229
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Structural insight on the liquid silk from the middle silk gland of non-mulberry silkworm Antheraea assamensis

& ORCID Icon
Pages 1128-1139 | Received 27 May 2021, Accepted 07 Dec 2021, Published online: 23 Dec 2021

References

  • Ahmad, R., Kamra, A., & Hasnain, S. E. (2004). Fibroin silk proteins from the nonmulberry silkworm Philosamia ricini are biochemically and immunochemically distinct from those of the mulberry silkworm Bombyx mori. DNA and Cell Biology, 23(3), 149–154.
  • Akai, H. (1983). The structure and ultrastructure of the silk gland. Experientia, 39(5), 443–449. https://doi.org/10.1007/BF01965158
  • Barth, A. (2000). The infrared absorption of amino acid side chains. Progress in Biophysics and Molecular Biology, 74(3–5), 141–173. https://doi.org/10.1016/S0079-6107(00)00021-3
  • Boulet-Audet, M., Vollrath, F., & Holland, C. (2015). Identification and classification of silks using infrared spectroscopy. Journal of Experimental Biology, 218(19), 3138–3149.
  • Cai, S., & Singh, B. R. (2004). A distinct utility of the amide III infrared band for secondary structure estimation of aqueous protein solutions using partial least squares methods. Biochemistry, 43(9), 2541–2549. https://doi.org/10.1021/bi030149y
  • Chen, P., Kim, H. S., Park, C. Y., Kim, H. S., Chin, I. J., & Jin, H. J. (2008). pH-triggered transition of silk fibroin from spherical micelles to nanofibrils in water. Macromolecular Research, 16(6), 539–543. https://doi.org/10.1007/BF03218556
  • Chen, R., Zhu, C., Hu, M., Zhou, L., Yang, H., Zheng, H., Zhou, Y., Hu, Z., Peng, Z., & Wang, B. (2019). Comparative analysis of proteins from Bombyx mori and Antheraea pernyi cocoons for the purpose of silk identification. Journal of Proteomics, 209, 103510. https://doi.org/10.1016/j.jprot.2019.103510
  • Chen, X., Shao, Z., Marinkovic, N. S., Miller, L. M., Zhou, P., & Chance, M. R. (2001). Conformation transition kinetics of regenerated Bombyx mori silk fibroin membrane monitored by time-resolved FTIR spectroscopy. Biophysical Chemistry, 89(1), 25–34.
  • Chirgadze, Y. N., Fedorov, O. V., & Trushina, N. P. (1975). Estimation of amino acid residue side‐chain absorption in the infrared spectra of protein solutions in heavy water. Biopolymers, 14(4), 679–694. https://doi.org/10.1002/bip.1975.360140402
  • Dash, R., Ghosh, S. K., Kaplan, D. L., & Kundu, S. C. (2007). Purification and biochemical characterization of a 70 kDa sericin from tropical tasar silkworm, Antheraea mylitta. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 147(1), 129–134. https://doi.org/10.1016/j.cbpb.2007.01.009
  • Dash, R., Mukherjee, S., & Kundu, S. C. (2006). Isolation, purification and characterization of silk protein sericin from cocoon peduncles of tropical Tasar silkworm, Antheraea mylitta. International Journal of Biological Macromolecules, 38(3–5), 255–258.
  • Datta, A., Ghosh, A. K., & Kundu, S. C. (2001). Purification and characterization of fibroin from the tropical Saturniid silkworm, Antheraea mylitta. Insect Biochemistry and Molecular Biology, 31(10), 1013–1018.
  • Devi, D., Sarma, N. S., Talukdar, B., Chetri, P., Baruah, K. C., & Dass, N. N. (2011). Study of the structure of degummed Antheraea assamensis (muga) silk fibre. Journal of the Textile Institute, 102(6), 527–533. https://doi.org/10.1080/00405000.2010.498172
  • Dong, Y., Dai, F., Ren, Y., Liu, H., Chen, L., Yang, P., Liu, Y., Li, X., Wang, W., & Xiang, H. (2015). Comparative transcriptome analyses on silk glands of six silkmoths imply the genetic basis of silk structure and coloration. BMC Genomics, 16(1), 1–14. https://doi.org/10.1186/s12864-015-1420-9
  • Du, S., Zhang, J., Zhou, W. T., Li, Q. X., Greene, G. W., Zhu, H. J., Li, J. L., & Wang, X. G. (2016). Interactions between fibroin and sericin proteins from Antheraea pernyi and Bombyx mori silk fibers. Journal of Colloid and Interface Science, 478, 316–323. https://doi.org/10.1016/j.jcis.2016.06.030
  • Dutta, S., Bharali, R., Devi, R., & Devi, D. (2012). Purification and characterization of glue like sericin protein from a wild silkworm Antheraea assamensis helfer. Global Journal of Bio Science and Biotechnology (GJBB), 1, 229–233.
  • Foo, C. W. P., Bini, E., Hensman, J., Knight, D. P., Lewis, R. V., & Kaplan, D. L. (2006). Role of pH and charge on silk protein assembly in insects and spiders. Applied Physics A, 82(2), 223–233. https://doi.org/10.1007/s00339-005-3426-7
  • Geourjon, C., & Deleage, G. (1995). SOPMA: Significant improvements in protein secondary structure prediction by consensus prediction from multiple alignments. Computer Applications in the Biosciences: CABIOS, 11(6), 681–684. https://doi.org/10.1093/bioinformatics/11.6.681
  • Goswami, A., Goswami, N., Bhattacharya, A., Borah, P., & Devi, D. (2020). Composition and in silico structural analysis of fibroin from liquid silk of non-mulberry silkworm Antheraea assamensis. International Journal of Biological Macromolecules, 163, 1947–1958. https://doi.org/10.1016/j.ijbiomac.2020.08.232
  • Gupta, A., Mita, K., Arunkumar, K. P., & Nagaraju, J. (2015). Molecular architecture of silk fibroin of Indian golden silkmoth, Antheraea assama. Scientific Reports, 5(1), 1–17.
  • Gupta, D., Agrawal, A., & Rangi, A. (2014). Extraction and characterization of silk sericin. Indian Journal of Fibre & Textile Research (IJFTR), 39(4), 364–372.
  • Gupta, D., Agrawal, A., Chaudhary, H., Gulrajani, M., & Gupta, C. (2013). Cleaner process for extraction of sericin using infrared. Journal of Cleaner Production, 52, 488–494. https://doi.org/10.1016/j.jclepro.2013.03.016
  • Hang, Y., Zhang, Y., Jin, Y., Shao, H., & Hu, X. (2011). Preparation and characterization of electrospun silk fibroin/sericin blend fibers. Journal of Materials Research, 26(23), 2931–2937. https://doi.org/10.1557/jmr.2011.356
  • Hossain, K. S., Ochi, A., Ooyama, E., Magoshi, J., & Nemoto, N. (2003). Dynamic light scattering of native silk fibroin solution extracted from different parts of the middle division of the silk gland of the Bombyx mori silkworm. Biomacromolecules, 4(2), 350–359. https://doi.org/10.1021/bm020109u
  • Hu, X., Kaplan, D., & Cebe, P. (2006). Determining beta-sheet crystallinity in fibrous proteins by thermal analysis and infrared spectroscopy. Macromolecules, 39(18), 6161–6170. https://doi.org/10.1021/ma0610109
  • Iridag, Y., & Kazanci, M. (2006). Preparation and characterization of Bombyx mori silk fibroin and wool keratin. Journal of Applied Polymer Science, 100(5), 4260–4264. https://doi.org/10.1002/app.23810
  • Jena, K., Pandey, J. P., Kumari, R., Sinha, A. K., Gupta, V. P., & Singh, G. P. (2018). Tasar silk fiber waste sericin: new source for anti-elastase, anti-tyrosinase and anti-oxidant compounds. International Journal of Biological Macromolecules, 114, 1102–1108.
  • Jin, Y., Hang, Y., Luo, J., Zhang, Y., Shao, H., & Hu, X. (2013). In vitro studies on the structure and properties of silk fibroin aqueous solutions in silkworm. International Journal of Biological Macromolecules, 62, 162–166. https://doi.org/10.1016/j.ijbiomac.2013.08.027
  • Ki, C. S., Um, I. C., & Park, Y. H. (2009). Acceleration effect of sericin on shear-induced β-transition of silk fibroin. Polymer, 50(19), 4618–4625. https://doi.org/10.1016/j.polymer.2009.02.017
  • Koperska, M. A., Pawcenis, D., Bagniuk, J., Zaitz, M. M., Missori, M., Łojewski, T., & Łojewska, J. (2014). Degradation markers of fibroin in silk through infrared spectroscopy. Polymer Degradation and Stability, 105, 185–196. https://doi.org/10.1016/j.polymdegradstab.2014.04.008
  • Krimm, S., & Bandekar, J. (1986). Vibrational spectroscopy and conformation of peptides, polypeptides, and proteins. Advances in Protein Chemistry, 38, 181–364.
  • Kumar, J. P., & Mandal, B. B. (2017). Antioxidant potential of mulberry and non-mulberry silk sericin and its implications in biomedicine. Free Radical Biology & Medicine, 108, 803–818.
  • Lackowicz, J. R. (2002). Protein flourescence. In Topics in fluorescence spectroscopy (Vol. 6). Kluwer Academic Publishers.
  • Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227(5259), 680–685. https://doi.org/10.1038/227680a0
  • Lee, K. H. (2004). Silk sericin retards the crystallization of silk fibroin. Macromolecular Rapid Communications, 25(20), 1792–1796. https://doi.org/10.1002/marc.200400333
  • Liang, J. N., & Chakrabarti, B. (1982). Spectroscopic investigations of bovine lens crystallins. 1. Circular dichroism and intrinsic fluorescence. Biochemistry, 21(8), 1847–1852.
  • Ling, S., Qi, Z., Knight, D. P., Huang, Y., Huang, L., Zhou, H., Shao, Z., & Chen, X. (2013). Insight into the structure of single Antheraea pernyi silkworm fibers using synchrotron FTIR microspectroscopy. Biomacromolecules, 14(6), 1885–1892. https://doi.org/10.1021/bm400267m
  • Ling, S., Qi, Z., Knight, D. P., Shao, Z., & Chen, X. (2011). Synchrotron FTIR microspectroscopy of single natural silk fibers. Biomacromolecules, 12(9), 3344–3349.
  • Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry, 193(1), 265–275. https://doi.org/10.1016/S0021-9258(19)52451-6
  • Lu, Q., Hu, X., Wang, X., Kluge, J. A., Lu, S., Cebe, P., & Kaplan, D. L. (2010). Water-insoluble silk films with silk I structure. Acta Biomaterialia, 6(4), 1380–1387. https://doi.org/10.1016/j.actbio.2009.10.041
  • Madeira, F., Park, Y. M., Lee, J., Buso, N., Gur, T., Madhusoodanan, N., Basutkar, P., Tivey, A. R., Potter, S. C., Finn, R. D., & Lopez, R. (2019). The EMBL-EBI search and sequence analysis tools APIs in 2019. Nucleic Acids Research, 47(W1), W636–W641. https://doi.org/10.1093/nar/gkz268
  • McGill, M., Holland, G. P., & Kaplan, D. L. (2019). Experimental methods for characterizing the secondary structure and thermal properties of silk proteins. Macromolecular Rapid Communications, 40(1), 1800390. https://doi.org/10.1002/marc.201800390
  • Moore, W. H., & Krimm, S. (1976). Vibrational analysis of peptides, polypeptides, and proteins. II. β‐Poly (L‐alanine) and β‐poly (L‐alanylglycine). Biopolymers, 15(12), 2465–2483. https://doi.org/10.1002/bip.1976.360151211
  • Nayak, S., Talukdar, S., & Kundu, S. C. (2012). Potential of 2D crosslinked sericin membranes with improved biostability for skin tissue engineering. Cell and Tissue Research, 347(3), 783–794.
  • Papadopoulos, P., Sölter, J., & Kremer, F. (2007). Structure-property relationships in major ampullate spider silk as deduced from polarized FTIR spectroscopy. The European Physical Journal E, 24(2), 193–199. https://doi.org/10.1140/epje/i2007-10229-9
  • Parent, L. R., Onofrei, D., Xu, D., Stengel, D., Roehling, J. D., Addison, J. B., Forman, C., Amin, S. A., Cherry, B. R., Yarger, J. L., Gianneschi, N. C., & Holland, G. P. (2018). Hierarchical spidroin micellar nanoparticles as the fundamental precursors of spider silks. Proceedings of the National Academy of Sciences of the United States of America, 115(45), 11507–11512. https://doi.org/10.1073/pnas.1810203115
  • Putthanarat, S., Zarkoob, S., Magoshi, J., Chen, J. A., Eby, R. K., Stone, M., & Adams, W. W. (2002). Effect of processing temperature on the morphology of silk membranes. Polymer, 43(12), 3405–3413. https://doi.org/10.1016/S0032-3861(02)00161-1
  • Reinstädler, D., Fabian, H., Backmann, J., & Naumann, D. (1996). Refolding of thermally and urea-denatured ribonuclease A monitored by time-resolved FTIR spectroscopy. Biochemistry, 35(49), 15822–15830.
  • Reinstädler, D., Fabian, H., & Naumann, D. (1999). New structural insights into the refolding of ribonuclease T1 as seen by time‐resolved Fourier‐transform infrared spectroscopy. Proteins: Structure, Function, and Genetics, 34(3), 303–316. https://doi.org/10.1002/(SICI)1097-0134(19990215)34:3<303::AID-PROT4>3.0.CO;2-H
  • Sahu, N., Pal, S., Sapru, S., Kundu, J., Talukdar, S., Singh, N. I., Yao, J., & Kundu, S. C. (2016). Non-mulberry and mulberry silk protein sericins as potential media supplement for animal cell culture. BioMed Research International, 2016, 7461041. https://doi.org/10.1155/2016/7461041
  • Surewicz, W. K., & Mantsch, H. H. (1988). New insight into protein secondary structure from resolution-enhanced infrared spectra. Biochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology, 952, 115–130. https://doi.org/10.1016/0167-4838(88)90107-0
  • Taddei, P., & Monti, P. (2005). Vibrational infrared conformational studies of model peptides representing the semicrystalline domains of Bombyx mori silk fibroin. Biopolymers, 78(5), 249–258. https://doi.org/10.1002/bip.20275
  • Takasu, Y., Yamada, H., & Tsubouchi, K. (2002). Isolation of three main sericin components from the cocoon of the silkworm, Bombyx mori. Bioscience, Biotechnology, and Biochemistry, 66(12), 2715–2718.
  • Teramoto, H., & Miyazawa, M. (2003). Analysis of structural properties and formation of sericin fiber by infrared spectroscopy. Journal of Insect Biotechnology and Sericology, 72(3), 157–162.
  • Teshome, A., Onyari, J. M., Raina, S. K., Kabaru, J. M., & Vollrath, F. (2013). Mechanical and thermal degradation properties of silk from African wild silkmoths. Journal of Applied Polymer Science, 127(1), 289–297. https://doi.org/10.1002/app.37873
  • Tretinnikov, O. N., & Tamada, Y. (2001). Influence of casting temperature on the near-surface structure and wettability of cast silk fibroin films. Langmuir, 17(23), 7406–7413. https://doi.org/10.1021/la010791y
  • Wang, X., Li, Y., Liu, Q., Chen, Q., Xia, Q., & Zhao, P. (2017). In vivo effects of metal ions on conformation and mechanical performance of silkworm silks. Biochimica et Biophysica Acta. General Subjects, 1861(3), 567–576. https://doi.org/10.1016/j.bbagen.2016.11.025
  • Wang, Y., Wen, J., Peng, B., Hu, B., Chen, X., & Shao, Z. (2018). Understanding the mechanical properties and structure transition of Antheraea pernyi silk fiber induced by its contraction. Biomacromolecules, 19(6), 1999–2006. https://doi.org/10.1021/acs.biomac.7b01691
  • Wu, J. H., Wang, Z., & Xu, S. Y. (2007). Preparation and characterization of sericin powder extracted from silk industry wastewater. Food Chemistry, 103(4), 1255–1262. https://doi.org/10.1016/j.foodchem.2006.10.042
  • Wu, X., Wu, X., Shao, M., & Yang, B. (2017). Structural changes of Bombyx mori fibroin from silk gland to fiber as evidenced by Terahertz spectroscopy and other methods. International Journal of Biological Macromolecules, 102, 1202–1210.
  • Yang, J. T., Wu, C. S. C., & Martinez, H. M. (1986). Calculation of protein conformation from circular dichroism. Methods in Enzymology, 130, 208–269.
  • Zhang, X., Tsukada, M., Morikawa, H., Aojima, K., Zhang, G., & Miura, M. (2011). Production of silk sericin/silk fibroin blend nanofibers. Nanoscale Research Letters, 6(1), 1–8. https://doi.org/10.1186/1556-276X-6-510

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.