules integrating information from multiple receptor and peptide length datasets. Genome Medicine, 8(1), 33. https://doi.org/10.1186/s13073-016-0288-x
  • Petersen, T. N., Brunak, S., von Heijne, G., & Nielsen, H. (2011). SignalP 4.0: Discriminating signal peptides from transmembrane regions. Nature Methods, 8(10), 785–786. https://doi.org/10.1038/nmeth.1701
  • Rapin, N., Lund, O., Bernaschi, M., & Castiglione, F. (2010). Computational immunology meets bioinformatics: The use of prediction tools for molecular binding in the simulation of the immune system. PLoS One, 5(4), e9862. https://doi.org/10.1371/journal.pone.0009862
  • Reynisson, B., Alvarez, B., Paul, S., Peters, B., & Nielsen, M. (2020). NetMHCpan-4.1 and NetMHCIIpan-4.0: Improved predictions of MHC antigen presentation by concurrent motif deconvolution and integration of MS MHC eluted ligand data. Nucleic Acids Res, 48(W1), W449–w454. https://doi.org/10.1093/nar/gkaa379
  • Safavi, A., Kefayat, A., Mahdevar, E., Abiri, A., & Ghahremani, F. (2020). Exploring the out of sight antigens of SARS-CoV-2 to design a candidate multi-epitope vaccine by utilizing immunoinformatics approaches. Vaccine, 38(48), 7612–7628. https://doi.org/10.1016/j.vaccine.2020.10.016
  • Safavi, A., Kefayat, A., Sotoodehnejadnematalahi, F., Salehi, M., & Modarressi, M. H. (2019). Production, purification, and in vivo evaluation of a novel multiepitope peptide vaccine consisted of immunodominant epitopes of SYCP1 and ACRBP antigens as a prophylactic melanoma vaccine. International Immunopharmacology, 76, 105872. https://doi.org/10.1016/j.intimp.2019.105872
  • Saha, S., & Raghava, G. P. (2006). Prediction of continuous B-cell epitopes in an antigen using recurrent neural network. Proteins, 65(1), 40–48. https://doi.org/10.1002/prot.21078
  • Schneidman-Duhovny, D., Inbar, Y., Nussinov, R., & Wolfson, H. J. (2005). PatchDock and SymmDock: Servers for rigid and symmetric docking. Nucleic Acids Res, 33(Web Server issue), W363–367. https://doi.org/10.1093/nar/gki481
  • Solanki, V., Sharma, S., & Tiwari, V. (2021). Subtractive proteomics and reverse vaccinology strategies for designing a multiepitope vaccine targeting membrane proteins of Klebsiella pneumoniae. International Journal of Peptide Research and Therapeutics, 27(2), 1177–1195. https://doi.org/10.1007/s10989-021-10159-2
  • Solanki, V., Tiwari, M., & Tiwari, V. (2019). Prioritization of potential vaccine targets using comparative proteomics and designing of the chimeric multi-epitope vaccine against Pseudomonas aeruginosa. Scientific Reports, 9(1), 5240. https://doi.org/10.1038/s41598-019-41496-4
  • Solanki, V., Tiwari, M., & Tiwari, V. (2021). Immunoinformatic approach to design a multiepitope vaccine targeting non-mutational hotspot regions of structural and non-structural proteins of the SARS CoV2. PeerJ, 9, e11126. https://doi.org/10.7717/peerj.11126
  • Stranzl, T., Larsen, M. V., Lundegaard, C., & Nielsen, M. (2010). NetCTLpan: Pan-specific MHC class I pathway epitope predictions. Immunogenetics, 62(6), 357–368. https://doi.org/10.1007/s00251-010-0441-4
  • Tahir Ul Qamar, M., Rehman, A., Tusleem, K., Ashfaq, U. A., Qasim, M., Zhu, X., Fatima, I., Shahid, F., & Chen, L. L. (2020). Designing of a next generation multiepitope based vaccine (MEV) against SARS-COV-2: Immunoinformatics and in silico approaches. PLoS One, 15(12), e0244176. https://doi.org/10.1371/journal.pone.0244176
  • Thomsen, M., Lundegaard, C., Buus, S., Lund, O., & Nielsen, M. (2013). MHCcluster, a method for functional clustering of MHC molecules. Immunogenetics, 65(9), 655–665. https://doi.org/10.1007/s00251-013-0714-9
  • Tiwari, V. (2021). Denovo designing, retro-combinatorial synthesis, and molecular dynamics analysis identify novel antiviral VTRM1.1 against RNA-dependent RNA polymerase of SARS CoV2 virus. International Journal of Biological Macromolecules, 171, 358–365. https://doi.org/10.1016/j.ijbiomac.2020.12.223
  • Tusnády, G. E., & Simon, I. (1998). Principles governing amino acid composition of integral membrane proteins: Application to topology prediction. Journal of Molecular Biology, 283(2), 489–506. https://doi.org/10.1006/jmbi.1998.2107
  • Verma, S., Sugadev, R., Kumar, A., Chandna, S., Ganju, L., & Bansal, A. (2018). Multi-epitope DnaK peptide vaccine against S. Typhi: An in silico approach. Vaccine, 36(28), 4014–4022. https://doi.org/10.1016/j.vaccine.2018.05.106
  • Wilkins, M. R., Gasteiger, E., Bairoch, A., Sanchez, J. C., Williams, K. L., Appel, R. D., & Hochstrasser, D. F. (1999). Protein identification and analysis tools in the ExPASy server. Methods in Molecular Biology (Clifton, NJ), 112, 531–552. https://doi.org/10.1385/1-59259-584-7:531
  • Xue, L. C., Rodrigues, J. P., Kastritis, P. L., Bonvin, A. M., & Vangone, A. (2016). PRODIGY: A web server for predicting the binding affinity of protein-protein complexes. Bioinformatics (Oxford, England), 32(23), 3676–3678. https://doi.org/10.1093/bioinformatics/btw514
  • Yu, C. S., Lin, C. J., & Hwang, J. K. (2004). Predicting subcellular localization of proteins for Gram-negative bacteria by support vector machines based on n-peptide compositions. Protein Science, 13(5), 1402–1406. https://doi.org/10.1110/ps.03479604
  • Yu, N. Y., Wagner, J. R., Laird, M. R., Melli, G., Rey, S., Lo, R., Dao, P., Sahinalp, S. C., Ester, M., Foster, L. J., & Brinkman, F. S. (2010). PSORTb 3.0: Improved protein subcellular localization prediction with refined localization subcategories and predictive capabilities for all prokaryotes. Bioinformatics (Oxford, England), 26(13), 1608–1615. https://doi.org/10.1093/bioinformatics/btq249
  • Zückert, W. R. (2014). Secretion of bacterial lipoproteins: Through the cytoplasmic membrane, the periplasm and beyond. Biochimica et Biophysica Acta, 1843(8), 1509–1516. https://doi.org/10.1016/j.bbamcr.2014.04.022

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.