301
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Search for potentially biased epidermal growth factor receptor (EGFR) inhibitors through pharmacophore modelling, molecular docking, and molecular dynamics (MD) simulation approaches

ORCID Icon, ORCID Icon & ORCID Icon
Pages 1681-1689 | Received 16 Apr 2021, Accepted 23 Dec 2021, Published online: 11 Jan 2022

References

  • Abdelgawad, M. A., Bakr, R. B., Alkhoja, O. A., & Mohamed, W. R. (2016). Design, synthesis and antitumor activity of novel pyrazolo[3,4-d]pyrimidine derivatives as EGFR-TK inhibitors. Bioorganic Chemistry, 66, 88–96. https://doi.org/10.1016/j.bioorg.2016.03.011
  • Alswah, M., Bayoumi, A. H., Elgamal, K., Elmorsy, A., Ihmaid, S., & Ahmed, H. E. A. (2017). Design, synthesis and cytotoxic evaluation of novel chalcone derivatives bearing triazolo[4,3-a]quinoxaline moieties as potent anticancer agents with dual EGFR kinase and tubulin polymerization inhibitory effects. Molecules, 23(1), 48. https://doi.org/10.3390/molecules23010048
  • Baig, M. H., Ahmad, K., Rabbani, G., Danishuddin, M., & Choi, I. (2018). Computer aided drug design and its application to the development of potential drugs for neurodegenerative disorders. Current Neuropharmacology, 16(6), 740–748. https://doi.org/10.2174/1570159X15666171016163510
  • Carmi, C., Galvani, E., Vacondio, F., Rivara, S., Lodola, A., Russo, S., Aiello, S., Bordi, F., Costantino, G., Cavazzoni, A., Alfieri, R. R., Ardizzoni, A., Petronini, P. G., & Mor, M. (2012). Irreversible inhibition of epidermal growth factor receptor activity by 3-aminopropanamides. Journal of Medicinal Chemistry, 55(5), 2251–2264. https://doi.org/10.1021/jm201507x
  • Cereto-Massagué, A., Guasch, L., Valls, C., Mulero, M., Pujadas, G., & Garcia-Vallvé, S. (2012). DecoyFinder: an easy-to-use python GUI application for building target-specific decoy sets. Bioinformatics (Oxford, England), 28(12), 1661–1662. https://doi.org/10.1093/bioinformatics/bts249
  • ChemDraw Ultra 7.0.1. (2002). Cambridge Soft Corporation (7.0.1). Cambridge Soft Corporation.
  • Chong, C. R., & Jänne, P. A. (2013). The quest to overcome resistance to EGFR-targeted therapies in cancer. Nature Medicine, 19(11), 1389–1400. https://doi.org/10.1038/jid.2014.371
  • da Cunha Santos, G., Shepherd, F. A., & Tsao, M. S. (2011). EGFR mutations and lung cancer. Annual Review of Pathology, 6(1), 49–69. https://doi.org/10.1146/annurev-pathol-011110-130206
  • Das, D., Xie, L., Wang, J., Xu, X., Zhang, Z., Shi, J., Le, X., & Hong, J. (2019). Discovery of new quinazoline derivatives as irreversible dual EGFR/HER2 inhibitors and their anticancer activities - Part 1. Bioorganic & Medicinal Chemistry Letters, 29(4), 591–596. https://doi.org/10.1016/j.bmcl.2018.12.056
  • Dhoke, G. V., Gangwal, R. P., & Sangamwar, A. T. (2012). A combined ligand and structure based approach to design potent PPAR-alpha agonists. Journal of Molecular Structure, 1028, 22–30. 06.032 https://doi.org/10.1016/j.molstruc.2012
  • Eastman, P., Swails, J., Chodera, J. D., McGibbon, R. T., Zhao, Y., Beauchamp, K. A., Wang, L.-P., Simmonett, A. C., Harrigan, M. P., Stern, C. D., Wiewiora, R. P., Brooks, B. R., & Pande, V. S. (2017). OpenMM 7: Rapid development of high performance algorithms for molecular dynamics. PLoS Computational Biology, 13(7), e1005659. https://doi.org/10.1371/journal.pcbi.1005659
  • Elbastawesy, M. A. I., Aly, A. A., Ramadan, M., Elshaier, Y. A. M. M., Youssif, B. G. M., Brown, A. B., & El-Din A Abuo-Rahma, G. (2019). Novel pyrazoloquinolin-2-ones: Design, synthesis, docking studies, and biological evaluation as antiproliferative EGFR-TK inhibitors. Bioorganic Chemistry, 90, 103045. https://doi.org/10.1016/j.bioorg.2019.103045
  • Elmetwally, S. A., Saied, K. F., Eissa, I. H., & Elkaeed, E. B. (2019). Design, synthesis and anticancer evaluation of thieno[2,3-d]pyrimidine derivatives as dual EGFR/HER2 inhibitors and apoptosis inducers. Bioorganic Chemistry, 88, 102944. https://doi.org/10.1016/j.bioorg.2019.102944
  • Elrayess, R., Abdel Aziz, Y. M., Elgawish, M. S., Elewa, M., Elshihawy, H. A., & Said, M. M. (2020). Pharmacophore modeling, 3D-QSAR, synthesis, and anti-lung cancer evaluation of novel thieno. Archiv Der Pharmazie, 353(2), 1900108. https://doi.org/10.1002/ardp.201900108
  • Enslein, K., Gombar, V. K., & Blake, B. W. (1994). Use of SAR in computer-assisted prediction of carcinogenicity and mutagenicity of chemicals by the TOPKAT program. Mutation Research, 305(1), 47–61. https://doi.org/10.1016/0027-5107(94)90125-2
  • Fei, J., Zhou, L., Liu, T., & Tang, X. Y. (2013). Pharmacophore modeling, virtual screening, and molecular docking studies for discovery of novel Akt2 inhibitors . International Journal of Medical Sciences, 10(3), 265–275. https://doi.org/10.7150/ijms.5344
  • Friesner, R. A., Murphy, R. B., Repasky, M. P., Frye, L. L., Greenwood, J. R., Halgren, T. A., Sanschagrin, P. C., & Mainz, D. T. (2006). Extra precision glide: Docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes. Journal of Medicinal Chemistry, 49(21), 6177–6196. https://doi.org/10.1021/jm051256o
  • Gupta, A. K., Bhunia, S. S., Balaramnavar, V. M., & Saxena, A. K. (2011). Pharmacophore modelling, molecular docking and virtual screening for EGFR (HER 1) tyrosine kinase inhibitors. SAR and QSAR in Environmental Research, 22(3), 239–263. https://doi.org/10.1080/1062936X.2010.548830
  • Halgren, T. A., Murphy, R. B., Friesner, R. A., Beard, H. S., Frye, L. L., Pollard, W. T., & Banks, J. L. (2004). Glide: A new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening. Journal of Medicinal Chemistry, 47(7), 1750–1759. https://doi.org/10.1021/jm030644s
  • He, X., Man, V. H., Yang, W., Lee, T. S., & Wang, J. (2020). A fast and high-quality charge model for the next generation general AMBER force field. The Journal of Chemical Physics, 153(11), 114502. https://doi.org/10.1063/5.0019056
  • Heumann, C., Michael, S., Shalabh. (2016). Introduction to Statistics and Data Analysis. https://doi.org/10.1007/978-3-319-46162-5
  • Hirata, M., Kanai, Y., Naka, S., Yoshimoto, M., Kagawa, S., Matsumuro, K., Katsuma, H., Yamaguchi, H., Magata, Y., & Ohmomo, Y. (2013). A useful EGFR-TK ligand for tumor diagnosis with SPECT: Development of radioiodinated 6-(3-morpholinopropoxy)-7-ethoxy-4-(3'-iodophenoxy)quinazoline. Annals of Nuclear Medicine, 27(5), 431–443. https://doi.org/10.1007/s12149-013-0703-y
  • Huang, L., & Fu, L. (2015). Mechanisms of resistance to EGFR tyrosine kinase inhibitors. Acta Pharmaceutica Sinica B, 5(5), 390–401. https://doi.org/10.1016/j.apsb.2015.07.001
  • Ihmaid, S., Ahmed, H. E. A., & Zayed, M. F. (2018). The design and development of potent small molecules as anticancer agents targeting EGFR TK and tubulin polymerization. International Journal of Molecular Sciences, 19(2), 408. https://doi.org/10.3390/ijms19020408
  • Kang, B. R., Shan, A. L., Li, Y. P., Xu, J., Lu, S. M., & Zhang, S. Q. (2013). Discovery of 2-aryl-8-hydroxy (or methoxy)-isoquinolin-1(2H)-ones as novel EGFR inhibitor by scaffold hopping. Bioorganic & Medicinal Chemistry, 21(22), 6956–6964. https://doi.org/10.1016/j.bmc.2013.09.027
  • Li, J., Karlsson, M. O., Brahmer, J., Spitz, A., Zhao, M., Hidalgo, M., & Baker, S. D. (2006). CYP3A phenotyping approach to predict systemic exposure to EGFR tyrosine kinase inhibitors. Journal of the National Cancer Institute, 98(23), 1714–1723. https://doi.org/10.1093/jnci/djj466
  • Li, S. N., Xu, Y. Y., Gao, J. Y., Yin, H. R., Zhang, S. L., & Li, H. Q. (2015). Combination of 4-anilinoquinazoline and rhodanine as novel epidermal growth factor receptor tyrosine kinase inhibitors. Bioorganic & Medicinal Chemistry, 23(13), 3221–3227. https://doi.org/10.1016/j.bmc.2015.04.065
  • Liu, X., Wang, P., Zhang, C., & Ma, Z. (2017). Epidermal growth factor receptor (EGFR): A rising star in the era of precision medicine of lung cancer. Oncotarget, 8(30), 50209–50220. https://doi.org/10.18632/oncotarget.16854
  • Lv, P. C., Li, D. D., Li, Q. S., Lu, X., Xiao, Z. P., & Zhu, H. L. (2011). Synthesis, molecular docking and evaluation of thiazolyl-pyrazoline derivatives as EGFR TK inhibitors and potential anticancer agents. Bioorganic & Medicinal Chemistry Letters, 21(18), 5374–5377. https://doi.org/10.1016/j.bmcl.2011.07.010
  • Maadwar, S., & Galla, R. (2019). Cytotoxic oxindole derivatives: in vitro EGFR inhibition, pharmacophore modeling, 3D-QSAR and molecular dynamics studies . Journal of Receptor and Signal Transduction Research, 39(5-6), 460–469. https://doi.org/10.1080/10799893.2019.1683865
  • Mphahlele, M. J., Maluleka, M. M., Aro, A., McGaw, L. J., & Choong, Y. S. (2018). Benzofuran-appended 4-aminoquinazoline hybrids as epidermal growth factor receptor tyrosine kinase inhibitors: synthesis, biological evaluation and molecular docking studies . Journal of Enzyme Inhibition and Medicinal Chemistry, 33(1), 1516–1528. https://doi.org/10.1080/14756366.2018.1510919
  • Normanno, N., De Luca, A., Bianco, C., Strizzi, L., Mancino, M., Maiello, M. R., Carotenuto, A., De Feo, G., Caponigro, F., & Salomon, D. S. (2006). Epidermal growth factor receptor (EGFR) signaling in cancer. Gene, 366(1), 2–16. https://doi.org/10.1016/j.gene.2005.10.018
  • Obounchoey, P., Tabtimmai, L., Suphakun, P., Thongkhao, K., Eurtivong, C., Gleeson, M. P., & Choowongkomon, K. (2019). In silico identification and in vitro validation of nogalamycin N-oxide (NSC116555) as a potent anticancer compound against non-small-cell lung cancer cells . Journal of Cellular Biochemistry, 120(3), 3353–3361. https://doi.org/10.1002/jcb.27605
  • Qin, X., Li, Z., Yang, L., Liu, P., Hu, L., Zeng, C., & Pan, Z. (2016a). Discovery of new [1,4]dioxino[2,3-f]quinazoline-based inhibitors of EGFR including the T790M/L858R mutant. Bioorganic & Medicinal Chemistry, 24(13), 2871–2881. https://doi.org/10.1016/j.bmc.2016.01.003
  • Qin, X., Lv, Y., Liu, P., Li, Z., Hu, L., Zeng, C., & Yang, L. (2016b). Novel morpholin-3-one fused quinazoline derivatives as EGFR tyrosine kinase inhibitors. Bioorganic & Medicinal Chemistry Letters, 26(6), 1571–1575. https://doi.org/10.1016/j.bmcl.2016.02.009
  • Rawluk, J., & Waller, C. F. (2018). Gefitinib. Small Molecules in Oncology, 211, 235–246. https://doi.org/10.1007/978-3-319-91442-8
  • Remon, J., Steuer, C. E., Ramalingam, S. S., & Felip, E. (2018). Osimertinib and other third-generation EGFR TKI in EGFR-mutant NSCLC patients. Annals of Oncology, 29(suppl_1), i20–i27. https://doi.org/10.1093/annonc/mdx704
  • Sangpheak, K., Tabtimmai, L., Seetaha, S., Rungnim, C., Chavasiri, W., Wolschann, P., Choowongkomon, K., & Rungrotmongkol, T. (2019). Biological evaluation and molecular dynamics simulation of chalcone derivatives as epidermal growth factor-tyrosine kinase inhibitors. Molecules, 24(6), 1092. https://doi.org/10.3390/molecules24061092
  • Singh, M. K., Tilak, R., Nath, G., Awasthi, S. K., & Agarwal, A. (2013). Design, synthesis and antimicrobial activity of novel benzothiazole analogs. European Journal of Medicinal Chemistry, 63, 635–644. https://doi.org/10.1016/j.ejmech.2013.02.027
  • Singh, R., Balupuri, A., & Sobhia, M. E. (2013). Development of 3D pharmacophore model followed by successive virtual screening, molecular docking and ADME studies for the design of potent CCR2 antagonists for inflammation-driven diseases. Molecular Simulation, 39(1), 49–58. https://doi.org/10.1080/08927022.2012.701743
  • Stamos, J., Sliwkowski, M. X., & Eigenbrot, C. (2002). Structure of the epidermal growth factor receptor kinase domain alone and in complex with a 4-anilinoquinazoline inhibitor. The Journal of Biological Chemistry, 277(48), 46265–46272. https://doi.org/10.1074/jbc.M207135200
  • Sun, J., Wang, X. Y., Lv, P. C., & Zhu, H. L. (2015). Discovery of a series of novel phenylpiperazine derivatives as EGFR TK inhibitors. Scientific Report, 5, 1–12. https://doi.org/10.1038/srep13934
  • Sun, S., Zhang, J., Wang, N., Kong, X., Fu, F., Wang, H., & Yao, J. (2017). Design and discovery of quinazoline- and thiourea-containing sorafenib analogs as EGFR and VEGFR-2 dual TK inhibitors. Molecules, 23(1), 24. https://doi.org/10.3390/molecules23010024
  • Swaisland, H. C., Cantarini, M. V., Fuhr, R., & Holt, A. (2006). Exploring the relationship between expression of cytochrome P450 enzymes and gefitinib pharmacokinetics. Clinical Pharmacokinetics, 45(6), 633–644. https://doi.org/10.2165/00003088-200645060-00006
  • Takeda, M., & Nakagawa, K. (2019). First-and second-generation EGFR-TKIs are all replaced to osimertinib in chemo-naive EGFR mutation-positive non-small cell lung cancer? International Journal of Molecular Sciences, 20(1), 146–148. https://doi.org/10.3390/ijms20010146
  • Tarozzi, A., Marchetti, C., Nicolini, B., D'Amico, M., Ticchi, N., Pruccoli, L., Tumiatti, V., Simoni, E., Lodola, A., Mor, M., Milelli, A., & Minarini, A. (2016). Combined inhibition of the EGFR/AKT pathways by a novel conjugate of quinazoline with isothiocyanate. European Journal of Medicinal Chemistry, 117, 283–291. https://doi.org/10.1016/j.ejmech.2016.04.002
  • Yan, W., Zhao, Y., & He, J. (2018). Anti-breast cancer activity of selected 1,3,5-triazines via modulation of EGFR-TK. Molecular Medicine Reports, 18(5), 4175–4184. https://doi.org/10.3892/mmr.2018.9426
  • Wu, S. G., & Shih, J. Y. (2018). Management of acquired resistance to EGFR TKI-targeted therapy in advanced non-small cell lung cancer. Molecular Cancer, 17(1), 1–14. https://doi.org/10.1186/s12943-018-0777-1
  • Xia, G., Chen, W., Zhang, J., Shao, J., Zhang, Y., Huang, W., Zhang, L., Qi, W., Sun, X., Li, B., Xiang, Z., Ma, C., Xu, J., Deng, H., Li, Y., Li, P., Miao, H., Han, J., Liu, Y., Shen, J., & Yu, Y. (2014). A chemical tuned strategy to develop novel irreversible EGFR-TK inhibitors with improved safety and pharmacokinetic profiles. Journal of Medicinal Chemistry, 57(23), 9889–9900. https://doi.org/10.1021/jm5014659
  • Xiao, Q., Qu, R., Gao, D., Yan, Q., Tong, L., Zhang, W., Ding, J., Xie, H., & Li, Y. (2016). Discovery of 5-(methylthio)pyrimidine derivatives as L858R/T790M mutant selective epidermal growth factor receptor (EGFR) inhibitors. Bioorganic & Medicinal Chemistry, 24(12), 2673–2680. https://doi.org/10.1016/j.bmc.2016.04.032
  • Xu, Y. Y., Cao, Y., Ma, H., Li, H. Q., & Ao, G. Z. (2013). Design, synthesis and molecular docking of α,β-unsaturated cyclohexanone analogous of curcumin as potent EGFR inhibitors with antiproliferative activity. Bioorganic & Medicinal Chemistry, 21(2), 388–394. https://doi.org/10.1016/j.bmc.2012.11.031
  • Yadav, S., Sinha, D., Singh, S. K., & Singh, V. K. (2012). Novel benzimidazole analogs as inhibitors of EGFR tyrosine kinase. Chemical Biology & Drug Design, 80(4), 625–630. https://doi.org/10.1111/j.1747-0285.2012.01407.x
  • Yan, Q., Chen, Y., Tang, B., Xiao, Q., Qu, R., Tong, L., Liu, J., Ding, J., Chen, Y., Ding, N., Tan, W., Xie, H., & Li, Y. (2018). Discovery of novel 2,4-diarylaminopyrimidine derivatives as potent and selective epidermal growth factor receptor (EGFR) inhibitors against L858R/T790M resistance mutation. European Journal of Medicinal Chemistry, 152, 298–306. https://doi.org/10.1016/j.ejmech.2018.04.052
  • Yin, S., Zhou, L., Lin, J., Xue, L., & Zhang, C. (2015). Design, synthesis and biological activities of novel oxazolo[4,5-g]quinazolin-2(1H)-one derivatives as EGFR inhibitors. European Journal of Medicinal Chemistry, 101, 462–475. https://doi.org/10.1016/j.ejmech.2015.07.008
  • Yu, T., Xia, Q., Gong, T., Wang, J., & Zhong, D. S. (2020). Molecular mechanism of acquired drug resistance in the EGFR-TKI resistant cell line HCC827-TR. Thoracic Cancer, 11(5), 1129–1138. https://doi.org/10.1111/1759-7714.13342
  • Yu, W., & Mackerell, A. D. (2017). Computer-aided drug design methods. Methods in Molecular Biology, 1520, 85–106. https://doi.org/10.1007/978-1-4939-6634-9
  • Zhang, H.-Q., Gong, F.-H., Li, C.-G., Zhang, C., Wang, Y.-J., Xu, Y.-G., & Sun, L.-P. (2016). Design and discovery of 4-anilinoquinazoline-acylamino derivatives as EGFR and VEGFR-2 dual TK inhibitors. European Journal of Medicinal Chemistry, 109, 371–379. https://doi.org/10.1016/j.ejmech.2015.12.032.This
  • Zhang, H.-Q., Gong, F.-H., Ye, J. Q., Zhang, C., Yue, X.-H., Li, C.-G., Xu, Y.-G. & Sun, L.-P. (2017). Design and discovery of 4-anilinoquinazoline-urea derivatives as dual TK inhibitors of EGFR and VEGFR-2. European Journal of Medicinal Chemistry, 125, 245–254. https://doi.org/10.1016/j.ejmech.2016.09.039.This
  • Zhang, H., Lu, X., Zhang, L. R., Liu, J. J., Yang, X. H., Wang, X. M., & Zhu, H. L. (2012). Design, synthesis and biological evaluation of N-phenylsulfonylnicotinamide derivatives as novel antitumor inhibitors. Bioorganic & Medicinal Chemistry, 20(4), 1411–1416. https://doi.org/10.1016/j.bmc.2012.01.004
  • Zhu, Z. W., Shi, L., Ruan, X. M., Yang, Y., Li, H. Q., Xu, S. P., & Zhu, H. L. (2011). Synthesis and antiproliferative activities against Hep-G2 of salicylanide derivatives: Potent inhibitors of the epidermal growth factor receptor (EGFR) tyrosine kinase. Journal of Enzyme Inhibition and Medicinal Chemistry, 26(1), 37–45. https://doi.org/10.3109/14756361003671060

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.