173
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Use of simplified models for theoretical prediction of the interactions between available antibodies and the receptor-binding domain of SARS-CoV-2 spike protein

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 1018-1027 | Received 21 Jul 2021, Accepted 02 Dec 2021, Published online: 22 Dec 2021

References

  • Barnes, C. O., West, A. P., Huey-Tubman, K. E., Hoffmann, M. A. G., Sharaf, N. G., Hoffman, P. R., Koranda, N., Gristick, H. B., Gaebler, C., Muecksch, F., Lorenzi, J. C. C., Finkin, S., Hägglöf, T., Hurley, A., Millard, K. G., Weisblum, Y., Schmidt, F., Hatziioannou, T., Bieniasz, P. D., … Bjorkman, P. J. (2020). Structures of human antibodies bound to SARS-CoV-2 spike reveal common epitopes and recurrent features of antibodies. Cell, 182(4), 828–842.e16. https://doi.org/10.1016/j.cell.2020.06.025
  • Bicudo, N., Bicudo, E., Costa, J. D., Castro, J. A. L. P., & Barra, G. B. (2020). Co-infection of SARS-CoV-2 and dengue virus: A clinical challenge. The Brazilian Journal of Infectious Diseases: An Official Publication of the Brazilian Society of Infectious Diseases, 24(5), 452–454. https://doi.org/10.1016/j.bjid.2020.07.008
  • Carter, L. J., Garner, L. V., Smoot, J. W., Li, Y., Zhou, Q., Saveson, C. J., Sasso, J. M., Gregg, A. C., Soares, D. J., Beskid, T. R., Jervey, S. R., & Liu, C. (2020). Assay techniques and test development for COVID-19 diagnosis. ACS Central Science, 6(5), 591–605. https://doi.org/10.1021/acscentsci.0c00501
  • Casalino, L., Dommer, A. C., Gaieb, Z., Barros, E. P., Sztain, T., Ahn, S.-H., Trifan, A., Brace, A., Bogetti, A. T., Clyde, A., Ma, H., Lee, H., Turilli, M., Khalid, S., Chong, L. T., Simmerling, C., Hardy, D. J., Maia, J. D., Phillips, J. C., … Amaro, R. E. (2021). AI-driven multiscale simulations illuminate mechanisms of SARS-CoV-2 spike dynamics. The International Journal of High Performance Computing Applications, 35(5), 432–451. https://doi.org/10.1177/10943420211006452
  • Case, D. A., Walker, R. C., Cheatham, T. E., Simmerling, C., Roitberg, A., Merz, K. M., Luo, R., & Darden, T. (2018). Amber 18. University of California.
  • Cerofolini, L., Fragai, M., Luchinat, C., & Ravera, E. (2020). Orientation of immobilized antigens on common surfaces by a simple computational model: Exposition of SARS-CoV-2 Spike protein RBD epitopes. Biophysical Chemistry, 265, 106441 https://doi.org/10.1016/j.bpc.2020.106441
  • Chu, D. K. W., Pan, Y., Cheng, S. M. S., Hui, K. P. Y., Krishnan, P., Liu, Y., Ng, D. Y. M., Wan, C. K. C., Yang, P., Wang, Q., Peiris, M., & Poon, L. L. M. (2020). Molecular diagnosis of a novel coronavirus (2019-nCoV) causing an outbreak of pneumonia. Clinical Chemistry, 66(4), 549–555. https://doi.org/10.1093/clinchem/hvaa029
  • Corman, V. M., Landt, O., Kaiser, M., Molenkamp, R., Meijer, A., Chu, D. K., Bleicker, T., Brünink, S., Schneider, J., Schmidt, M. L., Mulders, D. G., Haagmans, B. L., van der Veer, B., van den Brink, S., Wijsman, L., Goderski, G., Romette, J.-L., Ellis, J., Zambon, M., … Drosten, C. (2020). Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR. Eurosurveillance, 25(3), 23-30. https://doi.org/10.2807/1560-7917.ES.2020.25.3.2000045
  • Eissa, S., & Zourob, M. (2021). Development of a Low-Cost Cotton-Tipped Electrochemical Immunosensor for the Detection of SARS-CoV-2. Analytical Chemistry, 93(3), 1826–1833. https://doi.org/10.1021/acs.analchem.0c04719
  • Forssen, P., Samuelsson, J., Lacki, K., & Fornstedt, T. (2020). Advanced analysis of biosensor data for SARS-COV-2 RBD and ACE2 interactions. Analytical Chemistry, 92(17), 11520–11524. https://doi.org/10.1021/acs.analchem.0c02475
  • Garcia-Garcia, W. I., Vidal-Limon, A., Arrocha-Arcos, A. A., Palomares, L. A., Ramirez, O. T., & Miranda-Hernández, M. (2019). Rotavirus VP6 protein as a bio-electrochemical scaffold: Molecular dynamics and experimental electrochemistry. Bioelectrochemistry (Amsterdam, Netherlands), 127, 180–186. https://doi.org/10.1016/j.bioelechem.2019.02.012
  • Genheden, S., & Ryde, U. (2012). Comparison of end-point continuum-solvation methods for the calculation of protein-ligand binding free energies. Proteins, 80(5), 1326–1342. https://doi.org/10.1002/prot.24029
  • Genheden, S., & Ryde, U. (2015). The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. Expert Opinion on Drug Discovery, 10(5), 449–461. https://doi.org/10.1517/17460441.2015.1032936
  • Henrina, J., Putra, I. C. S., Lawrensia, S., Handoyono, Q. F., & Cahyadi, A. (2020). Coronavirus disease of 2019: A mimicker of dengue infection? SN Comprehensive Clinical Medicine, 2(8), 1109–1119. https://doi.org/10.1007/s42399-020-00364-3
  • Hoffmann, M., Kleine-Weber, H., Schroeder, S., Krüger, N., Herrler, T., Erichsen, S., Schiergens, T. S., Herrler, G., Wu, N. H., Nitsche, A., Müller, M. A., Drosten, C., & Pöhlmann, S. (2020). SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell, 181(2), 271–280.e8. https://doi.org/10.1016/j.cell.2020.02.052
  • Huo, J., Zhao, Y., Ren, J., Zhou, D., Duyvesteyn, H. M. E., Ginn, H. M., Carrique, L., Malinauskas, T., Ruza, R. R., Shah, P. N. M., Tan, T. K., Rijal, P., Coombes, N., Bewley, K. R., Tree, J. A., Radecke, J., Paterson, N. G., Supasa, P., Mongkolsapaya, J., … Stuart, D. I. (2020). Neutralization of SARS-CoV-2 by destruction of the prefusion spike. Cell Host & Microbe, 28(3), 445–454.e6. https://doi.org/10.1016/j.chom.2020.06.010
  • Jarocka, U., Sawicka, R., Góra-Sochacka, A., Sirko, A., Zagórski-Ostoja, W., Radecki, J., & Radecka, H. (2014). An immunosensor based on antibody binding fragments attached to gold nanoparticles for the detection of peptides derived from avian influenza hemagglutinin H5. Sensors (Basel, Switzerland), 14(9), 15714–15728. https://doi.org/10.3390/s140915714
  • Jo, S., Kim, T., Iyer, V. G., & Im, W. (2008). CHARMM-GUI: A web-based graphical user interface for CHARMM. Journal of Computational Chemistry, 29(11), 1859–1865. https://doi.org/10.1002/jcc.20945
  • Ju, B., Zhang, Q., Ge, J., Wang, R., Sun, J., Ge, X., Yu, J., Shan, S., Zhou, B., Song, S., Tang, X., Yu, J., Lan, J., Yuan, J., Wang, H., Zhao, J., Zhang, S., Wang, Y., Shi, X., … Zhang, L. (2020). Human neutralizing antibodies elicited by SARS-CoV-2 infection. Nature, 584(7819), 115–119. https://doi.org/10.1038/s41586-020-2380-z
  • Liu, L., Wang, P., Nair, M. S., Yu, J., Rapp, M., Wang, Q., Luo, Y., Chan, J. F.-W., Sahi, V., Figueroa, A., Guo, X. V., Cerutti, G., Bimela, J., Gorman, J., Zhou, T., Chen, Z., Yuen, K.-Y., Kwong, P. D., Sodroski, J. G., … Ho, D. D. (2020). Potent neutralizing antibodies against multiple epitopes on SARS-CoV-2 spike. Nature, 584(7821), 450–456. https://doi.org/10.1038/s41586-020-2571-7
  • Lustig, Y., Keler, S., Kolodny, R., Ben-Tal, N., Atias-Varon, D., Shlush, E., Gerlic, M., Munitz, A., Doolman, R., Asraf, K., Shlush, L. I., & Vivante, A. (2021). Potential antigenic cross-reactivity between severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and dengue viruses. Clinical Infectious Diseases : An Official Publication of the Infectious Diseases Society of America, 73(7), e2444–e2449. https://doi.org/10.1093/cid/ciaa1207
  • Masyeni, S., Santoso, M. S., Widyaningsih, P. D., Asmara, D. G. W., Nainu, F., Harapan, H., & Sasmono, R. T. (2021). Serological cross-reaction and coinfection of dengue and COVID-19 in Asia: Experience from Indonesia. International Journal of Infectious Diseases, 102, 152–154. https://doi.org/10.1016/j.ijid.2020.10.043
  • Miao, Y., Feher, V. A., & McCammon, J. A. (2015). Gaussian accelerated molecular dynamics: Unconstrained enhanced sampling and free energy calculation. Journal of Chemical Theory and Computation, 11(8), 3584–3595. https://doi.org/10.1021/acs.jctc.5b00436
  • Miao, Y., & McCammon, J. A. (2017). Gaussian accelerated molecular dynamics: Theory, implementation, and applications. Annual Reports in Computational Chemistry, 13, 231–278. https://doi.org/10.1016/bs.arcc.2017.06.005
  • Olsson, M. H. M., Søndergaard, C. R., Rostkowski, M., & Jensen, J. H. (2011). PROPKA3: Consistent treatment of internal and surface residues in empirical pKa predictions. Journal of Chemical Theory and Computation, 7(2), 525–537. https://doi.org/10.1021/ct100578z
  • Pinto, D., Park, Y.-J., Beltramello, M., Walls, A. C., Tortorici, M. A., Bianchi, S., Jaconi, S., Culap, K., Zatta, F., De Marco, A., Peter, A., Guarino, B., Spreafico, R., Cameroni, E., Case, J. B., Chen, R. E., Havenar-Daughton, C., Snell, G., Telenti, A., … Corti, D. (2020). Cross-neutralization of SARS-CoV-2 by a human monoclonal SARS-CoV antibody. Nature, 583(7815), 290–295. https://doi.org/10.1038/s41586-020-2349-y
  • Planas, D., Veyer, D., Baidaliuk, A., Staropoli, I., Guivel-Benhassine, F., Rajah, M. M., Planchais, C., Porrot, F., Robillard, N., Puech, J., Prot, M., Gallais, F., Gantner, P., Velay, A., Le Guen, J., Kassis-Chikhani, N., Edriss, D., Belec, L., Seve, A., … Schwartz, O. (2021). Reduced sensitivity of SARS-CoV-2 variant Delta to antibody neutralization. Nature, 596(7871), 276–280. https://doi.org/10.1038/s41586-021-03777-9
  • Quental, K. N., Leite, A. L., Feitosa, A., do, N. A., Oliveira, Z. N. P., de, Tavares, L. V., de, S., Tavares, W. G., de, S., Pinheiro, E. F., Lacsina, J. R., DeSouza-Vieira, T., & Silva, J. B. N. F. (2021). SARS-CoV-2 co-infection with dengue virus in Brazil: A potential case of viral transmission by a health care provider to household members. Travel Medicine and Infectious Disease, 40, 101975. https://doi.org/10.1016/j.tmaid.2021.101975
  • Roe, D. R., & Cheatham, T. E. (2013). PTRAJ and CPPTRAJ: Software for processing and analysis of molecular dynamics trajectory data. Journal of Chemical Theory and Computation, 9(7), 3084–3095. https://doi.org/10.1021/ct400341p
  • Santoso, M. S., Masyeni, S., Haryanto, S., Yohan, B., Hibberd, M. L., & Sasmono, R. T. (2021). Assessment of dengue and COVID-19 antibody rapid diagnostic tests cross-reactivity in Indonesia. Virology Journal, 18(1), 54.https://doi.org/10.1186/s12985-021-01522-2
  • Souza, P. F. N., Lopes, F. E. S., Amaral, J. L., Freitas, C. D. T., & Oliveira, J. T. A. (2020). A molecular docking study revealed that synthetic peptides induced conformational changes in the structure of SARS-CoV-2 spike glycoprotein, disrupting the interaction with human ACE2 receptor. International Journal of Biological Macromolecules, 164, 66–76. https://doi.org/10.1016/j.ijbiomac.2020.07.174
  • Urban, G. A. (2000). Biosensor design and fabrication. Encyclopedia of Analytical Chemistry, 2, 1164–1181. https://doi.org/10.1002/9780470027318.a0505
  • Vidal-Limon, A., Antonio Huerta-Miranda, G., I., García-García, W., & Miranda-Hernández, M. (2021). Design of bioelectrochemical interfaces assisted by molecular dynamics simulations. In Homology molecular modeling—Perspectives and applications (pp. 1–18). IntechOpen. https://doi.org/10.5772/intechopen.93884
  • Walls, A. C., Park, Y.-J., Tortorici, M. A., Wall, A., McGuire, A. T., & Veesler, D. (2020). Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell, 181(2), 281–292.e6. https://doi.org/10.1016/j.cell.2020.02.058
  • Walls, A. C., Xiong, X., Park, Y.-J., Tortorici, M. A., Snijder, J., Quispe, J., Cameroni, E., Gopal, R., Dai, M., Lanzavecchia, A., Zambon, M., Rey, F. A., Corti, D., & Veesler, D. (2019). Unexpected receptor functional mimicry elucidates activation of coronavirus fusion. Cell, 176(5), 1026–1039.e15. https://doi.org/10.1016/j.cell.2018.12.028
  • Wang, C., Horby, P. W., Hayden, F. G., & Gao, G. F. (2020). A novel coronavirus outbreak of global health concern. The Lancet, 395(10223), 470–473. https://doi.org/10.1016/S0140-6736(20)30185-9
  • Wang, Q., Zhang, Y., Wu, L., Niu, S., Song, C., Zhang, Z., Lu, G., Qiao, C., Hu, Y., Yuen, K. Y., Wang, Q., Zhou, H., Yan, J., & Qi, J. (2020). Structural and functional basis of SARS-CoV-2 entry by using human ACE2. Cell, 181(4), 894–904.e9. https://doi.org/10.1016/j.cell.2020.03.045
  • Won, J., Lee, S., Park, M., Kim, T. Y., Park, M. G., Choi, B. Y., Kim, D., Chang, H., Kim, V. N., & Lee, C. J. (2020). Development of a laboratory-safe and low-cost detection protocol for SARS-CoV-2 of the coronavirus disease 2019 (COVID-19). Experimental Neurobiology, 29(2), 107–119. https://doi.org/10.5607/en20009
  • Woo, H., Park, S.-J., Choi, Y. K., Park, T., Tanveer, M., Cao, Y., Kern, N. R., Lee, J., Yeom, M. S., Croll, T. I., Seok, C., & Im, W. (2020). Developing a fully glycosylated full-length SARS-CoV-2 spike protein model in a viral membrane. The Journal of Physical Chemistry. B, 124(33), 7128–7137. https://doi.org/10.1021/acs.jpcb.0c04553
  • World Health Organization. (2020). WHO coronavirus disease (COVID-19) dashboard. World Health Organization.
  • Wrapp, D., Wang, N., Corbett, K. S., Goldsmith, J. A., Hsieh, C. L., Abiona, O., Graham, B. S., & McLellan, J. S. (2020). Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science, 367(6483), 1260–1263. https://doi.org/10.1126/science.abb2507
  • Zhou, P., Yang, X.-L., Wang, X.-G., Hu, B., Zhang, L., Zhang, W., Si, H.-R., Zhu, Y., Li, B., Huang, C.-L., Chen, H.-D., Chen, J., Luo, Y., Guo, H., Jiang, R.-D., Liu, M.-Q., Chen, Y., Shen, X.-R., Wang, X., … Shi, Z.-L. (2020a). A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature, 588(7836), E6–E6. https://doi.org/10.1038/s41586-020-2012-7
  • Zhou, P., Yang, X.-L., Wang, X.-G., Hu, B., Zhang, L., Zhang, W., Si, H.-R., Zhu, Y., Li, B., Huang, C.-L., Chen, H.-D., Chen, J., Luo, Y., Guo, H., Jiang, R.-D., Liu, M.-Q., Chen, Y., Shen, X.-R., Wang, X., … Shi, Z.-L. (2020b). A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature, 579(7798), 270–273. https://doi.org/10.1038/s41586-020-2012-7
  • Zhu, X., Wang, X., Han, L., Chen, T., Wang, L., Li, H., Li, S., He, L., Fu, X., Chen, S., Xing, M., Chen, H., & Wang, Y. (2020). Multiplex reverse transcription loop-mediated isothermal amplification combined with nanoparticle-based lateral flow biosensor for the diagnosis of COVID-19. Biosensors and Bioelectronics, 166, 112437. https://doi.org/10.1016/j.bios.2020.112437
  • Zuo, X., Fan, C., & Chen, H.-Y. (2017). Biosensing: CRISPR-powered diagnostics. Nature Biomedical Engineering, 1(6), 91. https://doi.org/10.1038/s41551-017-0091

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.