248
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

In silico study of potential immunonutrient-based sports supplements against COVID-19 via targeting ACE2 inhibition using molecular docking and molecular dynamics simulations

, , , &
Pages 1041-1061 | Received 02 Jun 2021, Accepted 03 Dec 2021, Published online: 21 Dec 2021

References

  • Abdelli, I., Hassani, F., Bekkel Brikci, S., & Ghalem, S. (2020). In silico study the inhibition of angiotensin converting enzyme 2 receptor of COVID-19 by Ammoides verticillata components harvested from Western Algeria. Journal of Biomolecular Structure and Dynamics, 39(9), 3263-3276. https://doi.org/10.1080/07391102.2020.1763199
  • Abraham, M. J., Murtola, T., Schulz, R., Páll, S., Smith, J. C., Hess, B., & Lindahl, E. (2015). GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX, 1–2, 19–25. https://doi.org/10.1016/j.softx.2015.06.001
  • Actis-Goretta, L., Ottaviani, J. I., & Fraga, C. G. (2006). Inhibition of angiotensin converting enzyme activity by flavanol-rich foods. Journal of Agricultural and Food Chemistry, 54(1), 229–234. https://doi.org/10.1021/jf052263o
  • Agrawal, P. K., Agrawal, C., & Blunden, G. (2020). Quercetin: Antiviral significance and possible COVID-19 integrative considerations. Natural Product Communications, 15(12), 1934578X2097629. https://doi.org/10.1177/1934578X20976293
  • Ahmadinejad, Z., Alijani, N., Mansori, S., & Ziaee, V. (2014). Common sports-related infections: A review on clinical pictures, management and time to return to sports. Asian Journal of Sports Medicine, 5(1), 1–9. https://doi.org/10.5812/asjsm.34174
  • Aldeghi, M., Bodkin, M. J., Knapp, S., & Biggin, P. C. (2017). Statistical analysis on the performance of molecular mechanics Poisson-Boltzmann surface area versus absolute binding free energy calculations: Bromodomains as a case study. Journal of Chemical Information and Modeling, 57(9), 2203–2221. https://doi.org/10.1021/acs.jcim.7b00347
  • Aucoin, M., Cooley, K., Saunders, P. R., Cardozo, V., Remy, D., Cramer, H., Abad, C. N., & Hannan, N. (2020). The effect of quercetin on the prevention or treatment of COVID-19 and other respiratory tract infections in humans: A rapid review. Advances in Integrative Medicine, 7(4), 247–251. https://doi.org/10.1016/j.aimed.2020.07.007
  • Batlle, D., Wysocki, J., & Satchell, K. (2020). Soluble angiotensin-converting enzyme 2: A potential approach for coronavirus infection therapy? Clinical Science (London, England : 1979), 134(5), 543–545. https://doi.org/10.1042/CS20200163
  • Beatty, E. R., O'Reilly, J. D., England, T. G., McAnlis, G. T., Young, I. S., Halliwell, B., Geissler, C. A., Sanders, T. A., & Wiseman, H. (2000). Effect of dietary quercetin on oxidative DNA damage in healthy human subjects. British Journal of Nutrition, 84(6), 919–925. https://doi.org/10.1017/S0007114500002555
  • Berendsen, H. J., Postma, J. v., van Gunsteren, W. F., DiNola, A., & Haak, J. R. (1984). Molecular dynamics with coupling to an external bath. The Journal of Chemical Physics, 81(8), 3684–3690. https://doi.org/10.1063/1.448118
  • Bousquet, J., Anto, J. M., Iaccarino, G., Czarlewski, W., Haahtela, T., Anto, A., Akdis, C. A., Blain, H., Canonica, G. W., Cardona, V., Cruz, A. A., Illario, M., Ivancevich, J. C., Jutel, M., Klimek, L., Kuna, P., Laune, D., Larenas-Linnemann, D., Mullol, J., … The ARIA group. (2020). Is diet partly responsible for differences in COVID-19 death rates between and within countries? Clinical and Translational Allergy, 10(1), 1–7. https://doi.org/10.1186/s13601-020-00323-0
  • Bridge, C. A., Sparks, A. S., McNaughton, L. R., Close, G. L., Hausen, M., Gurgel, J., & Drust, B. (2018). Repeated exposure to taekwondo combat modulates the physiological and hormonal responses to subsequent bouts and recovery periods. Journal of Strength and Conditioning Research, 32(9), 2529–2541. https://doi.org/10.1519/JSC.0000000000002591
  • Calder, P. C. (2013). Feeding the immune system. The Proceedings of the Nutrition Society, 72(3), 299–309. https://doi.org/10.1017/S0029665113001286
  • Campbell, J. P., & Turner, J. E. (2018). Debunking the myth of exercise-induced immune suppression: Redefining the impact of exercise on immunological health across the lifespan. Frontiers in Immunology, 9, 648. https://doi.org/10.3389/fimmu.2018.00648
  • Chen, L., Li, J., Luo, C., Liu, H., Xu, W., Chen, G., Liew, O. W., Zhu, W., Puah, C. M., Shen, X., & Jiang, H. (2006). Binding interaction of quercetin-3-beta-galactoside and its synthetic derivatives with SARS-CoV 3CL(pro): structure-activity relationship studies reveal salient pharmacophore features. Bioorganic & Medicinal Chemistry, 14(24), 8295–8306. https://doi.org/10.1016/j.bmc.2006.09.014
  • Chen, C., Zuckerman, D. M., Brantley, S., Sharpe, M., Childress, K., Hoiczyk, E., & Pendleton, A. R. (2014). Sambucus nigra extracts inhibit infectious bronchitis virus at an early point during replication. BMC Veterinary Research, 10(1), 24. https://doi.org/10.1186/1746-6148-10-24
  • Chiang, L., Chiang, W., Liu, M., & Lin, C. (2003). In vitro antiviral activities of Caesalpinia pulcherrima and its related flavonoids. The Journal of Antimicrobial Chemotherapy, 52(2), 194–198. https://doi.org/10.1093/jac/dkg291
  • Chinnasamy, P., & Arumugam, R. (2018). In silico prediction of anticarcinogenic bioactivities of traditional anti-inflammatory plants used by tribal healers in Sathyamangalam wildlife Sanctuary, India. Egyptian Journal of Basic and Applied Sciences, 5(4), 265–279.
  • Czop, J. K., & Austen, K. F. (1985). A beta-glucan inhibitable receptor on human monocytes: Its identity with the phagocytic receptor for particulate activators of the alternative complement pathway. Journal of Immunology (Baltimore, Md.: 1950), 134(4), 2588–2593.
  • Davis, J. M., Murphy, E. A., McClellan, J. L., Carmichael, M. D., & Gangemi, J. D. (2008). Quercetin reduces susceptibility to influenza infection following stressful exercise. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 295(2), R505–R509. https://doi.org/10.1152/ajpregu.90319.2008
  • Egan, W. J., Merz, K. M., & Baldwin, J. J. (2000). Prediction of drug absorption using multivariate statistics. Journal of Medicinal Chemistry, 43(21), 3867–3877. https://doi.org/10.1021/jm000292e
  • Enmozhi, S. K., Raja, K., Sebastine, I., & Joseph, J. (2020). Andrographolide as a potential inhibitor of SARS-CoV-2 main protease: An in silico approach. Journal of Biomolecular Structure and Dynamics, 39(9), 1–7. https://doi.org/10.1080/07391102.2020.1760136
  • Geller, A., & Yan, J. (2020). Could the induction of trained immunity by β-glucan serve as a defense against COVID-19? Frontiers in Immunology, 11, 1782. https://doi.org/10.3389/fimmu.2020.01782
  • Genheden, S., Ryde, U., & Söderhjelm, P. (2015). Binding affinities by alchemical perturbation using QM/MM with a large QM system and polarizable MM model. Journal of Computational Chemistry, 36(28), 2114–2124. https://doi.org/10.1002/jcc.24048
  • Gholami, M., & Ardestani, M. (2018). Effects of quercetin supplementation on exercise induced inflammation and immune cell changes after exhausting swimming in adolescent girls. Asian Journal of Sports Medicine, 9(3), e60157. https://doi.org/10.5812/asjsm.60157
  • Gray, B., Hooper, S., Kakanis, M., Marshall-Gradisnik, S., & Peake, J. (2013). The open window of susceptibility to infection after acute exercise in healthy young male elite athletes.
  • Häckl, L., Cuttle, G., Dovichi, S. S., Lima-Landman, M., & Nicolau, M. (2002). Inhibition of angiotesin-converting enzyme by quercetin alters the vascular response to brandykinin and angiotensin I. Pharmacology, 65(4), 182–186. https://doi.org/10.1159/000064341
  • Harriss, D., MacSween, A., & Atkinson, G. (2019). Ethical standards in sport and exercise science research: 2020 update. International Journal of Sports Medicine, 40(13), 813–817. https://doi.org/10.1055/a-1015-3123
  • Henson, D., Nieman, D., Davis, J. M., Dumke, C., Gross, S., Murphy, A., Carmichael, M., Jenkins, D. P., Quindry, J., McAnulty, S., McAnulty, L., Utter, A., & Mayer, E. (2008). Post-160-km race illness rates and decreases in granulocyte respiratory burst and salivary IgA output are not countered by quercetin ingestion. International Journal of Sports Medicine, 29(10), 856–863. https://doi.org/10.1055/s-2007-989424
  • Hess, B., Bekker, H., Berendsen, H. J., & Fraaije, J. G. (1997). LINCS: A linear constraint solver for molecular simulations. Journal of Computational Chemistry, 18(12), 1463–1472. https://doi.org/10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H
  • Hettihewa, S. K., Hemar, Y., & Rupasinghe, H. (2018). Flavonoid-rich extract of actinidia macrosperma (a wild kiwifruit) inhibits angiotensin-converting enzyme in vitro. Foods, 7(9), 146. https://doi.org/10.3390/foods7090146
  • Hofmeier, H., Schmatloch, S., Wouters, D., & Schubert, U. (2004). Metallo-supramolecular polymers: Towards new functional materials with controlled nanostructures. Transactions of the Materials Research Society of Japan, 29(1), 203–206.
  • Hull, J. H., Loosemore, M., & Schwellnus, M. (2020). Respiratory health in athletes: facing the COVID-19 challenge. The Lancet. Respiratory Medicine, 8(6), 557–558. https://doi.org/10.1016/S2213-2600(20)30175-2
  • Hussain, F., Jahan, N., Rahman, K-u., Sultana, B., & Jamil, S. (2018). Identification of hypotensive biofunctional compounds of Coriandrum sativum and evaluation of their angiotensin-converting enzyme (ACE) inhibition potential. Oxidative Medicine and Cellular Longevity, 2018, 1–11. https://doi.org/10.1155/2018/4643736
  • Inc, C. C. G. (2016). Molecular operating environment (MOE), Chemical Computing Group Inc. 1010 Sherbooke St. West, Suite# 910, Montreal.
  • Kavitha, K., Sivakumar, S., & Ramesh, B. (2020). 1, 2, 4 triazolo [1, 5-a] pyrimidin-7-ones as novel SARS-CoV-2 Main protease inhibitors: In silico screening and molecular dynamics simulation of potential COVID-19 drug candidates. Biophysical Chemistry, 267, 106478. https://doi.org/10.1016/j.bpc.2020.106478
  • Keretsu, S., Bhujbal, S. P., & Cho, S. J. (2020). Rational approach toward COVID-19 main protease inhibitors via molecular docking, molecular dynamics simulation and free energy calculation. Scientific Reports, 10(1), 1–14. https://doi.org/10.1038/s41598-020-74468-0
  • Knapp, B., Ospina, L., & Deane, C. M. (2018). Avoiding false positive conclusions in molecular simulation: the importance of replicas. Journal of Chemical Theory and Computation, 14(12), 6127–6138. https://doi.org/10.1021/acs.jctc.8b00391
  • Konrad, M., & Nieman, D. C. (2014). Evaluation of quercetin as a countermeasure to exercise-induced physiological stress. Antioxidants in Sport Nutrition, 10(155), 10–16.
  • Kumar, P., Khanna, M., Srivastava, V., Tyagi, Y. K., Raj, H. G., & Ravi, K. (2005). Effect of quercetin supplementation on lung antioxidants after experimental influenza virus infection. Experimental Lung Research, 31(5), 449–459. https://doi.org/10.1080/019021490927088
  • Kumar, A., Saxena, A. K., Lee, G. G. C., Kashyap, A., & Jyothsna, 0. (2020). Evolutionary and Structural Studies of NCoV and SARS CoV-Spike proteins and their association with ACE2 Receptor. Novel Coronavirus. Vol. 2019 (pp. 53–61). Springer.
  • Lee, Y. W., Shin, K. W., Paik, I. Y., Jung, W. M., Cho, S. Y., Choi, S. T., Kim, H. D., & Kim, J. Y. (2012). Immunological impact of Taekwondo competitions. International Journal of Sports Medicine, 33(01), 58–66. https://doi.org/10.1055/s-0031-1285926
  • Lipinski, C. A., Lombardo, F., Dominy, B. W., & Feeney, P. J. (1997). Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced Drug Delivery Reviews, 23(1-3), 3–25. https://doi.org/10.1016/S0169-409X(96)00423-1
  • Li, Y., Yao, J., Han, C., Yang, J., Chaudhry, M. T., Wang, S., Liu, H., & Yin, Y. (2016). Quercetin, inflammation and immunity. Nutrients, 8(3), 167. https://doi.org/10.3390/nu8030167
  • Li, P., Yin, Y.-L., Li, D., Kim, S. W., & Wu, G. (2007). Amino acids and immune function. The British Journal of Nutrition, 98(2), 237–252. https://doi.org/10.1017/S000711450769936X
  • Mah, E., Kaden, V. N., Kelley, K. M., & Liska, D. J. (2020). Beverage containing dispersible yeast β-glucan decreases cold/flu symptomatic days after intense exercise: A randomized controlled trial. Journal of Dietary Supplements, 17(2), 200–210. https://doi.org/10.1080/19390211.2018.1495676
  • Mah, E., Kaden, V. N., Kelley, K. M., & Liska, D. J. (2020). Soluble and insoluble yeast β-glucan differentially affect upper respiratory tract infection in marathon runners: A double-blind, randomized placebo-controlled trial. Journal of Medicinal Food, 23(4), 416–419. https://doi.org/10.1089/jmf.2019.0076
  • Mann, R. H., Clift, B. C., Boykoff, J., & Bekker, S. (2020). Athletes as community; athletes in community: covid-19, sporting mega-events and athlete health protection. BMJ Publishing Group Ltd and British Association of Sport and Exercise Medicine.
  • Messina, G., Polito, R., Monda, V., Cipolloni, L., Di Nunno, N., Di Mizio, G., Murabito, P., Carotenuto, M., Messina, A., Pisanelli, D., Valenzano, A., Cibelli, G., Scarinci, A., Monda, M., & Sessa, F. (2020). Functional role of dietary intervention to improve the outcome of COVID-19: A hypothesis of work. International Journal of Molecular Sciences, 21(9), 3104. https://doi.org/10.3390/ijms21093104
  • Mizuguchi, K., Deane, C. M., Blundell, T. L., Johnson, M. S., & Overington, J. P. (1998). JOY: protein sequencestructure representation and analysis. Bioinformatics (Oxford, England), 14(7), 617–623.
  • Muegge, I., Heald, S. L., & Brittelli, D. (2001). Simple selection criteria for drug-like chemical matter. Journal of Medicinal Chemistry, 44(12), 1841–1846. https://doi.org/10.1021/jm015507e
  • Murphy, E. A., Davis, J. M., Brown, A. S., Carmichael, M. D., Carson, J. A., Van Rooijen, N., Ghaffar, A., & Mayer, E. P. (2008). Benefits of oat β-glucan on respiratory infection following exercise stress: Role of lung macrophages. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 294(5), R1593–R1599. https://doi.org/10.1152/ajpregu.00562.2007
  • Murphy, E. A., Davis, J. M., Carmichael, M. D., Mayer, E. P., & Ghaffar, A. (2009). Benefits of oat β-glucan and sucrose feedings on infection and macrophage antiviral resistance following exercise stress. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 297(4), R1188–R1194. https://doi.org/10.1152/ajpregu.00396.2009
  • Nagar, P. R., Gajjar, N. D., & Dhameliya, T. M. (2021). In search of SARS CoV-2 replication inhibitors: Virtual screening, molecular dynamics simulations and ADMET analysis. Journal of Molecular Structure, 1246, 131190. https://doi.org/10.1016/j.molstruc.2021.131190
  • Neupane, N. P., Karn, A. K., Mukeri, I. H., Pathak, P., Kumar, P., Singh, S., Qureshi, I. A., Jha, T., & Verma, A. (2021). Molecular dynamics analysis of phytochemicals from Ageratina adenophora against COVID-19 main protease (Mpro) and human angiotensin-converting enzyme 2 (ACE2). Biocatalysis and Agricultural Biotechnology, 32, 101924. https://doi.org/10.1016/j.bcab.2021.101924
  • Nieman, D. (2009). Immune function responses to ultramarathon race competition. Medicina Sportiva, 13(4), 189–196. https://doi.org/10.2478/v10036-009-0031-4
  • Nieman, D. C. (2007). Marathon training and immune function. Sports Medicine, 37(4), 412–415.
  • Panyod, S., Ho, C.-T., & Sheen, L.-Y. (2020). Dietary therapy and herbal medicine for COVID-19 prevention: A review and perspective. Journal of Traditional and Complementary Medicine, 10(4), 420–427. https://doi.org/10.1016/j.jtcme.2020.05.004
  • Pawar, A., & Pal, A. (2020). Molecular and functional resemblance of dexamethasone and quercetin: A paradigm worth exploring in dexamethasone‐nonresponsive COVID‐19 patients. Phytotherapy Research : Ptr, 34(12), 3085–3088. https://doi.org/10.1002/ptr.6886
  • Peterson, L. (2020). COVID-19 and flavonoids: In silico molecular dynamics docking to the active catalytic site of SARS-CoV and SARS-CoV-2 main protease. Available at SSRN 3599426.
  • Phillips, T., Childs, A. C., Dreon, D. M., Phinney, S., & Leeuwenburgh, C. (2003). A dietary supplement attenuates IL-6 and CRP after eccentric exercise in untrained males. Medicine and Science in Sports and Exercise, 35(12), 2032–2037.
  • Pickering, C., & Kiely, J. (2017). Can the ability to adapt to exercise be considered a talent—and if so, can we test for it? Sports Medicine-Open, 3(1), 1–7.
  • Prasanth, D., Murahari, M., Chandramohan, V., Panda, S. P., Atmakuri, L. R., & Guntupalli, C. (2021). In silico identification of potential inhibitors from Cinnamon against main protease and spike glycoprotein of SARS CoV-2. Journal of Biomolecular Structure & Dynamics, 39(13), 4618–4615. https://doi.org/10.1080/07391102.2020.1779129
  • Rao, K.-S., Suryaprakash, V., Senthilkumar, R., Preethy, S., Katoh, S., Ikewaki, N., & Abraham, S. J. (2020). Role of immune dysregulation in increased mortality among a specific subset of COVID-19 patients and immune-enhancement strategies for combatting through nutritional supplements. Frontiers in Immunology, 11, 1548. https://doi.org/10.3389/fimmu.2020.01548
  • Sargiacomo, C., Sotgia, F., & Lisanti, M. P. (2020). COVID-19 and chronological aging: senolytics and other anti-aging drugs for the treatment or prevention of corona virus infection? Aging, 12(8), 6511–6517. https://doi.org/10.18632/aging.103001
  • Schüttelkopf, A. W., & Van Aalten, D. M. (2004). PRODRG: a tool for high-throughput crystallography of protein-ligand complexes. Acta Crystallographica. Section D, Biological Crystallography, 60(Pt 8), 1355–1363. https://doi.org/10.1107/S0907444904011679
  • Schwellnus, M., Soligard, T., Alonso, J.-M., Bahr, R., Clarsen, B., Dijkstra, H. P., Gabbett, T. J., Gleeson, M., Hägglund, M., Hutchinson, M. R., Janse Van Rensburg, C., Meeusen, R., Orchard, J. W., Pluim, B. M., Raftery, M., Budgett, R., & Engebretsen, L. (2016). How much is too much? (Part 2) International Olympic Committee consensus statement on load in sport and risk of illness. British Journal of Sports Medicine, 50(17), 1043–1052. https://doi.org/10.1136/bjsports-2016-096572
  • Siri‐Angkul, N., Chattipakorn, S. C., & Chattipakorn, N. (2020). Angiotensin converting enzyme 2 at the interface between renin‐angiotensin system inhibition and coronavirus disease 2019. The Journal of Physiology, 598(19), 4181–4195.
  • Talbott, S., & Talbott, J. (2009). Effect of BETA 1, 3/1, 6 GLUCAN on upper respiratory tract infection symptoms and mood state in marathon athletes. Journal of Sports Science & Medicine, 8(4), 509.
  • Tao, Q., Du, J., Li, X., Zeng, J., Tan, B., Xu, J., Lin, W., & Chen, X-l. (2020). Network pharmacology and molecular docking analysis on molecular targets and mechanisms of Huashi Baidu formula in the treatment of COVID-19. Drug Development and Industrial Pharmacy, 46(8), 1345–1353. https://doi.org/10.1080/03639045.2020.1788070
  • Toresdahl, B. G., & Asif, I. M. (2020). Coronavirus disease 2019 (COVID-19): considerations for the competitive athlete., SAGE Publications.
  • Veber, D. F., Johnson, S. R., Cheng, H.-Y., Smith, B. R., Ward, K. W., & Kopple, K. D. (2002). Molecular properties that influence the oral bioavailability of drug candidates. Journal of Medicinal Chemistry, 45(12), 2615–2623. https://doi.org/10.1021/jm020017n
  • Vetvicka, V., Thornton, B. P., & Ross, G. D. (1996). Soluble beta-glucan polysaccharide binding to the lectin site of neutrophil or natural killer cell complement receptor type 3 (CD11b/CD18) generates a primed state of the receptor capable of mediating cytotoxicity of iC3b-opsonized target cells. The Journal of Clinical Investigation, 98(1), 50–61. https://doi.org/10.1172/JCI118777
  • Xu, D., Hu, M.-J., Wang, Y.-Q., & Cui, Y.-L. (2019). Antioxidant activities of quercetin and its complexes for medicinal application. Molecules, 24(6), 1123. https://doi.org/10.3390/molecules24061123
  • Yadav, R., Hasan, S., Mahato, S., Celik, I., Mary, Y. S., Kumar, A., Dhamija, P., Sharma, A., Choudhary, N., Chaudhary, P. K., Kushwah, A. S., & Chaudhary, J. K. (2021). Molecular docking, DFT analysis, and dynamics simulation of natural bioactive compounds targeting ACE2 and TMPRSS2 dual binding sites of spike protein of SARS CoV-2. Journal of Molecular Liquids, 342, 116942. https://doi.org/10.1016/j.molliq.2021.116942
  • Zhang, J.-J., Shen, X., Yan, Y.-M., Yan, W., & Cheng, Y.-X. (2020). Discovery of anti-SARS-CoV-2 agents from commercially available flavor via docking screening.
  • Zhou, P., Yang, X.-L., Wang, X.-G., Hu, B., Zhang, L., Zhang, W., Si, H.-R., Zhu, Y., Li, B., Huang, C.-L., Chen, H.-D., Chen, J., Luo, Y., Guo, H., Jiang, R.-D., Liu, M.-Q., Chen, Y., Shen, X.-R., Wang, X. … (2020). A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature, 579(7798), 270–273. https://doi.org/10.1038/s41586-020-2012-7

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.