196
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Anchoring of Amyloid-β onto Polyunsaturated Phospholipid Membranes

ORCID Icon &
Pages 1098-1108 | Received 12 Sep 2021, Accepted 06 Dec 2021, Published online: 17 Dec 2021

References

  • Arendash, G. W., Jensen, M. T., Salem, N., Hussein, N., Cracchiolo, J., Dickson, A., Leighty, R., & Potter, H. (2007). A diet high in omega-3 fatty acids does not improve or protect cognitive performance in Alzheimer's transgenic mice. Neuroscience, 149(2), 286–302. https://doi.org/10.1016/j.neuroscience.2007.08.018
  • Behl, C., Davis, J. B., Lesley, R., & Schubert, D. (1994). Hydrogen peroxide mediates amyloid beta protein toxicity. Cell, 77(6), 817–827. https://doi.org/10.1016/0092-8674(94)90131-7
  • Berendsen, H. J. C., Postma, J. P. M., van Gunsteren, W. F., DiNola, A., & Haak, J. R. (1984). Molecular dynamics with coupling to an external bath. The Journal of Chemical Physics, 81(8), 3684–3690. https://doi.org/10.1063/1.448118
  • Bussi, G., Donadio, D., & Parrinello, M. (2007). Canonical sampling through velocity rescaling. The Journal of Chemical Physics, 126(1), 014101–014107. https://doi.org/10.1063/1.2408420
  • Calon, F., Lim, G. P., Yang, F., Morihara, T., Teter, B., Ubeda, O., Rostaing, P., Triller, A., Salem, N., Ashe, K. H., Frautschy, S. A., & Cole, G. M. (2004). Docosahexaenoic acid protects from dendritic pathology in an Alzheimer's disease mouse model. Neuron, 43(5), 633–645. https://doi.org/10.1016/j.neuron.2004.08.013
  • Cederholm, T., Salem, N., Jr., & Palmblad, J. (2013). ω-3 Fatty acids in the prevention of cognitive decline in humans. Advances in Nutrition (Bethesda, Md.), 4(6), 672–676. https://doi.org/10.3945/an.113.004556
  • Clementi, M. E., Marini, S., Coletta, M., Orsini, F., Giardina, B., & Misiti, F. (2005). Abeta(31-35) and Abeta(25-35) fragments of amyloid beta-protein induce cellular death through apoptotic signals: Role of the redox state of methionine-35. FEBS Letters, 579(13), 2913–2918. Aβ( https://doi.org/10.1016/j.febslet.2005.04.041
  • Cohen, A. S., & Calkins, E. (1959). Electron microscopic observations on a fibrous component in amyloid of diverse origins. Nature, 183(4669), 1202–1203. https://doi.org/10.1038/1831202a0
  • Cordomí, A., & Perez, J. J. (2007). Molecular dynamics simulations of rhodopsin in different one-component lipid bilayers. The Journal of Physical Chemistry. B, 111(25), 7052–7063. https://doi.org/10.1021/jp0707788
  • Cuco, A., Serro, A. P., Farinha, J. P., Saramago, B., & da Silva, A. G. (2016). Interaction of the Alzheimer Aβ(25-35) peptide segment with model membranes. Colloids and Surfaces. B, Biointerfaces, 141, 10–18. https://doi.org/10.1016/j.colsurfb.2016.01.015
  • Cuevas, E., Rosas-Hernandez, H., Burks, S. M., Ramirez-Lee, M. A., Guzman, A., Imam, S. Z., Ali, S. F., & Sarkar, S. (2019). Amyloid beta 25-35 induces blood-brain barrier disruption in vitro. Metabolic Brain Disease, 34(5), 1365–1374. https://doi.org/10.1007/s11011-019-00447-8
  • Dante, S., Hauss, T., & Dencher, N. A. (2002). β-Amyloid 25 to 35 is intercalated in anionic and zwitterionic lipid membranes to different extents. Biophysical Journal, 83(5), 2610–2616. https://doi.org/10.1016/S0006-3495(02)75271-5
  • Dies, H., Toppozini, L., & Rheinstädter, M. C. (2014). The interaction between amyloid-β peptides and anionic lipid membranes containing cholesterol and melatonin. PLOS One, 9(6), e99124. https://doi.org/10.1371/journal.pone.0099124
  • D'Ursi, A. M., Armenante, M. R., Guerrini, R., Salvadori, S., Sorrentino, G., & Picone, D. (2004). Solution structure of amyloid beta-peptide (25-35) in different media . Journal of Medicinal Chemistry, 47(17), 4231–4238. https://doi.org/10.1021/jm040773o
  • Emendato, A., Spadaccini, R., De Santis, A., Guerrini, R., D'Errico, G., & Picone, D. (2016). Preferential interaction of the Alzheimer peptide Aβ-(1-42) with omega-3-containing lipid bilayers: Structure and interaction studies . FEBS Letters, 590(4), 582–591. https://doi.org/10.1002/1873-3468.12082
  • Ermilova, I., & Lyubartsev, A. P. (2020). Modelling of interactions between Aβ(25–35) peptide and phospholipid bilayers: Effects of cholesterol and lipid saturation. RSC Advances, 10(7), 3902–3915. https://doi.org/10.1039/C9RA06424A
  • Essmann, U., Perera, L., Berkowitz, M. L., Darden, T., Lee, H., & Pedersen, L. G. (1995). A smooth particle mesh Ewald method. The Journal of Chemical Physics, 103(19), 8577–8593. https://doi.org/10.1063/1.470117
  • Guixà-González, R., Rodriguez-Espigares, I., Ramírez-Anguita, J. M., Carrió-Gaspar, P., Martinez-Seara, H., Giorgino, T., & Selent, J. (2014). MEMBPLUGIN: Studying membrane complexity in VMD. Bioinformatics (Oxford, England), 30(10), 1478–1480. https://doi.org/10.1093/bioinformatics/btu037
  • Hardy, J., & Higgins, G. (1992). Alzheimer’s disease: The amyloid cascade hypothesis. Science (New York, N.Y.), 256(5054), 184–185. https://doi.org/10.1126/science.1566067
  • Hayden, E. Y., & Teplow, D. B. (2013). Amyloid β-protein oligomers and Alzheimer’s disease. Alzheimer's Research & Therapy, 5(6), 60–61. https://doi.org/10.1186/alzrt226
  • Hensley, K., Carney, J. M., Mattson, M. P., Aksenova, M., Harris, M., Wu, J. F., Floyd, R. A., & Butterfield, D. A. (1994). A model for beta-amyloid aggregation and neurotoxicity based on free radical generation by the peptide: Relevance to Alzheimer disease. Proceedings of the National Academy of Sciences of the United States of America, 91(8), 3270–3274. https://doi.org/10.1073/pnas.91.8.3270
  • Hess, B., Bekker, H., Berendsen, H. J. C., & Fraaije, J. G. E. M. (1997). LINCS: A linear constraint solver for molecular simulations. Journal of Computational Chemistry, 18(12), 1463–1472. https://doi.org/10.1002/(SICI)1096-987X(199709)18:12 < 1463::AID-JCC4 > 3.0.CO;2-H
  • Hjorth, E., Zhu, M., Toro, V. C., Vedin, I., Palmblad, J., Cederholm, T., Freund-Levi, Y., Faxen-Irving, G., Wahlund, L.-O., Basun, H., Eriksdotter, M., & Schultzberg, M. (2013). Omega-3 fatty acids enhance phagocytosis of Alzheimer’s disease-related amyloid-β42 by human microglia and decrease inflammatory markers. Journal of Alzheimer's Disease: JAD, 35(4), 697–713. https://doi.org/10.3233/JAD-130131
  • Hosono, T., Nishitsuji, K., Nakamura, T., Jung, C. G., Kontani, M., Tokuda, H., Kawashima, H., Kiso, Y., Suzuki, T., & Michikawa, M. (2015). Arachidonic acid diet attenuates brain Aβ deposition in Tg2576 mice. Brain Research, 1613, 92–99. https://doi.org/10.1016/j.brainres.2015.04.005
  • Huang, J., Rauscher, S., Nawrocki, G., Ran, T., Feig, M., de Groot, B. L., Grubmüller, H., & MacKerell, A. D. (2017). CHARMM36m: An improved force field for folded and intrinsically disordered proteins. Nature Methods, 14(1), 71–73. https://doi.org/10.1038/nmeth.4067
  • Huang, L. K., Chao, S. P., & Hu, C. J. (2020). Clinical trials of new drugs for Alzheimer disease. Journal of Biomedical Science, 27(1), 18–31. https://doi.org/10.1186/s12929-019-0609-7
  • Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W., & Klein, M. L. (1983). Comparison of simple potential functions for simulating liquid water. The Journal of Chemical Physics, 79(2), 926–935. https://doi.org/10.1063/1.445869
  • Kandel, N., Matos, J. O., & Tatulian, S. A. (2019). Structure of amyloid β25-35 in lipid environment and cholesterol-dependent membrane pore formation . Scientific Reports, 9(1), 2689. https://doi.org/10.1038/s41598-019-38749-7
  • Kandel, N., Zheng, T., Huo, Q., & Tatulian, S. A. (2017). Membrane binding and pore formation by a cytotoxic fragment of amyloid β peptide. The Journal of Physical Chemistry B, 121(45), 10293–10305. https://doi.org/10.1021/acs.jpcb.7b07002
  • Kim, N., Jeong, S., Jing, K., Shin, S., Kim, S., Heo, J. Y., Kweon, G. R., Park, S. K., Wu, T., Park, J. I., & Lim, K. (2015). Docosahexaenoic acid induces cell death in human non-small cell lung cancer cells by repressing mTOR via AMPK activation and PI3K/Akt inhibition. BioMed Research International, 2015, 239764–239778. https://doi.org/10.1155/2015/239764
  • Lim, G. P., Calon, F., Morihara, T., Yang, F., Teter, B., Ubeda, O., Salem, N., Frautschy, S. A., & Cole, G. M. (2005). A diet enriched with the omega-3 fatty acid docosahexaenoic acid reduces amyloid burden in an aged Alzheimer mouse model. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 25(12), 3032–3040. https://doi.org/10.1523/JNEUROSCI.4225-04.2005
  • Lin, M. A., & Kagan, B. L. (2002). Electrophysiologic properties of channels induced by Abeta25-35 in planar lipid bilayers. Peptides, 23(7), 1215–1228. https://doi.org/10.1016/S0196-9781(02)00057-8
  • Lukiw, W. J., Cui, J. G., Marcheselli, V. L., Bodker, M., Botkjaer, A., Gotlinger, K., Serhan, C. N., & Bazan, N. G. (2005). A role for docosahexaenoic acid-derived neuroprotectin D1 in neural cell survival and Alzheimer disease. The Journal of Clinical Investigation, 115(10), 2774–2783. https://doi.org/10.1172/JCI25420
  • Miyamoto, S., & Kollman, P. A. (1992). Settle: An analytical version of the SHAKE and RATTLE algorithm for rigid water models. Journal of Computational Chemistry, 13(8), 952–962. https://doi.org/10.1002/jcc.540130805
  • Norris, S. E., Friedrich, M. G., Mitchell, T. W., Truscott, R. J. W., & Else, P. L. (2015). Human prefrontal cortex phospholipids containing docosahexaenoic acid increase during normal adult aging, whereas those containing arachidonic acid decrease. Neurobiology of Aging, 36(4), 1659–1669. https://doi.org/10.1016/j.neurobiolaging.2015.01.002
  • Páll, S., Zhmurov, A., Bauer, P., Abraham, M., Lundborg, M., Gray, A., Hess, B., & Lindahl, E. (2020). Heterogeneous parallelization and acceleration of molecular dynamics simulations in GROMACS. The Journal of Chemical Physics, 153(13), 134110–134125. https://doi.org/10.1063/5.0018516
  • Parrinello, M., & Rahman, A. (1981). Polymorphic transitions in single crystals: A new molecular dynamics method. Journal of Applied Physics, 52(12), 7182–7190. https://doi.org/10.1063/1.328693
  • Peters, C., Bascuñán, D., Opazo, C., & Aguayo, L. G. (2016). Differential membrane toxicity of amyloid-β fragments by pore forming mechanisms. Journal of Alzheimer's Disease: JAD, 51(3), 689–699. https://doi.org/10.3233/JAD-150896
  • Pike, C. J., Walencewicz-Wasserman, A. J., Kosmoski, J., Cribbs, D. H., Glabe, C. G., & Cotman, C. W. (1995). Structure-activity analyses of beta-amyloid peptides: Contributions of the beta 25-35 region to aggregation and neurotoxicity. Journal of Neurochemistry, 64(1), 253–265. https://doi.org/10.1046/j.1471-4159.1995.64010253.x
  • Poojari, C., Kukol, A., & Strodel, B. (2013). How the amyloid-β peptide and membranes affect each other: An extensive simulation study. Biochimica et Biophysica Acta, 1828(2), 327–339. https://doi.org/10.1016/j.bbamem.2012.09.001
  • Roher, A. E., Lowenson, J. D., Clarke, S., Woods, A. S., Cotter, R. J., Gowing, E., & Ball, M. J. (1993). Beta-amyloid-(1-42) is a major component of cerebrovascular amyloid deposits: Implications for the pathology of Alzheimer disease. Proceedings of the National Academy of Sciences of the United States of America, 90(22), 10836–10840. https://doi.org/10.1073/pnas.90.22.10836
  • Schrödinger, LLC. (2015). The PyMOL Molecular Graphics System, Version 1.8.
  • Selkoe, D. J., & Hardy, J. (2016). The amyloid hypothesis of Alzheimer's disease at 25 years. EMBO Molecular Medicine, 8(6), 595–608. https://doi.org/10.15252/emmm.201606210
  • Serpell, L. C. (2000). Alzheimer’s amyloid fibrils: Structure and assembly. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, 1502(1), 16–30. https://doi.org/10.1016/S0925-4439(00)00029-6
  • Seubert, P., Pelfrey, C. V., Esch, F., Lee, M., Dovey, H., Davis, D., Sinha, S., Schiossmacher, M., Whaley, J., Swindlehurst, C., McCormack, R., Wolfert, R., Selkoe, D., Lieberburg, I., & Schenk, D. (1992). Isolation and quantification of soluble Alzheimer's beta-peptide from biological fluids . Nature, 359(6393), 325–327. https://doi.org/10.1038/359325a0
  • Shanmugam, G., & Polavarapu, P. L. (2004). Structure of A beta(25-35) peptide in different environments. Biophysical Journal, 87(1), 622–630. https://doi.org/10.1529/biophysj.104.040907
  • Shearman, M. S., Ragan, C. I., & Iversen, L. L. (1994). Inhibition of PC12 cell redox activity is a specific, early indicator of the mechanism of beta-amyloid-mediated cell death. Proceedings of the National Academy of Sciences of the United States of America, 91(4), 1470–1474. https://doi.org/10.1073/pnas.91.4.1470
  • Shoji, M., Golde, T. E., Ghiso, J., Cheung, T. T., Estus, S., Shaffer, L. M., Cai, X. D., McKay, D. M., Tintner, R., Frangione, B., & Younkin, S. G. (1992). Production of the Alzheimer amyloid beta protein by normal proteolytic processing. Science (New York, N.Y.), 258(5079), 126–129. https://doi.org/10.1126/science.1439760
  • Smith, A. K., Khayat, E., Lockhart, C., & Klimov, D. K. (2019). Do cholesterol and sphingomyelin change the mechanism of Aβ25-35 peptide binding to zwitterionic bilayer? Journal of Chemical Information and Modeling, 59(12), 5207–5217. https://doi.org/10.1021/acs.jcim.9b00763
  • Smith, A. K., & Klimov, D. K. (2018). Binding of cytotoxic Aβ25-35 peptide to the dimyristoylphosphatidylcholine lipid bilayer. Journal of Chemical Information and Modeling, 58(5), 1053–1065. https://doi.org/10.1021/acs.jcim.8b00045
  • Söderberg, M., Edlund, C., Kristensson, K., & Dallner, G. (1991). Fatty acid composition of brain phospholipids in aging and in Alzheimer’s disease. Lipids, 26(6), 421–425. https://doi.org/10.1007/BF02536067
  • Strittmatter, W. J., Saunders, A. M., Schmechel, D., Pericak-Vance, M., Enghild, J., Salvesen, G. S., & Roses, A. D. (1993). Apolipoprotein E: High-avidity binding to beta-amyloid and increased frequency of type 4 allele in late-onset familial Alzheimer disease. Proceedings of the National Academy of Sciences of the United States of America, 90(5), 1977–1981. https://doi.org/10.1073/pnas.90.5.1977
  • Tamtaji, O. R., Taghizadeh, M., Aghadavod, E., Mafi, A., Dadgostar, E., Daneshvar Kakhaki, R., Abolhassani, J., & Asemi, Z. (2019). The effects of omega-3 fatty acids and vitamin E co-supplementation on gene expression related to inflammation, insulin and lipid in patients with Parkinson's disease: A randomized, double-blind, placebo-controlled trial. Clinical Neurology and Neurosurgery, 176, 116–121. https://doi.org/10.1016/j.clineuro.2018.12.006
  • Tang, J., Alsop, R. J., Backholm, M., Dies, H., Shi, A.-C., & Rheinstädter, M. C. (2016). Amyloid-β(25-35) peptides aggregate into cross-β sheets in unsaturated anionic lipid membranes at high peptide concentrations. Soft Matter, 12(13), 3165–3176. https://doi.org/10.1039/c5sm02619a
  • Terzi, E., Hoelzemann, G., & Seelig, J. (1994). Alzheimer β-amyloid peptide 25-35: Electrostatic interactions with phospholipid membranes. Biochemistry, 33(23), 7434–7441. https://doi.org/10.1021/bi00189a051
  • Tsai, H. H. G., Lee, J. B., Shih, Y. C., Wan, L., Shieh, F. K., & Chen, C. Y. (2014). Location and conformation of amyloid β(25-35) peptide and its sequence-shuffled peptides within membranes: Implications for aggregation and toxicity in PC12 cells. ChemMedChem, 9(5), 1002–1011. https://doi.org/10.1002/cmdc.201400062
  • Venegas, C., Kumar, S., Franklin, B. S., Dierkes, T., Brinkschulte, R., Tejera, D., Vieira-Saecker, A., Schwartz, S., Santarelli, F., Kummer, M. P., Griep, A., Gelpi, E., Beilharz, M., Riedel, D., Golenbock, D. T., Geyer, M., Walter, J., Latz, E., & Heneka, M. T. (2017). Microglia-derived ASC specks cross-seed amyloid-β in Alzheimer’s disease. Nature, 552(7685), 355–361. https://doi.org/10.1038/nature25158
  • Vitiello, G., Di Marino, S., D'Ursi, A. M., & D'Errico, G. (2013). Omega-3 fatty acids regulate the interaction of the Alzheimer's Aβ(25-35) peptide with lipid membranes. Langmuir: The ACS Journal of Surfaces and Colloids, 29(46), 14239–14245. https://doi.org/10.1021/la403416b
  • Wall, R., Ross, R. P., Fitzgerald, G. F., & Stanton, C. (2010). Fatty acids from fish: The anti-inflammatory potential of long-chain omega-3 fatty acids. Nutrition Reviews, 68(5), 280–289. https://doi.org/10.1111/j.1753-4887.2010.00287.x
  • Wu, E. L., Cheng, X., Jo, S., Rui, H., Song, K. C., Dávila-Contreras, E. M., Qi, Y., Lee, J., Monje-Galvan, V., Venable, R. M., Klauda, J. B., & Im, W. (2014). CHARMM-GUI membrane builder toward realistic biological membrane simulations. Journal of Computational Chemistry, 35(27), 1997–2004. https://doi.org/10.1002/jcc.23702
  • Wu, K., Gao, X., Shi, B., Chen, S., Zhou, X., Li, Z., Gan, Y., Cui, L., Kang, J. X., Li, W., & Huang, R. (2016). Enriched endogenous n-3 polyunsaturated fatty acids alleviate cognitive and behavioral deficits in a mice model of Alzheimer's disease. Neuroscience, 333, 345–355. https://doi.org/10.1016/j.neuroscience.2016.07.038
  • Yan, Y., & Wang, C. (2006). Abeta42 is more rigid than Abeta40 at the C terminus: Implications for Abeta aggregation and toxicity. Journal of Molecular Biology, 364(5), 853–862. https://doi.org/10.1016/j.jmb.2006.09.046
  • Zárate, R., Jaber-Vazdekis, N., el, Tejera, N., Pérez, J. A., & Rodríguez, C. (2017). Significance of long chain polyunsaturated fatty acids in human health. Clinical and Translational Medicine, 6(1), 25. https://doi.org/10.1186/s40169-017-0153-6

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.