128
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Revealing the drug resistance mechanism of saquinavir due to G48V and V82F mutations in subtype CRF01_AE HIV-1 protease: molecular dynamics simulation and binding free energy calculations

&
Pages 1000-1017 | Received 04 Aug 2021, Accepted 02 Dec 2021, Published online: 17 Dec 2021

References

  • Ahmed, S. M., Kruger, H. G., Govender, T., Maguire, G. E. M., Sayed, Y., Ibrahim, M. A. A., Naicker, P., & Soliman, M. E. S. (2013). Comparison of the molecular dynamics and calculated binding free energies for nine FDA-approved HIV-1 PR drugs against subtype B and C-SA HIV PR. Chemical Biology & Drug Design, 81(2), 208–218. https://doi.org/10.1111/cbdd.12063
  • Araújo, P. H. F., Ramos, R. S., da Cruz, J. N., Silva, S. G., Ferreira, E. F. B., de Lima, L. R., Macêdo, W. J. C., Espejo-Román, J. M., Campos, J. M., & Santos, C. B. R. (2020). Identification of potential COX-2 inhibitors for the treatment of inflammatory diseases using molecular modeling approaches. Molecules, 25(18), 4183. https://doi.org/10.3390/molecules25184183
  • Aruksakunwong, O., Wittayanarakul, K., Sompornpisut, P., Sanghiran, V., Parasuk, V., & Hannongbua, S. (2006). Structural and dynamical properties of different protonated states of mutant HIV-1 protease complexed with the saquinavir inhibitor studied by molecular dynamics simulations. Journal of Molecular Graphics & Modelling, 25(3), 324–332. https://doi.org/10.1016/j.jmgm.2006.01.004
  • Badaya, A., & Sasidhar, Y. U. (2020). Inhibition of the activity of HIV-1 protease through antibody binding and mutations probed by molecular dynamics simulations. Scientific Reports, 10(1), 5501. https://doi.org/10.1038/s41598-020-62423-y
  • Benkert, P., Künzli, M., & Schwede, T. (2009). QMEAN server for protein model quality estimation. Nucleic Acids Research, 37(Web Server issue), W510–W514 (Web Server issue). https://doi.org/10.1093/nar/gkp322
  • Bessong, P. O. (2008). Polymorphisms in HIV-1 subtype C proteases and the potential impact on protease inhibitors. Tropical Medicine & International Health: TM & IH, 13(2), 144–151. https://doi.org/10.1111/j.1365-3156.2007.01984.x
  • Boucher, C. (1996). Rational approaches to resistance: Using saquinavir. AIDS (London, England), 10 (Suppl 1), S15–S19.
  • Brik, A., & Wong, C.-H. (2003). HIV-1 protease: Mechanism and drug discovery. Organic & Biomolecular Chemistry, 1(1), 5–14. https://doi.org/10.1039/b208248a
  • Cameron, C. E., Ridky, T. W., Shulenin, S., Leis, J., Weber, I. T., Copeland, T., Wlodawer, A., Burstein, H., Bizub-Bender, D., & Skalka, A. M. (1994). Mutational analysis of the substrate binding pockets of the Rous sarcoma virus and human immunodeficiency virus-1 proteases. The Journal of Biological Chemistry, 269(15), 11170–11177.
  • Case, D. A., Cheatham, T. E., Darden, T., Gohlke, H., Luo, R., Merz, K. M., Onufriev, A., Simmerling, C., Wang, B., & Woods, R. J. (2005). The Amber biomolecular simulation programs. Journal of Computational Chemistry, 26(16), 1668–1688. https://doi.org/10.1002/jcc.20290
  • Castro, A. L. G., Cruz, J. N., Sodré, D. F., Correa-Barbosa, J., Azonsivo, R., de Oliveira, M. S., de Sousa Siqueira, J. E., da Rocha Galucio, N. C., de Oliveira Bahia, M., Burbano, R. M. R., do Rosário Marinho, A. M., Percário, S., Dolabela, M. F., & Vale, V. V. (2021). Evaluation of the genotoxicity and mutagenicity of isoeleutherin and eleutherin isolated from Eleutherine plicata herb. Using bioassays and in silico approaches. Arabian Journal of Chemistry, 14(4), 103084. https://doi.org/10.1016/j.arabjc.2021.103084
  • Clemente, J. C., Coman, R. M., Thiaville, M. M., Janka, L. K., Jeung, J. A., Nukoolkarn, S., Govindasamy, L., Agbandje-McKenna, M., McKenna, R., Leelamanit, W., Goodenow, M. M., & Dunn, B. M. (2006). Analysis of HIV-1 CRF_01 A/E protease inhibitor resistance: Structural determinants for maintaining sensitivity and developing resistance to atazanavir. Biochemistry, 45(17), 5468–5477. https://doi.org/10.1021/bi051886s
  • Cruz, J. N., Costa, J. F. S., Khayat, A. S., Kuca, K., Barros, C. A. L., & Neto, A. M. J. C. (2019). Molecular dynamics simulation and binding free energy studies of novel leads belonging to the benzofuran class inhibitors of Mycobacterium tuberculosis polyketide synthase 13. Journal of Biomolecular Structure & Dynamics, 37(6), 1616–1627. https://doi.org/10.1080/07391102.2018.1462734
  • Deeks, S. G., Smith, M., Holodniy, M., & Kahn, J. O. (1997). HIV-1 protease inhibitors. A review for clinicians. JAMA, 277(2), 145–153.
  • Duan, Y., Wu, C., Chowdhury, S., Lee, M. C., Xiong, G., Zhang, W., Yang, R., Cieplak, P., Luo, R., Lee, T., Caldwell, J., Wang, J., & Kollman, P. (2003). A point-charge force field for molecular mechanics simulations of proteins based on condensed-phase quantum mechanical calculations. Journal of Computational Chemistry, 24(16), 1999–2012. https://doi.org/10.1002/jcc.10349
  • Fernández, A. (2005). Incomplete protein packing as a selectivity filter in drug design. Structure (London, England : 1993), 13(12), 1829–1836. https://doi.org/10.1016/j.str.2005.08.018
  • Foulkes, J. E., Prabu-Jeyabalan, M., Cooper, D., Henderson, G. J., Harris, J., Swanstrom, R., & Schiffer, C. A. (2006). Role of invariant Thr80 in human immunodeficiency virus type 1 protease structure, function, and viral infectivity. Journal of Virology, 80(14), 6906–6916. https://doi.org/10.1128/JVI.01900-05
  • Giallonardo, F. D., Pinto, A. N., Keen, P., Shaik, A., Carrera, A., Salem, H., Selvey, C., Nigro, S. J., Fraser, N., Price, K., Holden, J., Lee, F. J., Dwyer, D. E., Bavinton, B. R., Geoghegan, J. L., Grulich, A. E., & Kelleher, A. D., & Project, the N. H. P. P (2021). Subtype‐specific differences in transmission cluster dynamics of HIV‐1 B and CRF01_AE in New South Wales, Australia. Journal of the International AIDS Society, 24(1), e25655. https://doi.org/10.1002/jia2.25655
  • Götz, A. W., Williamson, M. J., Xu, D., Poole, D., Le Grand, S., & Walker, R. C. (2012). Routine microsecond molecular dynamics simulations with AMBER on GPUs. 1. Generalized born. Journal of Chemical Theory and Computation, 8(5), 1542–1555. https://doi.org/10.1021/ct200909j
  • Hao, G.-F., Yang, G.-F., & Zhan, C.-G. (2010). Computational mutation scanning and drug resistance mechanisms of HIV-1 protease inhibitors. The Journal of Physical Chemistry. B, 114(29), 9663–9676. https://doi.org/10.1021/jp102546s
  • Hong, L., Zhang, X. C., Hartsuck, J. A., & Tang, J. (2000). Crystal structure of an in vivo HIV-1 protease mutant in complex with saquinavir: Insights into the mechanisms of drug resistance. Protein Science, 9(10), 1898–1904. https://doi.org/10.1110/ps.9.10.1898
  • Hong, L., Zhang, X.-J., Foundling, S., Hartsuck, J. A., & Tang, J. (1997). Structure of a G48H mutant of HIV-1 protease explains how glycine-48 replacements produce mutants resistant to inhibitor drugs. FEBS Letters, 420(1), 11–16. https://doi.org/10.1016/S0014-5793(97)01477-4
  • Hsu, L.-Y., Subramaniam, R., Bacheler, L., & Paton, N. I. (2005). Characterization of mutations in CRF01_AE virus isolates from antiretroviral treatment-naive and -experienced patients in Singapore. Journal of Acquired Immune Deficiency Syndromes (1999), 38(1), 5–13.
  • Huang, X., Britto, M. D., Kear-Scott, J. L., Boone, C. D., Rocca, J. R., Simmerling, C., Mckenna, R., Bieri, M., Gooley, P. R., Dunn, B. M., & Fanucci, G. E. (2014). The role of select subtype polymorphisms on HIV-1 protease conformational sampling and dynamics. The Journal of Biological Chemistry, 289(24), 17203–17214. https://doi.org/10.1074/jbc.M114.571836
  • Humphrey, W., Dalke, A., & Schulten, K. (1996). VMD: Visual molecular dynamics. Journal of Molecular Graphics, 14(1), 33–38. https://doi.org/10.1016/0263-7855(96)00018-5
  • Kneller, D. W., Agniswamy, J., Harrison, R. W., & Weber, I. T. (2020). Highly drug-resistant HIV-1 protease reveals decreased intra-subunit interactions due to clusters of mutations. The FEBS Journal, 287(15), 3235–3254. https://doi.org/10.1111/febs.15207
  • Krohn, A., Redshaw, S., Ritchie, J.C., Graves, B. J., & Hatada, M. H. (1991). Novel binding mode of highly potent HIV-proteinase inhibitors incorporating the (R)-hydroxyethylamine isostere. Journal of Medicinal Chemistry, 34(11), 3340–3342. 10.1021/jm00115a028
  • Laskowski, R. A., MacArthur, M. W., Moss, D. S., & Thornton, J. M. (1993). PROCHECK: A program to check the stereochemical quality of protein structures. Journal of Applied Crystallography, 26(2), 283–291. https://doi.org/10.1107/S0021889892009944
  • Leão, R. P., Cruz, J. V., da Costa, G. V., Cruz, J. N., Ferreira, E. F. B., Silva, R. C., de Lima, L. R., Borges, R. S., dos Santos, G. B., & Santos, C. B. R. (2020). Identification of new rofecoxib-based cyclooxygenase-2 inhibitors: A bioinformatics approach. Pharmaceuticals, 13(9), 209. https://doi.org/10.3390/ph13090209
  • Liu, F., Kovalevsky, A. Y., Tie, Y., Ghosh, A. K., Harrison, R. W., & Weber, I. T. (2008). Effect of flap mutations on structure of HIV-1 protease and inhibition by saquinavir and darunavir. Journal of Molecular Biology, 381(1), 102–115. https://doi.org/10.1016/j.jmb.2008.05.062
  • Liu, Z., Huang, X., Hu, L., Pham, L., Poole, K. M., Tang, Y., Mahon, B. P., Tang, W., Li, K., Goldfarb, N. E., Dunn, B. M., McKenna, R., & Fanucci, G. E. (2016). Effects of hinge-region natural polymorphisms on human immunodeficiency virus-type 1 protease structure, dynamics, and drug pressure evolution. The Journal of Biological Chemistry, 291(43), 22741–22756. https://doi.org/10.1074/jbc.M116.747568
  • Maier, J. A., Martinez, C., Kasavajhala, K., Wickstrom, L., Hauser, K. E., & Simmerling, C. (2015). ff14SB: Improving the accuracy of protein side chain and backbone parameters from ff99SB. Journal of Chemical Theory and Computation, 11(8), 3696–3713. https://doi.org/10.1021/acs.jctc.5b00255
  • Maschera, B., Darby, G., Palú, G., Wright, L. L., Tisdale, M., Myers, R., Blair, E. D., & Furfine, E. S. (1996). Human immunodeficiency virus. Mutations in the viral protease that confer resistance to saquinavir increase the dissociation rate constant of the protease-saquinavir complex. The Journal of Biological Chemistry, 271(52), 33231–33235. https://doi.org/10.1074/jbc.271.52.33231
  • Melo, F., Devos, D., Depiereux, E., & Feytmans, E. (1997). ANOLEA: A www server to assess protein structures. Proceedings. International Conference on Intelligent Systems for Molecular Biology, 5, 187–190.
  • Mosebi, S., Morris, L., Dirr, H. W., & Sayed, Y. (2008). Active-site mutations in the South African human immunodeficiency virus type 1 subtype C protease have a significant impact on clinical inhibitor binding: Kinetic and thermodynamic study. Journal of Virology, 82(22), 11476–11479. https://doi.org/10.1128/JVI.00726-08
  • Nukoolkarn, S., Pongthapisith, V., Panyim, S., & Leelamanit, W. (2004). Sequence variability of the HIV type 1 protease gene in Thai patients experienced with antiretroviral therapy. AIDS Research and Human Retroviruses, 20(12), 1368–1372. https://doi.org/10.1089/aid.2004.20.1368
  • Ode, H., Matsuyama, S., Hata, M., Hoshino, T., Kakizawa, J., & Sugiura, W. (2007). Mechanism of drug resistance due to N88S in CRF01_AE HIV-1 protease, analyzed by molecular dynamics simulations. Journal of Medicinal Chemistry, 50(8), 1768–1777. https://doi.org/10.1021/jm061158i
  • Onufriev, A., Bashford, D., & Case, D. A. (2004). Exploring protein native states and large-scale conformational changes with a modified generalized born model. Proteins, 55(2), 383–394. https://doi.org/10.1002/prot.20033
  • Potempa, M., Lee, S.-K., Kurt Yilmaz, N., Nalivaika, E. A., Rogers, A., Spielvogel, E., Carter, C. W., Schiffer, C. A., & Swanstrom, R. (2018). HIV-1 protease uses bi-specific S2/S2' subsites to optimize cleavage of two classes of target sites. Journal of Molecular Biology, 430(24), 5182–5195. https://doi.org/10.1016/j.jmb.2018.10.022
  • Rastelli, G., Del Rio, A., Degliesposti, G., & Sgobba, M. (2010). Fast and accurate predictions of binding free energies using MM-PBSA and MM-GBSA. Journal of Computational Chemistry, 31(4), 797–810. https://doi.org/10.1002/jcc.21372
  • Robert, X., & Gouet, P. (2014). Deciphering key features in protein structures with the new ENDscript server. Nucleic Acids Research, 42(Web Server issue), W320–W324 (Web Server issue). https://doi.org/10.1093/nar/gku316
  • Ryckaert, J.-P., Ciccotti, G., & Berendsen, H. J. C. (1977). Numerical integration of the Cartesian equations of motion of a system with constraints: Molecular dynamics of n-alkanes. Journal of Computational Physics, 23(3), 327–341. https://doi.org/10.1016/0021-9991(77)90098-5
  • Saen-Oon, S., Aruksakunwong, O., Wittayanarakul, K., Sompornpisut, P., & Hannongbua, S. (2007). Insight into analysis of interactions of saquinavir with HIV-1 protease in comparison between the wild-type and G48V and G48V/L90M mutants based on QM and QM/MM calculations. Journal of Molecular Graphics & Modelling, 26(4), 720–727. https://doi.org/10.1016/j.jmgm.2007.04.009
  • Santos, A. F., & Soares, M. A. (2010). HIV genetic diversity and drug resistance. Viruses, 2(2), 503–531. https://doi.org/10.3390/v2020503
  • San Diego: Accelrys Software Inc. (2012). Discovery studio modeling environment, release 3.5. Accelrys Software Inc.
  • Santos, C. B. R., Santos, K. L. B., Cruz, J. N., Leite, F. H. A., Borges, R. S., Taft, C. A., Campos, J. M., & Silva, C. H. T. P. (2021). Molecular modeling approaches of selective adenosine receptor type 2A agonists as potential anti-inflammatory drugs. Journal of Biomolecular Structure & Dynamics, 39(9), 3115–3127. https://doi.org/10.1080/07391102.2020.1761878
  • Schapiro, J. M., Winters, M. A., Stewart, F., Efron, B., Norris, J., Kozal, M. J., & Merigan, T. C. (1996). The effect of high-dose saquinavir on viral load and CD4+ T-cell counts in HIV-infected patients. Annals of Internal Medicine, 124(12), 1039–1050. https://doi.org/10.7326/0003-4819-124-12-199606150-00003
  • Stoica, I., Sadiq, S. K., & Coveney, P. V. (2008). Rapid and accurate prediction of binding free energies for saquinavir-bound HIV-1 proteases. Journal of the American Chemical Society, 130(8), 2639–2648. https://doi.org/10.1021/ja0779250
  • Sun, Z., Ouyang, J., Zhao, B., An, M., Wang, L., Ding, H., & Han, X. (2020). Natural polymorphisms in HIV-1 CRF01_AE strain and profile of acquired drug resistance mutations in a long-term combination treatment cohort in Northeastern China. BMC Infectious Diseases, 20(1), 178. https://doi.org/10.1186/s12879-020-4808-3
  • Sundquist, W. I., & Kräusslich, H.-G. (2012). HIV-1 assembly, budding, and maturation. Cold Spring Harbor Perspectives in Medicine, 2(7), a006924. https://doi.org/10.1101/cshperspect.a006924
  • Tie, Y., Kovalevsky, A. Y., Boross, P., Wang, Y.-F., Ghosh, A. K., Tozser, J., Harrison, R. W., & Weber, I. T. (2007). Atomic resolution crystal structures of HIV-1 protease and mutants V82A and I84V with saquinavir. Proteins, 67(1), 232–242. https://doi.org/10.1002/prot.21304
  • Turner, P. J. (2005). XMGRACE (Version 5.1.19) [Center for Coastal and Land-Margin Research]. Beaverton, OR: Oregon Graduate Institute of Science and Technology.
  • Tzoupis, H., Leonis, G., Mavromoustakos, T., & Papadopoulos, M. G. (2013). A comparative molecular dynamics, MM-PBSA and thermodynamic integration study of saquinavir complexes with wild-type HIV-1 PR and L10I, G48V, L63P, A71V, G73S, V82A and I84V single mutants. Journal of Chemical Theory and Computation, 9(3), 1754–1764. https://doi.org/10.1021/ct301063k
  • Vasavi, C. S., Tamizhselvi, R., & Munusami, P. (2017). Drug resistance mechanism of L10F, L10F/N88S and L90M mutations in CRF01_AE HIV-1 protease: Molecular dynamics simulations and binding free energy calculations. Journal of Molecular Graphics & Modelling, 75, 390–402. https://doi.org/10.1016/j.jmgm.2017.06.007
  • Vasavi, C. S., Tamizhselvi, R., & Munusami, P. (2019). Exploring the drug resistance mechanism of active site, non-active site mutations and their cooperative effects in CRF01_AE HIV-1 protease: Molecular dynamics simulations and free energy calculations. Journal of Biomolecular Structure & Dynamics, 37(10), 2608–2626. https://doi.org/10.1080/07391102.2018.1492459
  • Velazquez-Campoy, A., Todd, M. J., Vega, S., & Freire, E. (2001). Catalytic efficiency and vitality of HIV-1 proteases from African viral subtypes. Proceedings of the National Academy of Sciences of the United States of America, 98(11), 6062–6067. https://doi.org/10.1073/pnas.111152698
  • Wang, J., Wolf, R. M., Caldwell, J. W., Kollman, P. A., & Case, D. A. (2004). Development and testing of a general amber force field. Journal of Computational Chemistry, 25(9), 1157–1174. https://doi.org/10.1002/jcc.20035
  • Weber, I. T., & Harrison, R. W. (1999). Molecular mechanics analysis of drug-resistant mutants of HIV protease. Protein Engineering, 12(6), 469–474. https://doi.org/10.1093/protein/12.6.469
  • Weiser, J., Shenkin, P. S., & Still, W. C. (1999). Approximate atomic surfaces from linear combinations of pairwise overlaps (LCPO). Journal of Computational Chemistry, 20(2), 217–230.
  • Wittayanarakul, K., Aruksakunwong, O., Saen-Oon, S., Chantratita, W., Parasuk, V., Sompornpisut, P., & Hannongbua, S. (2005). Insights into saquinavir resistance in the G48V HIV-1 protease: Quantum calculations and molecular dynamic simulations. Biophysical Journal, 88(2), 867–879. https://doi.org/10.1529/biophysj.104.046110
  • Wlodawer, A., & Vondrasek, J. (1998). Inhibitors of HIV-1 protease: A major success of structure-assisted drug design. Annual Review of Biophysics and Biomolecular Structure, 27, 249–284. https://doi.org/10.1146/annurev.biophys.27.1.249

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.