199
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Binding site hotspot map of PI3Kα and mTOR in the presence of selective and dual ATP-competitive inhibitors

, , , & ORCID Icon
Pages 1085-1097 | Received 13 Aug 2021, Accepted 04 Dec 2021, Published online: 16 Dec 2021

References

  • Abraham, M. J., Murtola, T., Schulz, R., Páll, S., Smith, J. C., Hess, B., & Lindah, E. (2015). Gromacs: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX, 1–2, 19–25. https://doi.org/10.1016/j.softx.2015.06.001
  • Araki, K., Turner, A. P., Shaffer, V. O., Gangappa, S., Keller, S. A., Bachmann, M. F., Larsen, C. P., & Ahmed, R. (2009). mTOR regulates memory CD8 T-cell differentiation. Nature, 460(7251), 108–112. https://doi.org/10.1038/nature08155
  • Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., Shindyalov, I. N., & Bourne, P. E. (2000). The Protein Data Bank. Nucleic Acids Research, 28(1), 235–242. https://doi.org/10.1093/nar/28.1.235
  • Bresin, A., Cristofoletti, C., Caprini, E., Cantonetti, M., Monopoli, A., Russo, G., & Narducci, M. G. (2020). Preclinical evidence for targeting PI3K/mTOR signaling with dual-inhibitors as a therapeutic strategy against cutaneous T-cell lymphoma. Journal of Investigative Dermatology, 140(5), 1045-1053.e6. https://doi.org/10.1016/j.jid.2019.08.454.
  • Chen, D., Lin, X., Zhang, C., Liu, Z., Chen, Z., Li, Z., Wang, J., Li, B., Hu, Y., Dong, B., Shen, L., Ji, J., Gao, J., & Zhang, X. (2018). Dual PI3K/mTOR inhibitor BEZ235 as a promising therapeutic strategy against paclitaxel-resistant gastric cancer via targeting PI3K/Akt/mTOR pathway article. Cell Death & Disease, 9(2), 123. https://doi.org/10.1038/s41419-017-0132-2
  • Cheson, B. D., O’Brien, S., Ewer, M. S., Goncalves, M. D., Farooki, A., Lenz, G., Yu, A., Fisher, R. I., Zinzani, P. L., & Dreyling, M. (2019). Optimal management of adverse events from copanlisib in the treatment of patients with non-Hodgkin lymphomas. Clinical Lymphoma, Myeloma & Leukemia, 19(3), 135-141. https://doi.org/10.1016/j.clml.2018.11.021.
  • Chi, H. (2012). Regulation and function of mTOR signalling in T cell fate decisions. Nature Reviews. Immunology, 12(5), 325–338. https://doi.org/10.1038/nri3198
  • Collins, D. C., Chenard-Poirier, M., & Lopez, J. S. (2017). The PI3K pathway at the crossroads of cancer and the immune system: Strategies for next generation immunotherapy combinations. Current Cancer Drug Targets, 18(4), 355-364. https://doi.org/10.2174/1568009617666170927114440.
  • Costa-Mattioli, M., & Monteggia, L. M. (2013). mTOR complexes in neurodevelopmental and neuropsychiatric disorders. Nature Neuroscience, 16(11), 1537–1543. https://doi.org/10.1038/nn.3546
  • Curatolo, P., & Moavero, R. (2012). mTOR inhibitors in tuberous sclerosis complex. Current Neuropharmacology, 10(4), 404–415. https://doi.org/10.2174/157015912804143595
  • Deng, L., Jiang, L., Lin, X. H., Tseng, K. F., Liu, Y., Zhang, X., Dong, R. H., Lu, Z. G., & Wang, X. J. (2017). The PI3K/mTOR dual inhibitor BEZ235 suppresses proliferation and migration and reverses multidrug resistance in acute myeloid leukemia. Acta Pharmacologica Sinica, 38, 382–391. https://doi.org/10.1038/aps.2016.121.
  • Dolinsky, T. J., Czodrowski, P., Li, H., Nielsen, J. E., Jensen, J. H., Klebe, G., & Baker, N. A. (2007). PDB2PQR: Expanding and upgrading automated preparation of biomolecular structures for molecular simulations. Nucleic Acids Research, 35, W522–W525. https://doi.org/10.1093/nar/gkm276.
  • Dowling, R. J. O., Topisirovic, I., Fonseca, B. D., & Sonenberg, N. (2010). Dissecting the role of mTOR: Lessons from mTOR inhibitors. Biochimica et Biophysica Acta, 1804(3), 433–439. https://doi.org/10.1016/j.bbapap.2009.12.001
  • Duan, L., Liu, X., & Zhang, J. Z. H. (2016). Interaction entropy: A new paradigm for highly efficient and reliable computation of protein-ligand binding free energy. Journal of the American Chemical Society, 138(17), 5722–5728. https://doi.org/10.1021/jacs.6b02682
  • Eisenhaber, F., Lijnzaad, P., Argos, P., Sander, C., & Scharf, M. (1995). The double cubic lattice method: Efficient approaches to numerical integration of surface area and volume and to dot surface contouring of molecular assemblies. Journal of Computational Chemistry, 16(3), 273–284. https://doi.org/10.1002/jcc.540160303
  • Ekberg, V., & Ryde, U. (2021). On the use of interaction entropy and related methods to estimate binding entropies. Journal of Chemical Theory and Computation, 17(8), 5379–5391. https://doi.org/10.1021/acs.jctc.1c00374
  • Essmann, U., Perera, L., Berkowitz, M. L., Darden, T., Lee, H., & Pedersen, L. G. (1995). A smooth particle mesh Ewald method. Journal of Chemical Physics, 103(19), 8577–8593. https://doi.org/10.1063/1.470117
  • Feng, H., Yang, Z., Bai, X., Yang, M., Fang, Y., Zhang, X., Guo, Q., & Ning, H. (2018). Therapeutic potential of a dual mTORC1/2 inhibitor for the prevention of posterior capsule opacification: An in vitro study. International Journal of Molecular Medicine, 41, 2099–2107. https://doi.org/10.3892/ijmm.2018.3398.
  • Foukas, L. C., Bilanges, B., Bettedi, L., Pearce, W., Ali, K., Sancho, S., Withers, D. J., & Vanhaesebroeck, B. (2013). Long-term p110α PI3K inactivation exerts a beneficial effect on metabolism. EMBO Molecular Medicine, 5, 563–571. https://doi.org/10.1002/emmm.201201953.
  • Frazzetto, M., Suphioglu, C., Zhu, J., Schmidt-Kittler, O., Jennings, I. G., Cranmer, S. L., Jackson, S. P., Kinzler, K. W., Vogelstein, B., & Thompson, P. E. (2008). Dissecting isoform selectivity of P13K inhibitors: The role of non-conserved residues in the catalytic pocket. Biochemical Journal. https://doi.org/10.1042/BJ20080512.
  • Furet, P., Guagnano, V., Fairhurst, R. A., Imbach-Weese, P., Bruce, I., Knapp, M., Fritsch, C., Blasco, F., Blanz, J., Aichholz, R., Hamon, J., Fabbro, D., & Caravatti, G. (2013). Discovery of NVP-BYL719 a potent and selective phosphatidylinositol-3 kinase alpha inhibitor selected for clinical evaluation. Bioorganic & Medicinal Chemistry Letters, 23(13), 3741–3748. https://doi.org/10.1016/j.bmcl.2013.05.007
  • García, M. G., Alaniz, L. D., Cordo Russo, R. I., Alvarez, E., & Hajos, S. E. (2009). PI3K/Akt inhibition modulates multidrug resistance and activates NF-κB in murine lymphoma cell lines. Leukemia Research, 33(2), 288-96. https://doi.org/10.1016/j.leukres.2008.06.010.
  • Guex, N., & Peitsch, M. C. (1997). SWISS-MODEL and the Swiss-PdbViewer: An environment for comparative protein modeling. Electrophoresis, 18(15), 2714–2723. https://doi.org/10.1002/elps.1150181505
  • Hedges, C. P., Boix, J., Jaiswal, J. K., Shetty, B., Shepherd, P. R., & Merry, T. L. (2021). Efficacy of providing the PI3K p110α inhibitor BYL719 (alpelisib) to middle-aged mice in their diet. Biomolecules, 11(2), 150. https://doi.org/10.3390/biom11020150
  • Hedges, C. P., Pham, T., Shetty, B., Masson, S. W. C., Hickey, A. J. R., Shepherd, P. R., & Merry, T. L. (2020). Prolonged treatment with a PI3K p110α inhibitor causes sex- and tissue-dependent changes in antioxidant content, but does not affect mitochondrial function. Bioscience Reports, 40(10), BSR20201128. https://doi.org/10.1042/BSR20201128.
  • Hess, B., Bekker, H., Berendsen, H. J. C., & Fraaije, J. G. E. M. (1997). LINCS: A linear constraint solver for molecular simulations. Journal of Computational Chemistry, 18(12), 1463–1472. https://doi.org/10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H
  • Hillmann, P., & Fabbro, D. (2019). PI3K/mTOR pathway inhibition: Opportunities in oncology and rare genetic diseases. International Journal of Molecular Sciences, 20(22), 5792. https://doi.org/10.3390/ijms20225792
  • Hornak, V., Abel, R., Okur, A., Strockbine, B., Roitberg, A., & Simmerling, C. (2006). Comparison of multiple amber force fields and development of improved protein backbone parameters. Proteins: Structure, Function, and Bioinformatics, 65(3), 712–725. https://doi.org/10.1002/prot.21123
  • Hu, X., Wang, Z., Chen, M., Chen, X., & Liang, W. (2018). The anti-osteosarcoma cell activity by a mTORC1/2 dual inhibitor RES-529. Biochemical and Biophysical Research Communications, 497(2), 499-505. https://doi.org/10.1016/j.bbrc.2018.02.050.
  • Hu, X., Xia, M., Wang, J., Yu, H., Chai, J., Zhang, Z., Sun, Y., Su, J., & Sun, L. (2020). Dual PI3K/mTOR inhibitor PKI-402 suppresses the growth of ovarian cancer cells by degradation of Mcl-1 through autophagy. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie, 129, 110397. https://doi.org/10.1016/j.biopha.2020.110397
  • Huang, K., Luo, S., Cong, Y., Zhong, S., Zhang, J. Z. H., & Duan, L. (2020). An accurate free energy estimator: Based on MM/PBSA combined with interaction entropy for protein-ligand binding affinity. Nanoscale, 12(19), 10737–10750. https://doi.org/10.1039/C9NR10638C
  • Huang, X., Liu, G., Guo, J., & Su, Z. Q. (2018). The PI3K/AKT pathway in obesity and type 2 diabetes. International Journal of Biological Sciences, 14(11), 1483–1496. https://doi.org/10.7150/ijbs.27173
  • Huang, Y., Xue, X., Li, X., Jia, B., Pan, C. X., Li, Y., & Lin, T. Y. (2020). Novel nanococktail of a dual PI3K/mTOR inhibitor and cabazitaxel for castration-resistant prostate cancer. Advanced Therapeutics, 3(10), 2000075. https://doi.org/10.1002/adtp.202000075
  • Jiang, Q., Weiss, J. M., Back, T., Chan, T., Ortaldo, J. R., Guichard, S., & Wiltrout, R. H. (2011). mTOR kinase inhibitor AZD8055 enhances the immunotherapeutic activity of an agonist CD40 antibody in cancer treatment. Cancer Research, 71(12), 4074–4084. https://doi.org/10.1158/0008-5472.CAN-10-3968
  • Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W., & Klein, M. L. (1983). Comparison of simple potential functions for simulating liquid water. Journal of Chemical Physics, 79(2), 926–935. https://doi.org/10.1063/1.445869
  • Kennedy, S. P., O’Neill, M., Cunningham, D., Morris, P. G., Toomey, S., Blanco-Aparicio, C., Martinez, S., Pastor, J., Eustace, A. J., & Hennessy, B. T. (2020). Preclinical evaluation of a novel triple-acting PIM/PI3K/mTOR inhibitor, IBL-302, in breast cancer. Oncogene, 39(14), 3028–3040. https://doi.org/10.1038/s41388-020-1202-y
  • Kim, D. H., Sarbassov, D. D., Ali, S. M., King, J. E., Latek, R. R., Erdjument-Bromage, H., Tempst, P., & Sabatini, D. M. (2002). mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. Cell, 110(2), 163–175. https://doi.org/10.1016/S0092-8674(02)00808-5
  • Kumari, R., Kumar, R., Lynn, A., & Open Source Drug Discovery Consortium. (2014). G-mmpbsa - A GROMACS tool for high-throughput MM-PBSA calculations. Journal of Chemical Information and Modeling, 54(7), 1951–1962. https://doi.org/10.1021/ci500020m
  • Laplante, M., & Sabatini, D. M. (2009). mTOR signaling at a glance. Journal of Cell Science, 122(Pt 20), 3589–3594. https://doi.org/10.1242/jcs.051011
  • Laplante, M., & Sabatini, D. M. (2012). MTOR signaling in growth control and disease. Cell, 149(2), 274–293. https://doi.org/10.1016/j.cell.2012.03.017
  • Li, L., Li, C., Zhang, Z., & Alexov, E. (2013). On the dielectric “constant” of proteins: Smooth dielectric function for macromolecular modeling and its implementation in DelPhi. Journal of Chemical Theory and Computation, 9(4), 2126–2136. https://doi.org/10.1021/ct400065j
  • Liu, R., Chen, Y., Liu, G., Li, C., Song, Y., Cao, Z., Li, W., Hu, J., Lu, C., & Liu, Y. (2020). PI3K/AKT pathway as a key link modulates the multidrug resistance of cancers. Cell Death & Disease, 11(9), 797. https://doi.org/10.1038/s41419-020-02998-6
  • Luszczak, S., Simpson, B. S., Stopka-Farooqui, U., Sathyadevan, V. K., Echeverria, L. M. C., Kumar, C., Costa, H., Haider, A., Freeman, A., Jameson, C., Ratynska, M., Ben-Salha, I., Sridhar, A., Shaw, G., Kelly, J. D., Pye, H., Gately, K. A., Whitaker, H. C., & Heavey, S. (2020). Co-targeting PIM and PI3K/mTOR using multikinase inhibitor AUM302 and a combination of AZD-1208 and BEZ235 in prostate cancer. Scientific Reports, 10, 14380. https://doi.org/10.1038/s41598-020-71263-9.
  • Malley, C. O., & Pidgeon, G. P. (2016). The mTOR pathway in obesity driven gastrointestinal cancers: Potential targets and clinical trials. BBA Clinical, 5, 29–40. https://doi.org/10.1016/j.bbacli.2015.11.003
  • Mohlin, S., Hansson, K., Radke, K., Martinez, S., Blanco‐Apiricio, C., Garcia‐Ruiz, C., Welinder, C., Esfandyari, J., O’Neill, M., Pastor, J., Stedingk, K., & Bexell, D. (2019). Anti‐tumor effects of PIM/PI 3K/mTOR triple kinase inhibitor IBL ‐302 in neuroblastoma. EMBO Molecular Medicine, 11, e10058. https://doi.org/10.15252/emmm.201810058.
  • Narayan, P., Prowell, T. M., Gao, J. J., Fernandes, L. L., Li, E., Jiang, X., Qiu, J., Fan, J., Song, P., Yu, J., Zhang, X., King-Kallimanis, B. L., Chen, W., Ricks, T. K., Gong, Y., Wang, X., Windsor, K., Rhieu, S. Y., Geiser, G., … Beaver, J. A. (2021). FDA approval summary: Alpelisib plus fulvestrant for patients with HR-positive, HER2-negative, PIK3CA-mutated, advanced or metastatic breast cancer. Clinical Cancer Research, 27(7), 1842–1849. https://doi.org/10.1158/1078-0432.CCR-20-3652
  • O’Neil, M., Aparicio, C. B., Jiang, S., Martinez, S., McKenzie, A., Page, M., & Pastor, J. (2014). Abstract 4524: Combined inhibition of PIM and PI3 kinases shows an enhanced efficacy in a number of solid tumour cell lines [Paper presentation]. https://doi.org/10.1158/1538-7445.AM2014-4524
  • Olsson, M. H. M., Søndergaard, C. R., Rostkowski, M., & Jensen, J. H. (2011). PROPKA3: Consistent treatment of internal and surface residues in empirical pKa predictions BT. Journal of Chemical Theory and Computation, 7(2), 525–537. https://doi.org/10.1021/ct100578z
  • Park, S., Chapuis, N., Bardet, V., Tamburini, J., Gallay, N., Willems, L., Knight, Z. A., Shokat, K. M., Azar, N., Viguié, F., Ifrah, N., Dreyfus, F., Mayeux, P., Lacombe, C., & Bouscary, D. (2008). PI-103, a dual inhibitor of Class IA phosphatidylinositide 3-kinase and mTOR, has antileukemic activity in AML. Leukemia, 22(9), 1698–1706. https://doi.org/10.1038/leu.2008.144
  • Parrinello, M., & Rahman, A. (1981). Polymorphic transitions in single crystals: A new molecular dynamics method. Journal of Applied Physics, 52(12), 7182–7190. https://doi.org/10.1063/1.328693
  • Patsouris, A., Augereau, P., Frenel, J. S., Robert, M., Gourmelon, C., Bourbouloux, E., Berton-Rigaud, D., Chevalier, L. M., & Campone, M. (2019). Benefits versus risk profile of buparlisib for the treatment of breast cancer. Expert Opinion on Drug Safety, 18(7), 553-562. https://doi.org/10.1080/14740338.2019.1623877.
  • Poli, G., Granchi, C., Rizzolio, F., & Tuccinardi, T. (2020). Application of MM-PBSA methods in virtual screening. Molecules, 25(8), 1971. https://doi.org/10.3390/molecules25081971
  • Rehan, M. (2019). Anticancer compound XL765 as PI3K/mTOR dual inhibitor: A structural insight into the inhibitory mechanism using computational approaches. PLoS One, 14(6), e0219180. https://doi.org/10.1371/journal.pone.0219180
  • Reidy, M., vanDijk, M., Keane, N., O’Neill, M., & O’Dwyer, M. E. (2014). Initial evaluation of novel dual PIM/PI3K and triple PIM/PI3K/mTOR inhibitors in multiple myeloma. Blood, 124(21), 5713–5713. https://doi.org/10.1182/blood.V124.21.5713.5713
  • Samuels, Y., Wang, Z., Bardelli, A., Silliman, N., Ptak, J., Szabo, S., Yan, H., Gazdar, A., Powell, S. M., Riggins, G. J., Willson, J. K. V., Markowitz, S., Kinzler, K. W., Vogelstein, B., & Velculescu, V. E. (2004). High frequency of mutations of the PIK3CA gene in human cancers. Science (New York, NY), 304(5670), 554–554. https://doi.org/10.1126/science.1096502
  • Sato, A., Kasai, S., Kobayashi, T., Takamatsu, Y., Hino, O., Ikeda, K., & Mizuguchi, M. (2012). Rapamycin reverses impaired social interaction in mouse models of tuberous sclerosis complex. Nature Communications, 3, 1292. https://doi.org/10.1038/ncomms2295
  • Saxton, R. A., & Sabatini, D. M. (2017). mTOR signaling in growth, metabolism, and disease. Cell, 168(6), 960–976. https://doi.org/10.1016/j.cell.2017.02.004
  • Shukuya, T., Yamada, T., Koenig, M. J., Xu, J., Okimoto, T., Li, F., Amann, J. M., & Carbone, D. P. (2019). The effect of LKB1 activity on the sensitivity to PI3K/mTOR inhibition in non-small cell lung cancer. Journal of Thoracic Oncology, 14(6), 1061–1076. https://doi.org/10.1016/j.jtho.2019.02.019
  • Sibanda, B. L., Chirgadze, D. Y., & Blundell, T. L. (2010). Crystal structure of DNA-PKcs reveals a large open-ring cradle comprised of HEAT repeats. Nature, 463(7277), 118–121. https://doi.org/10.1038/nature08648
  • Tarantelli, C., Gaudio, E., Kwee, I., Rinaldi, A., Stifanelli, M., Bernasconi, E., Barassi, C., Hillmann, P., Stathis, A., Carrassa, L., Broggini, M., Stussi, G., Fabbro, D., Hebeisen, P., Betts, F., Wicki, A., Zucca, E., Cmiljanovic, V., & Bertoni, F. (2014). The novel PI3K/mTOR dual inhibitor PQR309 in pre-clinical lymphoma models: Demonstration of anti-tumor activity as single agent and in combination and identification of gene expression signatures associated with response. Blood, 124(21), 1782. http://www.bloodjournal.org/content/124/21/1782.abstract. https://doi.org/10.1182/blood.V124.21.1782.1782
  • Tarantelli, C., Lupia, A., Stathis, A., & Bertoni, F. (2020). Is there a role for dual PI3K/mTOR inhibitors for patients affected with lymphoma? International Journal of Molecular Sciences, 21(3), 1060. https://doi.org/10.3390/ijms21031060
  • Triscott, J., & Rubin, M. A. (2018). Prostate power play: Does Pik3ca accelerate Pten-deficient cancer progression? Cancer Discovery, 8(6), 682–685. https://doi.org/10.1158/2159-8290.CD-18-0369
  • Wang, C., Wang, X., Su, Z., Fei, H., Liu, X., & Pan, Q. (2015). The novel mTOR inhibitor Torin-2 induces autophagy and downregulates the expression of UHRF1 to suppress hepatocarcinoma cell growth. Oncology Reports, 34(4), 1708–1716. https://doi.org/10.3892/or.2015.4146
  • Wu, Y. Y., Wu, H. C., Wu, J. E., Huang, K. Y., Yang, S. C., Chen, S. X., Tsao, C. J., Hsu, K. F., Chen, Y. L., & Hong, T. M. (2019). The dual PI3K/mTOR inhibitor BEZ235 restricts the growth of lung cancer tumors regardless of EGFR status, as a potent accompanist in combined therapeutic regimens. Journal of Experimental & Clinical Cancer Research, 38, 282. https://doi.org/10.1186/s13046-019-1282-0.
  • Xu, Z.-Z., Shen, J.-K., Zhao, S.-Q., & Li, J.-M. (2018). Clinical significance of chemokine receptor CXCR4 and mammalian target of rapamycin (mTOR) expression in patients with diffuse large B-cell lymphoma. Leukemia & Lymphoma, 59(6), 1451–1460. https://doi.org/10.1080/10428194.2017.1379077
  • Yang, H., Rudge, D. G., Koos, J. D., Vaidialingam, B., Yang, H. J., & Pavletich, N. P. (2013). mTOR kinase structure, mechanism and regulation. Nature, 497(7448), 217–223. https://doi.org/10.1038/nature12122
  • Yap, T. A., Bjerke, L., Clarke, P. A., & Workman, P. (2015). Drugging PI3K in cancer: Refining targets and therapeutic strategies. Current Opinion in Pharmacology, (23), 98–107. https://doi.org/10.1016/j.coph.2015.05.016.
  • Zhang, X., Wang, X., Qin, L., Xu, T., Zhu, Z., Zhong, S., Zhang, M., & Shen, Z. (2015). The dual mTORC1 and mTORC2 inhibitor PP242 shows strong antitumor activity in a pheochromocytoma PC12 cell tumor model. Urology, 85(1), 273.e1–273.e7. https://doi.org/10.1016/j.urology.2014.09.020
  • Zhao, Y., Zhang, X., Chen, Y., Lu, S., Peng, Y., Wang, X., Guo, C., Zhou, A., Zhang, J., Luo, Y., Shen, Q., Ding, J., Meng, L., & Zhang, J. (2014). Crystal structures of PI3Kα complexed with PI103 and its derivatives: New directions for inhibitors design. ACS Medicinal Chemistry Letters, 5(2), 138–142. https://doi.org/10.1021/ml400378e
  • Zheng, Z., Amran, S. I., Thompson, P. E., & Jennings, I. G. (2011). Isoform-selective inhibition of phosphoinositide 3-kinase: Identification of a New Region of nonconserved amino acids critical for p110α inhibition. Molecular Pharmacology. https://doi.org/10.1124/mol.111.072546.
  • Zheng, Z., Amran, S. I., Zhu, J., Schmidt-Kittler, O., Kinzler, K. W., Vogelstein, B., Shepherd, P. R., Thompson, P. E., & Jennings, I. G. (2012). Definition of the binding mode of a new class of phosphoinositide 3-kinase α-selective inhibitors using in vitro mutagenesis of non-conserved amino acids and kinetic analysis. Biochemical Journal. https://doi.org/10.1042/BJ20120499.
  • Zhu, Y. R., Zhou, X. Z., Qing Zhu, L., Yao, C., Fang, J. F., Zhou, F., Deng, X. W., & Zhang, Y. Q. (2016). The anti-cancer activity of the mTORC1/2 dual inhibitor XL388 in preclinical osteosarcoma models. Oncotarget, 7(31), 49527–49538. https://doi.org/10.18632/oncotarget.10389

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.