469
Views
4
CrossRef citations to date
0
Altmetric
Research Articles

Synthesis, in vitro biological screening and docking study of benzo[d]oxazole bis Schiff base derivatives as a potent anti-Alzheimer agent

, , , , , ORCID Icon, , , ORCID Icon, , & show all
Pages 1649-1664 | Received 18 Mar 2021, Accepted 23 Dec 2021, Published online: 06 Jan 2022

References

  • Adalat, B., Rahim, F., Taha, M., Alshamrani, F. J., Anouar, E. H., Uddin, N., Shah, S. A. A., Ali, Z., & Zakaria, Z. A. (2020). Synthesis of benzimidazole–based analogs as anti-alzheimer's disease compounds and their molecular docking studies. Molecules, 25(20), 4828. https://doi.org/10.3390/molecules25204828
  • Akincioglu, H., & Gulcin, I. (2020). Potent acetylcholinesterase inhibitors: Potential drugs for Alzheimer’s disease. Medicinal Chemistry., 20, 703–715.
  • Alomari, M., Taha, M., Imran, S., Jamil, W., Selvaraj, M., Uddin, N., & Rahim, F. (2019). Design, synthesis, in vitro evaluation, molecular docking and ADME properties studies of hybrid bis-coumarin with thiadiazole as a new inhibitor of Urease. Bioorganic Chemistry, 92, 103235. https://doi.org/10.1016/j.bioorg.2019.103235
  • Anand, P., & Singh, B. (2013). A review on cholinesterase inhibitors for Alzheimer's disease. Archives of Pharmacal Research, 36(4), 375–399. https://doi.org/10.1007/s12272-013-0036-3
  • Arslan, T., Ceylan, M. B., Baş, H., Biyiklioglu, Z., & Senturk, M. (2020). Design, synthesis, characterization of peripherally tetra-pyridine-triazole-substituted phthalocyanines and their inhibitory effects on cholinesterases (AChE/BChE) and carbonic anhydrases (hCA I, II and IX). Dalton Transactions (Cambridge, England : 2003), 49(1), 203–209. https://doi.org/10.1039/c9dt03897c
  • Case, D., Ben-Shalom, I., Brozell, S., Cerutti, D., Cheatham Iii, T., Cruzeiro, V., Darden, T., Duke, R., Ghoreishi, D., & Gilson, M. (2018). AMBER 2018. University of California.
  • Cavdar, H., Senturk, M., Guney, M., Durdagi, S., Kayik, G., Supuran, C. T., & Ekinci, D. (2019). Inhibition of acetylcholinesterase and butyrylcholinesterase with uracil derivatives: Kinetic and computational studies. Journal of Enzyme Inhibition and Medicinal Chemistry, 34 (1), 429–437.
  • Chatonnet, A., & Lockridge, O. (1989). Comparison of butyrylcholinesterase and acetylcholinesterase. The Biochemical Journal, 260(3), 625–634. https://doi.org/10.1042/bj2600625
  • Cheung, J., Rudolph, M. J., Burshteyn, F., Cassidy, M. S., Gary, E. N., Love, J., Franklin, M. C., & Height, J. J. (2012). Structures of human acetylcholinesterase in complex with pharmacologically important ligands. Journal of Medicinal Chemistry, 55(22), 10282–10286. https://doi.org/10.1021/jm300871x
  • Chigurupati, S., Selvaraj, M., Mani, V., Selvarajan, K. K., Mohammad, J. I., Kaveti, B., Bera, H., Palanimuthu, V. R., Teh, L. K., & Salleh, M. Z. (2016). Identification of novel acetylcholinesterase inhibitors: Indolopyrazoline derivatives and molecular docking studies. Bioorganic Chemistry, 67, 9–17. https://doi.org/10.1016/j.bioorg.2016.05.002
  • Colovic, M. B., Krstic, D. Z., Lazarevic-Pasti, T. D., Bondzic, A. M., & Vasic, V. M. (2013). Acetylcholinesterase inhibitors: Pharmacology and toxicology. Current Neuropharmacology, 11(3), 315–335. https://doi.org/10.2174/1570159X11311030006
  • Darden, T., York, D., & Pedersen, L. (1993). Particle mesh Ewald: An N.log(N) method for Ewald sums in large systems. The Journal of Chemical Physics, 98(12), 10089–10092. https://doi.org/10.1063/1.464397
  • Davies, P., & Maloney, A. J. (1976). Selective loss of central cholinergic neurons in Alzheimer's disease. The Lancet, 308(8000), 1403. https://doi.org/10.1016/S0140-6736(76)91936-X
  • Dvir, H., Silman, I., Harel, M., Rosenberry, T., & Sussman, J. L. (2010). Acetylcholinesterase: From 3D structure to function. Chemico-Biological Interactions, 187(1-3), 10–22. https://doi.org/10.1016/j.cbi.2010.01.042
  • Huang, Y.-J., Huang, Y., Baldassarre, H., Wang, B., Lazaris, A., Leduc, M., Bilodeau, A. S., Bellemare, A., Côté, M., Herskovits, P., Touati, M., Turcotte, C., Valeanu, L., Lemée, N., Wilgus, H., Bégin, I., Bhatia, B., Rao, K., Neveu, N., … Langermann, S. (2007). Recombinant human butyrylcholinesterase from milk of transgenic animals to protect against organophosphate poisoning. Proceedings of the National Academy of Sciences of the United States of America, 104(34), 13603–13608. https://doi.org/10.1073/pnas.0702756104
  • Inestrosa, N. C., Alvarez, A., Pérez, C. A., Moreno, R. D., Vicente, M., Linker, C., Casanueva, O. I., Soto, C., & Garrido, J. (1996). Acetylcholinesterase accelerates assembly of amyloid-β-peptides into Alzheimer's fibrils: Possible role of the peripheral site of the enzyme. Neuron, 16(4), 881–891. https://doi.org/10.1016/S0896-6273(00)80108-7
  • Kazancioglu, E. A., & Senturk, M. (2020). Synthesis of N-phenylsulfonamide derivatives and investigation of some esterase enzymes inhibiting properties. Bioorganic Chemistry, 104, 104279. https://doi.org/10.1016/j.bioorg.2020.104279
  • Lane, R. M., Potkin, S. G., & Enz, A. (2006). Targeting acetylcholinesterase and butyrylcholinesterase in dementia. The International Journal of Neuropsychopharmacology, 9(1), 101–124. https://doi.org/10.1017/S1461145705005833
  • Maier, J. A., Martinez, C., Kasavajhala, K., Wickstrom, L., Hauser, K. E., & Simmerling, C. (2015). ff14SB: Improving the accuracy of protein side chain and backbone parameters from ff99SB. Journal of Chemical Theory and Computation, 11(8), 3696–3713. https://doi.org/10.1021/acs.jctc.5b00255
  • Mansha, M., Taha, M., Hassane Anouar, E., & Ullah, N. (2021). The design of fluoroquinolone-based cholinesterase inhibitors: Synthesis, biological evaluation and in silico docking studies. Arabian Journal of Chemistry., 14(7), 103211. https://doi.org/10.1016/j.arabjc.2021.103211
  • Mesulam, M. M., Guillozet, A., Shaw, P., Levey, A., Duysen, E. G., & Lockridge, O. (2002). Acetylcholinesterase knockouts establish central cholinergic pathways and can use butyrylcholinesterase to hydrolyze acetylcholine. Neuroscience, 110(4), 627–639. https://doi.org/10.1016/S0306-4522(01)00613-3
  • Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S., & Olson, A. J. (2009). AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. Journal of Computational Chemistry, 30(16), 2785–2791. https://doi.org/10.1002/jcc.21256
  • Murty, M. S. R., Ram, K. R., Rao, R. V., Yadav, J. S., Rao, J. V., Cheriyan, V. T., & Anto, R. J. (2011). Synthesis and preliminary evaluation of 2-substituted-1, 3-benzoxazole and 3-[(3-substituted) propyl]-1, 3-benzoxazol-2 (3 H)-one derivatives as potent anticancer agents. Medicinal Chemistry Research, 20(5), 576–586. https://doi.org/10.1007/s00044-010-9353-y
  • Nuthakki, V. K., Sharma, A., Kumar, A., & Bharate, S. B. (2019). Identification of embelin, a 3‐undecyl‐1, 4‐benzoquinone from Embelia ribes as a multitargeted anti‐Alzheimer agent. Drug Development Research, 80(5), 655–665.
  • Özil, M., Balaydın, H. T., & Şentürk, M. (2019). Synthesis of 5-methyl-2,4-dihydro-3H-1,2,4-triazole-3-one's aryl Schiff base derivatives and investigation of carbonic anhydrase and cholinesterase (AChE, BuChE) inhibitory properties. Bioorganic Chemistry, 86, 705–713. https://doi.org/10.1016/j.bioorg.2019.02.045
  • Perry, E. K., Perry, R. H., Blessed, G., & Tomlinson, B. E. (1978). Changes in brain cholinesterases in senile dementia of Alzheimer type. Neuropathology and Applied Neurobiology, 4(4), 273–277. https://doi.org/10.1111/j.1365-2990.1978.tb00545.x
  • Prince, M., Comas-Herrera, A., Knapp, M., Guerchet, M., & Karagiannidou, M. (2016). Improving healthcare for people living with dementia: coverage, quality and costs now and in the future. World Alzheimer report.
  • Rahim, F., Javed, M. T., Ullah, H., Wadood, A., & Taha, M. (2015). Synthesis, molecular docking, acetylcholinesterase and butyrylcholinesterase inhibitory potential of thiazole analogs as new inhibitors for Alzheimer disease. Bioorganic Chemistry, 62, 106–116. https://doi.org/10.1016/j.bioorg.2015.08.002
  • Ryckaert, J.-P., Ciccotti, G., & Berendsen, H. J. C. (1977). Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. Journal of Computational Physics, 23(3), 327–341. https://doi.org/10.1016/0021-9991(77)90098-5
  • Selkoe, D. J. (1999). Translating cell biology into therapeutic advances in Alzheimer's disease. Nature, 399(6738), A23–31. https://doi.org/10.1038/399a023
  • Seraj, F., Khan, K. M., Khan, A., Ali, M., Khalil, R., Ul-Haq, Z., Hameed, S., Taha, M., Salar, U., & Perveen, S. (2021). Biology-oriented drug synthesis (BIODS), in vitro urease inhibitory activity, and in silico studies on ibuprofen derivatives. Molecular Diversity, 25, 143–157. https://doi.org/10.1007/s11030-019-10032-x
  • Sharma, K. (2019). Cholinesterase inhibitors as Alzheimer's therapeutics. Molecular Medicine Reports, 20(2), 1479–1487.
  • Sussman, J. L., Harel, M., & Silman, I. (1993). Three-dimensional structure of acetylcholinesterase and of its complexes with anticholinesterase drugs. Chemico-Biological Interactions, 87(1-3), 187–197. https://doi.org/10.1016/0009-2797(93)90042-W
  • Taha, M., Aldhamin, E. A. J., Almandil, N. B., Anouar, E. H., Uddin, N., Alomari, M., Rahim, F., Adalat, B., Ibrahim, M., Nawaz, F., Iqbal, N., Alghanem, B., Altolayyan, A., & Khan, K. M. (2020). Synthesis of indole based acetohydrazide analogs: Their in vitro and in silico thymidine phosphorylase studies. Bioorganic Chemistry, 98, 103745. https://doi.org/10.1016/j.bioorg.2020.103745
  • Taha, M., Alshamrani, F. J., Rahim, F., Anouar, E. H., Uddin, N., Chigurupati, S., Almandil, N. B., Farooq, R. K., Iqbal, N., Aldubayan, M., Venugopal, V., & Khan, K. M. (2021). Synthesis, Characterization, Biological evaluation, and Kinetic study of indole base sulfonamide derivatives as Acetylcholinesterase inhibitors in search of potent anti-Alzheimer agent. Journal of King Saud University, Science., 33(3), 101401. https://doi.org/10.1016/j.jksus.2021.101401
  • Taha, M., Rahim, F., Uddin, N., Khan, I. U., Iqbal, N., Salahuddin, M., Farooq, R. K., Gollapalli, M., Khan, K. M., & Zafar, A. (2021). Exploring indole-based-thiadiazole derivatives as potent acetylcholinesterase and butyrylcholinesterase enzyme inhibitors. International Journal of Biological Macromolecules. In press https://doi.org/10.1016/j.ijbiomac.2021.08.065
  • Tariq, S., Kamboj, P., Alam, O., & Amir, M. (2018). 1,2,4-Triazole-based benzothiazole/benzoxazole derivatives: Design, synthesis, p38α MAP kinase inhibition, anti-inflammatory activity and molecular docking studies. Bioorganic Chemistry, 81, 630–641. https://doi.org/10.1016/j.bioorg.2018.09.015
  • Taylor, P., & Radic, Z. (1994). The cholinesterases: From genes to proteins. Annual Review of Pharmacology and Toxicology, 34, 281–320. https://doi.org/10.1146/annurev.pa.34.040194.001433
  • Ueki, M., Ueno, K., Miyadoh, S., Abe, K., Shibata, K., Taniguchi, M., & Oi, S. (1993). UK-1, a novel cytotoxic metabolite from Streptomyces sp. 517-02. I. Taxonomy, fermentation, isolation, physico-chemical and biological properties. The Journal of Antibiotics, 46(7), 1089–1094. https://doi.org/10.7164/antibiotics.46.1089
  • Unlu, S., Baytas, S. N., Kupeli, E., & Yesilada, E. (2003). Studies on Novel 7-acyl-5-chloro-2-oxo-3H-benzoxazole derivatives as potential analgesic and anti-inflammatory agents. Archiv Der Pharmazie, 336(6–7), 310–321. https://doi.org/10.1002/ardp.200300748
  • Wahid, S., Jahangir, S., Versiani, M. A., Khan, K. M., Salar, U., Ashraf, M., Farzand, U., Wadood, A., Taha, M., & Perveen, S. (2020). Atenolol thiourea hybrid as potent urease inhibitors: Design, biology-oriented drug synthesis, inhibitory activity screening, and molecular docking studies. Bioorganic Chemistry, 94, 103359. https://doi.org/10.1016/j.bioorg.2019.103359
  • Wang, J., Wang, W., Kollman, P. A., & Case, D. A. (2006). Automatic atom type and bond type perception in molecular mechanical calculations. Journal of Molecular Graphics & Modelling, 25(2), 247–260. https://doi.org/10.1016/j.jmgm.2005.12.005
  • Wang, J., Wolf, R. M., Caldwell, J. W., Kollman, P. A., & Case, D. A. (2004). Development and testing of a general amber force field. Journal of Computational Chemistry, 25(9), 1157–1174. https://doi.org/10.1002/jcc.20035
  • Wu, J., Pistolozzi, M., Liu, S., & Tan, W. (2020). Design, synthesis and biological evaluation of novel carbamates as potential inhibitors of acetylcholinesterase and butyrylcholinesterase. Bioorganic & Medicinal Chemistry, 28(5), 115324. https://doi.org/10.1016/j.bmc.2020.115324
  • Wu, X., Brooks, B. R., & Vanden-Eijnden, E. (2016). Self-guided Langevin dynamics via generalized Langevin equation. Journal of Computational Chemistry, 37(6), 595–601. https://doi.org/10.1002/jcc.24015
  • Zaman, K., Rahim, F., Taha, M., Ullah, H., Wadood, A., Nawaz, M., Khan, F., Wahab, Z., Shah, S. A. A., Rehman, A. U., Kawde, A.-N., & Gollapalli, M. (2019). Synthesis, in vitro urease inhibitory potential and molecular docking study of Benzimidazole analogues. Bioorganic Chemistry, 89, 103024. https://doi.org/10.1016/j.bioorg.2019.103024
  • Zilbeyaz, K., Stellenboom, N., Guney, M., Oztekin, A., & Senturk, M. (2018). Effects of aryl methanesulfonate derivatives on acetylcholinesterase and butyrylcholinesterase. Journal of Biochemical and Molecular Toxicology, 32(11), e22210.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.