304
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Molecular dynamics simulations and in vitro studies of hybrid decellularized leaf-peptide-polypyrrole composites for potential tissue engineering applications

, , , & ORCID Icon
Pages 1665-1680 | Received 05 Sep 2021, Accepted 23 Dec 2021, Published online: 06 Jan 2022

References

  • Akhyari, P., Kamiya, H., Haverich, A., Karck, M., & Lichtenberg, A. (2008). Myocardial tissue engineering: The extracellular matrix. European Journal of Cardio-Thoracic Surgery : Official Journal of the European Association for Cardio-Thoracic Surgery, 34(2), 229–241. https://doi.org/10.1016/j.ejcts.2008.03.062
  • Al-Dulaimi, A. A., Wanrosli, W. D., Abdulrazak, L. F., & Husham, M. (2018). Preparation of nanocomposite polypyrrole/cellulose nanocrystals for conductive paper. Nordic Pulp & Paper Research Journal, 33(2), 309–316. https://doi.org/10.1515/npprj-2018-3018
  • Angelerou, M. G., Frederix, P. W., Wallace, M., Yang, B., Rodger, A., Adams, D. J., Marlow, M., & Zelzer, M. (2018). Supramolecular nucleoside-based gel: Molecular dynamics simulation and characterization of its nanoarchitecture and self-assembly mechanism. Langmuir : The ACS Journal of Surfaces and Colloids, 34(23), 6912–6921. https://doi.org/10.1021/acs.langmuir.8b00646
  • Anitha, S., Vaideki, K., Prabhu, S., & Jayakumar, S. (2019). ATR-FTIR analysis on the hydrogen bonding network and glycosidic bond of DC air plasma processed cellulose. Journal of Molecular Structure, 1180, 378–391. https://doi.org/10.1016/j.molstruc.2018.12.016
  • Bačáková, L., Filova, E., Rypáček, F., Švorčík, V., & Starý, V. (2004). Cell adhesion on artificial materials for tissue engineering. Physiological Research, 53, S35–S45.
  • Baptista, A. C., Ropio, I., Romba, B., Nobre, J. P., Henriques, C., Silva, J. C., Martins, J. I., Borges, J. P., & Ferreira, I. (2018). Cellulose-based electrospun fibers functionalized with polypyrrole and polyaniline for fully organic batteries. Journal of Materials Chemistry A, 6(1), 256–265. https://doi.org/10.1039/C7TA06457H
  • Bideau, B., Loranger, E., & Daneault, C. (2016). Comparison of three polypyrrole-cellulose nanocomposites synthesis. Journal of Advances in Nanomaterials, 1, 105–114.
  • Bielli, A., Bernardini, R., Varvaras, D., Rossi, P., Blasi, G. D., Petrella, G., Buonomo, O. C., Mattei, M., & Orlandi, A. (2018). Characterization of a new decellularized bovine pericardial biological mesh: Structural and mechanical properties. Journal of the Mechanical Behavior of Biomedical Materials, 78, 420–426. https://doi.org/10.1016/j.jmbbm.2017.12.003
  • Brown, K., Banerjee, S., Feigley, A., Abe, H., Blackwell, T., Pozzi, A., Hudson, B. G., & Zent, R. (2018). Salt-bridge modulates differential calcium-mediated ligand binding to integrin α1- and α2-I domains. Scientific Reports, 8(1), 2916. https://doi.org/10.1038/s41598-018-21231-1
  • Bubb, K. J., Aubdool, A. A., Moyes, A. J., Lewis, S., Drayton, J. P., Tang, O., Mehta, V., Zachary, I. C., Abraham, D. J., Tsui, J., & Hobbs, A. J. (2019). Endothelial C-type natriuretic peptide is a critical regulator of angiogenesis and vascular remodeling. Circulation, 139(13), 1612–1628. https://doi.org/10.1161/CIRCULATIONAHA.118.036344
  • Bursac, N., Papadaki, M., Cohen, R. J., Schoen, F. J., Eisenberg, S. R., Carrier, R., Vunjak-Novakovic, G., & Freed, L. E. (1999). Cardiac muscle tissue engineering: Toward an in vitro model for electrophysiological studies. The American Journal of Physiology, 277(2), H433–H444. https://doi.org/10.1152/ajpheart.1999.277.2.H433
  • Cassab, G. I. (1998). Plant cell wall proteins. Annual Review of Plant Physiology and Plant Molecular Biology, 49, 281–309. https://doi.org/10.1146/annurev.arplant.49.1.281
  • Choi, C., Vicente-Manzanares, M., Zareno, J., Whitmore, L., Mogilner, A., & Horwitz, A. (2008). Actin and alpha-actinin orchestrate the assembly and maturation of nascent adhesions in a myosin II motor-independent manner. Nature Cell Biology, 10(9), 1039–1050. https://doi.org/10.1038/ncb1763
  • Cinq-Mars, A., Veilleux, S. P., Voisine, P., Dagenais, F., O'Connor, K., Bernier, M., & Sénéchal, M. (2015). The novel use of heart transplantation for the management of a case with multiple complications after acute myocardial infarction. The Canadian Journal of Cardiology, 31(6), 816–818. https://doi.org/10.1016/j.cjca.2015.01.024
  • Crapo, P. M., Gilbert, T. W., & Badylak, S. F. (2011). An overview of tissue and whole organ decellularization processes. Biomaterials, 32(12), 3233–3243. https://doi.org/10.1016/j.biomaterials.2011.01.057
  • Davenport Huyer, L., Zhang, B., Korolj, A., Montgomery, M., Drecun, S., Conant, G., Zhao, Y., Reis, L., & Radisic, M. (2016). Highly elastic and moldable polyester biomaterial for cardiac tissue engineering applications. ACS Biomaterials Science & Engineering, 2(5), 780–788. https://doi.org/10.1021/acsbiomaterials.5b00525
  • Debiec, K. T., Gronenborn, A. M., & Chong, L. T. (2014). Evaluating the strength of salt bridges: A comparison of current biomolecular force fields. The Journal of Physical Chemistry. B, 118(24), 6561–6589. https://doi.org/10.1021/jp500958r
  • Des Rieux, A., Ucakar, B., Mupendwa, B. P. K., Colau, D., Feron, O., Carmeliet, P., & Préat, V. (2011). 3D systems delivering VEGF to promote angiogenesis for tissue engineering. Journal of Controlled Release : Official Journal of the Controlled Release Society, 150(3), 272–278. https://doi.org/10.1016/j.jconrel.2010.11.028
  • Dufresne, A., Cavaillé, J.-Y., & Vignon, M. R. (1997). Mechanical behavior of sheets prepared from sugar beet cellulose microfibrils. Journal of Applied Polymer Science, 64(6), 1185–1194. https://doi.org/10.1002/(SICI)1097-4628(19970509)64:6<1185::AID-APP19>3.0.CO;2-V
  • Ebrahimi, S., Montazeri, A., & Rafii-Tabar, H. (2013). Molecular dynamics study of the interfacial mechanical properties of the graphene–collagen biological nanocomposite. Computational Materials Science, 69, 29–39. https://doi.org/10.1016/j.commatsci.2012.11.030
  • Eisazadeh, H. (2007). Studying the characteristics of polypyrrole and its composites. World Journal of Chemistry, 2, 67–74.
  • Garg, M., Linares, M., & Zozoulenko, I. V. (2020). Theoretical rationalization of self-assembly of cellulose nanocrystals: Effect of surface modifications and counterions. Biomacromolecules, 21(8), 3069–3080. https://doi.org/10.1021/acs.biomac.0c00469
  • Generali, M., Kehl, D., Capulli, A. K., Parker, K. K., Hoerstrup, S. P., & Weber, B. (2017). Comparative analysis of poly-glycolic acid-based hybrid polymer starter matrices for in vitro tissue engineering. Colloids and Surfaces B: Biointerfaces, 158, 203–212. https://doi.org/10.1016/j.colsurfb.2017.06.046
  • Gershlak, J. R., Hernandez, S., Fontana, G., Perreault, L. R., Hansen, K. J., Larson, S. A., Binder, B. Y. K., Dolivo, D. M., Yang, T., Dominko, T., Rolle, M. W., Weathers, P. J., Medina-Bolivar, F., Cramer, C. L., Murphy, W. L., & Gaudette, G. R. (2017). Crossing kingdoms: Using decellularized plants as perfusable tissue engineering scaffolds. Biomaterials, 125, 13–22. https://doi.org/10.1016/j.biomaterials.2017.02.011
  • Giannoudis, P. V., Dinopoulos, H., & Tsiridis, E. (2005). Bone substitutes: An update. Injury, 36(3), S20–S27. https://doi.org/10.1016/j.injury.2005.07.029
  • Gilpin, A., & Yang, Y. (2017). Decellularization strategies for regenerative medicine: From processing techniques to applications. BioMed Research International, 2017, 9831513–9831534. https://doi.org/10.1155/2017/9831534
  • Gorzsás, A., Stenlund, H., Persson, P., Trygg, J., & Sundberg, B. (2011). Cell-specific chemotyping and multivariate imaging by combined FT-IR microspectroscopy and orthogonal projections to latent structures (OPLS) analysis reveals the chemical landscape of secondary xylem. The Plant Journal : For Cell and Molecular Biology, 66(5), 903–914. https://doi.org/10.1111/j.1365-313X.2011.04542.x
  • Han, Y., & Elliott, J. (2007). Molecular dynamics simulations of the elastic properties of polymer/carbon nanotube composites. Computational Materials Science, 39(2), 315–323. https://doi.org/10.1016/j.commatsci.2006.06.011
  • Harris, A. F., Lacombe, J., Liyange, S., Han, M. Y., Wallance, E., Karsunky, S., Abidi, N., & Zenhausern, F. (2021). Supercritical carbon dioxide decellularization of plant material to  generate 3D biocompatible scaffolds. Scientific Reports, 11(1), 3643. https://doi.org/10.1038/s41598-021-83250-9.
  • He, X.-L., Dukkipati, A., & Garcia, C. (2006). Structural determinants of natriuretic peptide receptor specificity and degeneracy. Journal of Molecular Biology, 361(4), 698–714. https://doi.org/10.1016/j.jmb.2006.06.060
  • Ho, C. M. B., Mishra, A., Lin, P. T. P., Ng, S. H., Yeong, W. Y., Kim, Y. J., & Yoon, Y. J. (2017). 3D printed polycaprolactone carbon nanotube composite scaffolds for cardiac tissue engineering. Macromolecular Bioscience, 17(4), 1600250. https://doi.org/10.1002/mabi.201600250
  • Huang, Z. B., Yin, G. F., Liao, X. M., & Gu, J. W. (2014). Conducting polypyrrole in tissue engineering applications. Frontiers of Materials Science, 8(1), 39–45. https://doi.org/10.1007/s11706-014-0238-8
  • Hussain, A., Collins, G., Yip, D., & Cho, C. H. (2013). Functional 3-D cardiac co-culture model using bioactive chitosan nanofiber scaffolds. Biotechnology and Bioengineering, 110(2), 637–647. https://doi.org/10.1002/bit.24727
  • Hynes, R. O. (2002). Integrins: Bidirectional, allosteric signaling machines. Cell, 110(6), 673–687. https://doi.org/10.1016/S0092-8674(02)00971-6
  • Isomi, M., Sadahiro, T., & Ieda, M. (2019). Progress and challenge of cardiac regeneration to treat heart failure. Journal of Cardiology, 73(2), 97–101. https://doi.org/10.1016/j.jjcc.2018.10.002
  • Isralewitz, B., Gao, M., & Schulten, K. (2001). Steered molecular dynamics and mechanical functions of proteins. Current Opinion in Structural Biology, 11(2), 224–230. https://doi.org/10.1016/S0959-440X(00)00194-9
  • Izadifar, M., Chapman, D., Babyn, P., Chen, X., & Kelly, M. E. (2018). UV-assisted 3D bioprinting of nanoreinforced hybrid cardiac patch for myocardial tissue engineering. Tissue Engineering. Part C, Methods, 24(2), 74–88. https://doi.org/10.1089/ten.TEC.2017.0346
  • Jha, P., Koiry, S. P., Saxena, V., Veerender, P., Chauhan, A. K., Aswal, D. K., & Gupta, S. K. (2011). Growth of free-standing polypyrrole nanosheets at air/liquid interface using J-aggregate of porphyrin derivative as in-situ template. Macromolecules, 44, 4583–4585. https://doi.org/10.1021/ma2002849
  • Kato, H., Nishikawa, O., Matsui, T., Honma, S., & Kokado, H. (1991). Fourier transform infrared spectroscopy study of conducting polymer polypyrrole: higher order structure of electrochemically synthesized film. The Journal of Physical Chemistry, 95(15), 6014–6016. https://doi.org/10.1021/j100168a055
  • Keller, B. (1993). Structural cell wall proteins. Plant Physiology, 101(4), 1127–1130. https://doi.org/10.1104/pp.101.4.1127
  • Kharaziha, M., Shin, S. R., Nikkhah, M., Topkaya, S. N., Masoumi, N., Annabi, N., Dokmeci, M. R., & Khademhosseini, A. (2014). Tough and flexible CNT-polymeric hybrid scaffolds for engineering cardiac constructs. Biomaterials, 35(26), 7346–7354. https://doi.org/10.1016/j.biomaterials.2014.05.014
  • Laslett, L. J., Alagona, P., Clark, B. A., Drozda, J. P., Saldivar, F., Wilson, S. R., Poe, C., & Hart, M. (2012). The worldwide environment of cardiovascular disease: Prevalence, diagnosis, therapy, and policy issues: A report from the American College of Cardiology. Journal of the American College of Cardiology, 60(25 Suppl), S1–S49. https://doi.org/10.1016/j.jacc.2012.11.002
  • Li, T., Tian, L., Liao, S., Ding, X., Irvine, S. A., & Ramakrishna, S. (2019). Fabrication, mechanical property and in vitro evaluation of poly (L-lactic acid-co-ε-caprolactone) core-shell nanofiber scaffold for tissue engineering. Journal of the Mechanical Behavior of Biomedical Materials, 98, 48–57. https://doi.org/10.1016/j.jmbbm.2019.06.003
  • Liang, Y., Mitriashkin, A., Lim, T., & Goh, C.-H. (2021). Conductive polypyrrole-encapsulated silk fibroin fibers for cardiac tissue engineering. Biomaterials, 276, 121008. https://doi.org/10.1016/j.biomaterials.2021.121008
  • Liao, S. M., Du, Q. S., Meng, J. Z., Pang, Z. W., & Huang, R. B. (2013). The multiple roles of histidine in protein interactions. Chemistry Central Journal, 7, 1–12. https://doi.org/10.1186/1752-153X-7-44.
  • Liau, B., Christoforou, N., Leong, K. W., & Bursac, N. (2011). Pluripotent stem cell-derived cardiac tissue patch with advanced structure and function. Biomaterials, 32(35), 9180–9187. https://doi.org/10.1016/j.biomaterials.2011.08.050
  • Liu, Q., Tian, S., Zhao, C., Chen, X., Lei, I., Wang, Z., & Ma, P. X. (2015). Porous nanofibrous poly(L-lactic acid) scaffolds supporting cardiovascular progenitor cells for cardiac tissue engineering. Acta Biomaterialia, 26, 105–114. https://doi.org/10.1016/j.actbio.2015.08.017
  • Lopaschuk, G. D., & Jaswal, J. S. (2010). Energy metabolic phenotype of the cardiomyocyte during development, differentiation, and postnatal maturation. Journal of Cardiovascular Pharmacology, 56(2), 130–140. https://doi.org/10.1097/FJC.0b013e3181e74a14
  • Lu, H., Hoshiba, T., Kawazoe, N., & Chen, G. (2011). Autologous extracellular matrix scaffolds for tissue engineering. Biomaterials, 32(10), 2489–2499. https://doi.org/10.1016/j.biomaterials.2010.12.016
  • Maestro, Schrödinger, LLC, New York, NY. (2020). Desmond Molecular Dynamics System, D. E. Shaw Research, New York, NY, 2020. Maestro-Desmond Interoperability Tools, Schrödinger, New York, NY.
  • Manisastry, S. M., Zaal, K. J., & Horowits, R. (2009). Myofibril assembly visualized by imaging N-RAP, alpha-actinin, and actin in living cardiomyocytes. Experimental Cell Research, 315(12), 2126–2139. https://doi.org/10.1016/j.yexcr.2009.02.006
  • Manzari-Tavakoli, A., Tarasi, R., Sedghi, R., Moghimi, A., & Niknejad, H. (2020). Fabrication of nanochitosan incorporated polypyrrole/alginate conducting scaffold for neural tissue engineering. Scientific Reports, 10, 22102.
  • Martínez, L. (2015). Automatic identification of mobile and rigid substructures in molecular dynamics simulations and fractional structural fluctuation analysis. Plos One, 10(3), e0119264. https://doi.org/10.1371/journal.pone.0119264
  • Mazurek, S., Mucciolo, A., Humbel, B. M., & Nawrath, C. (2013). Transmission Fourier transform infrared microspectroscopy allows simultaneous assessment of cutin and cell-wall polysaccharides of Arabidopsis petals. The Plant Journal : For Cell and Molecular Biology, 74(5), 880–891. https://doi.org/10.1111/tpj.12164
  • Migliavacca, F., Petrini, L., Montanari, V., Quagliana, I., Auricchio, F., & Dubini, G. (2005). A predictive study of the mechanical behaviour of coronary stents by computer modelling. Medical Engineering & Physics, 27(1), 13–18. https://doi.org/10.1016/j.medengphy.2004.08.012
  • Moyes, A. J., & Hobbs, A. J. (2019). C-type natriuretic peptide: A multifaceted paracrine regulator in the heart and vasculature. International Journal of Molecular Sciences, 20(9), 2281. https://doi.org/10.3390/ijms20092281
  • Nikolova, M. P., & Chavali, M. S. (2019). Recent advances in biomaterials for 3D scaffolds: A review. Bioactive Materials, 4, 271–292. https://doi.org/10.1016/j.bioactmat.2019.10.005
  • Park, J. H., Kim, B.-S., Yoo, Y.-C., Khil, M. S., & Kim, H. Y. (2008). Enhanced mechanical properties of multilayer nano-coated electrospun nylon 6 fibers via layer-by-layer self-assembly. Journal of Applied Polymer Science, 107(4), 2211–2216. https://doi.org/10.1002/app.27322
  • Prabhu, S. D., & Frangogiannis, N. G. (2016). The biological basis for cardiac repair after myocardial infarction: From inflammation to fibrosis. Circulation Research, 119(1), 91–112. https://doi.org/10.1161/CIRCRESAHA.116.303577
  • Predeina, A. L., Dukhinova, M. S., & Vinogradov, V. V. (2020). Bioreactivity of decellularized animal, plant, and fungal scaffolds: Perspectives for medical applications. Journal of Materials Chemistry. B, 8(44), 10010–10022. https://doi.org/10.1039/d0tb01751e
  • Radhakrishnan, S., Nagarajan, S., Belaid, H., Farha, C., Iatsunskyi, I., Coy, E., Soussan, L., Huon, V., Bares, J., Belkacemi, K., Teyssier, C., Balme, S., Miele, P., Cornu, D., Kalkura, N., Cavaillès, V., & Bechelany, M. (2021). Fabrication of 3D printed antimicrobial polycaprolactone scaffolds for tissue engineering applications. Materials Science & Engineering. C, Materials for Biological Applications, 118, 111525. https://doi.org/10.1016/j.msec.2020.111525
  • Rose, R. A., & Giles, W. R. (2008). Natriuretic peptide C receptor signalling in the heart and vasculature. The Journal of Physiology, 586(2), 353–366. https://doi.org/10.1113/jphysiol.2007.144253
  • Runge, M. B., Dadsetan, M., Baltrusaitis, J., Knight, A. M., Ruesink, T., Lazcano, E. A., Lu, L., Windebank, A. J., & Yaszemski, M. J. (2010). The development of electrically conductive polycaprolactone fumarate-polypyrrole composite materials for nerve regeneration. Biomaterials, 31(23), 5916–5926. https://doi.org/10.1016/j.biomaterials.2010.04.012
  • Sinyayev, V. A., Toxeitova, G. A., Batyrbayeva, A. A., Sassykova, L. R., Azhigulova, R. N., & Sakhipov, Y. N. (2020). A comparative investigation of the IR spectra of carbohydrate series. J. Chem. Technol. Metallurgy, 55, 724–729.
  • Soro, S., Orecchia, A., Morbidelli, L., Lacal, P. M., Morea, V., Ballmer-Hofer, K., Ruffini, F., Ziche, M., D'Atri, S., Zambruno, G., Tramontano, A., & Failla, C. M. (2008). A proangiogenic peptide derived from vascular endothelial growth factor receptor-1 acts through alpha5beta1 integrin. Blood, 111(7), 3479–3488. https://doi.org/10.1182/blood-2007-03-077537
  • Sutton, M. G., & Sharpe, N. (2000). Left ventricular remodeling after myocardial infarction: Pathophysiology and therapy. Circulation, 101(25), 2981–2988. https://doi.org/10.1161/01.cir.101.25.2981
  • Talebi, A., Labbaf, S., & Karimzadeh, F. (2020). Polycaprolactone‐chitosan‐polypyrrole conductive biocomposite nanofibrous scaffold for biomedical applications. Polymer Composites, 41(2), 645–652. https://doi.org/10.1002/pc.25395
  • Thygesen, K., Alpert, J. S., & White, H. D. (2007). Joint ESC/ACCF/AHA/WHF Task Force for the Redefinition of Myocardial Infarction, Universal definition of myocardial infarction. Journal of the American College of Cardiology, 50(22), 2173–2195. https://doi.org/10.1016/j.jacc.2007.09.011
  • Tian, W., Mao, X., Brown, P., Rutledge, G. C., & Hatton, T. A. (2015). Electrochemically nanostructured polyvinylferrocene/polypyrrole hybrids with synergy for energy storage. Advanced Functional Materials, 25(30), 4803–4813. https://doi.org/10.1002/adfm.201501041
  • van Meerloo, J., Kaspers, G. J. L., & Cloos, J. (2011). Cell sensitivity assays: The MTT assay. Cancer Cell Culture, 731, 237–245.
  • Wang, B., Borazjani, A., Tahai, M., Curry, A. L., Simionescu, D. T., Guan, J., To, F., Elder, S. H., & Liao, J. (2010). Fabrication of cardiac patch with decellularized porcine myocardial scaffold and bone marrow mononuclear cells. Journal of Biomedical Materials Research. Part A, 94(4), 1100–1110. https://doi.org/10.1002/jbm.a.32781
  • Weber, B., Emmert, M. Y., Schoenauer, R., Brokopp, C., Baumgartner, L., & Hoerstrup, S. P. (2011). Tissue engineering on matrix: Future of autologous tissue replacement. Seminars in Immunopathology, 33(3), 307–315. https://doi.org/10.1007/s00281-011-0258-8
  • Weigel, T., Schinkel, G., & Lendlein, A. (2006). Design and preparation of polymeric scaffolds for tissue engineering. Expert Review of Medical Devices, 3(6), 835–851. https://doi.org/10.1586/17434440.3.6.835
  • Worth, C. L., & Blundell, T. L. (2010). On the evolutionary conservation of hydrogen bonds made by buried polar amino acids: The hidden joists, braces and trusses of protein architecture. BMC Evolutionary Biology, 10, 1–11.
  • Yow, S.-Z., Lim, T. H., Yim, E. K. F., Lim, C. T., & Leong, K. W. (2011). A 3D electroactive polypyrrole-collagen fibrous scaffold for tissue engineering. Polymers, 3(1), 527–544. https://doi.org/10.3390/polym3010527
  • Yu, J., Lee, A. R., Lin, W. H., Lin, C. W., Wu, Y. K., & Tsai, W. B. (2014). Electrospun PLGA fibers incorporated with functionalized biomolecules for cardiac tissue engineering. Tissue Engineering. Part A, 20(13–14), 1896–1907. https://doi.org/10.1089/ten.TEA.2013.0008

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.