259
Views
1
CrossRef citations to date
0
Altmetric
Review Article

Detailed investigation of catalytically important residues of class A β-lactamase

, , & ORCID Icon
Pages 2046-2073 | Received 03 Nov 2021, Accepted 23 Dec 2021, Published online: 06 Jan 2022

References

  • Adnan, S., Paterson, D. L., Lipman, J., & Roberts, J. A. (2013). Ampicillin/sulbactam: Its potential use in treating infections in critically ill patients. International Journal of Antimicrobial Agents, 42(5), 384–389. https://doi.org/10.1016/j.ijantimicag.2013.07.012
  • Akpaka, P. E., Vaillant, A., Wilson, C., & Jayaratne, P. (2021). Extended spectrum beta-lactamase (ESBL) produced by gram-negative bacteria in trinidad and tobago. International Journal of Microbiology, 2021, 5582755. https://doi.org/10.1155/2021/5582755
  • Aydin, S., Ince, B., & Ince, O. (2016). Assessment of anaerobic bacterial diversity and its effects on anaerobic system stability and the occurrence of antibiotic resistance genes. Bioresource Technology, 207, 332–338. https://doi.org/10.1016/j.biortech.2016.01.080
  • Bai, Y., Xu, R., Wang, Q.-P., Zhang, Y.-R., & Yang, Z.-H. (2019). Sludge anaerobic digestion with high concentrations of tetracyclines and sulfonamides: Dynamics of microbial communities and change of antibiotic resistance genes. Bioresource Technology, 276, 51–59. https://doi.org/10.1016/j.biortech.2018.12.066
  • Baig, M. H., Danishuddin, M., Khan, S., & Khan, A. U. (2012). Screening of inhibitors for S130G inhibitor resistant mutants of TEM type beta-lactamase. Bioinformation, 8(24), 1225–1229. https://doi.org/10.6026/97320630081225
  • Baig, M. H., Sudhakar, D. R., Kalaiarasan, P., Subbarao, N., Wadhawa, G., Lohani, M., Khan, M. K. A., & Khan, A. U. (2014). Insight into the effect of inhibitor resistant S130G mutant on physico-chemical properties of SHV type beta-lactamase: A molecular dynamics study. PLoS One, 9(12), e112456. https://doi.org/10.1371/journal.pone.0112456
  • Bebrone, C., Lassaux, P., Vercheval, L., Sohier, J.-S., Jehaes, A., Sauvage, E., & Galleni, M. (2010). Current challenges in antimicrobial chemotherapy: Focus on β-lactamase inhibition. Drugs, 70(6), 651–679. https://doi.org/10.2165/11318430-000000000-00000
  • Bös, F., & Pleiss, J. (2009). Multiple molecular dynamics simulations of TEM beta-lactamase: Dynamics and water binding of the omega-loop. Biophysical Journal, 97(9), 2550–2558. https://doi.org/10.1016/j.bpj.2009.08.031
  • Brown, E. D., & Wright, G. D. (2016). Antibacterial drug discovery in the resistance era. Nature, 529(7586), 336–343. https://doi.org/10.1038/nature17042
  • Bush, K., & Fisher, J. F. (2011). Epidemiological expansion, structural studies, and clinical challenges of new β-lactamases from gram-negative bacteria. Annual Review of Microbiology, 65(1), 455–478. https://doi.org/10.1146/annurev-micro-090110-102911
  • Castanheira, M., Simner, P. J., & Bradford, P. A. (2021). Extended-spectrum β-lactamases: An update on their characteristics, epidemiology and detection. JAC-Antimicrobial Resistance, 3(3), dlab092. https://doi.org/10.1093/jacamr/dlab092
  • Chaibi, E. B., Péduzzi, J., Farzaneh, S., Barthélémy, M., Sirot, D., & Labia, R. (1998). Clinical inhibitor-resistant mutants of the β-lactamase TEM-1 at amino-acid position 69. Biochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology, 1382(1), 38–46. https://doi.org/10.1016/S0167-4838(97)00127-1
  • Chen, Y., Delmas, J., Sirot, J., Shoichet, B., & Bonnet, R. (2005). Atomic resolution structures of CTX-M beta-lactamases: Extended spectrum activities from increased mobility and decreased stability. Journal of Molecular Biology, 348(2), 349–362. https://doi.org/10.1016/j.jmb.2005.02.010
  • Davari, K., Nowroozi, J., Hosseini, F., Sepahy, A. A., & Mirzaie, S. (2017). Structure-based virtual screening to identify the beta-lactamase CTX-M-9 inhibitors: An in silico effort to overcome antibiotic resistance in E. coli. Computational Biology and Chemistry, 67, 174–181. https://doi.org/10.1016/j.compbiolchem.2017.01.009
  • Delbrück, H., Bogaerts, P., Kupper, M. B., Rezende de Castro, R., Bennink, S., Glupczynski, Y., Galleni, M., Hoffmann, K. M., & Bebrone, C. (2012). Kinetic and crystallographic studies of extended-spectrum GES-11, GES-12, and GES-14 β-lactamases. Antimicrobial Agents and Chemotherapy, 56(11), 5618–5625. https://doi.org/10.1128/AAC.01272-12
  • Egorov, A., Rubtsova, M., Grigorenko, V., Uporov, I., & Veselovsky, A. (2019). The role of the Ω-loop in regulation of the catalytic activity of TEM-type β-lactamases. Biomolecules, 9(12), 854. https://doi.org/10.3390/biom9120854
  • Fisette, O., Gagné, S., & Lagüe, P. (2012). Molecular dynamics of class A β-lactamases—Effects of substrate binding. Biophysical Journal, 103(8), 1790–1801. https://doi.org/10.1016/j.bpj.2012.09.009
  • Fisher, J. F., Meroueh, S. O., & Mobashery, S. (2005). Bacterial resistance to beta-lactam antibiotics: Compelling opportunism, compelling opportunity. Chemical Reviews, 105(2), 395–424. https://doi.org/10.1021/cr030102i
  • Fonseca, F., Chudyk, E. I., van der Kamp, M. W., Correia, A., Mulholland, A. J., & Spencer, J. (2012). The basis for carbapenem hydrolysis by class A β-lactamases: A combined investigation using crystallography and simulations. Journal of the American Chemical Society, 134(44), 18275–18285. https://doi.org/10.1021/ja304460j
  • Fonzé, E., Vanhove, M., Dive, G., Sauvage, E., Frère, J.-M., & Charlier, P. (2002). Crystal structures of the Bacillus licheniformis BS3 class A beta-lactamase and of the acyl-enzyme adduct formed with cefoxitin. Biochemistry, 41(6), 1877–1885. https://doi.org/10.1021/bi015789k
  • Frase, H., Shi, Q., Testero, S. A., Mobashery, S., & Vakulenko, S. B. (2009). Mechanistic basis for the emergence of catalytic competence against carbapenem antibiotics by the GES family of beta-lactamases. The Journal of Biological Chemistry, 284(43), 29509–29513. https://doi.org/10.1074/jbc.M109.011262
  • Frase, H., Toth, M., Champion, M. M., Antunes, N. T., & Vakulenko, S. B. (2011). Importance of position 170 in the inhibition of GES-type β-lactamases by clavulanic acid. Antimicrobial Agents and Chemotherapy, 55(4), 1556–1562. https://doi.org/10.1128/AAC.01292-10
  • Helfand, M. S., Hujer, A. M., Sönnichsen, F. D., & Bonomo, R. A. (2002). Unexpected advanced generation cephalosporinase activity of the M69F variant of SHV beta-lactamase. The Journal of Biological Chemistry, 277(49), 47719–47723. https://doi.org/10.1074/jbc.M207271200
  • Herzberg, O. (1991). Refined crystal structure of β-lactamase from Staphylococcus aureus PC1 at 2.0 Å resolution. Journal of Molecular Biology, 217(4), 701–719. https://doi.org/10.1016/0022-2836(91)90527-D
  • Ibuka, A. S., Ishii, Y., Galleni, M., Ishiguro, M., Yamaguchi, K., Frère, J.-M., Matsuzawa, H., & Sakai, H. (2003). Crystal structure of extended-spectrum beta-lactamase Toho-1: Insights into the molecular mechanism for catalytic reaction and substrate specificity expansion. Biochemistry, 42(36), 10634–10643. https://doi.org/10.1021/bi0342822
  • Jacob, F., Joris, B., Lepage, S., Dusart, J., & Frère, J. M. (1990). Role of the conserved amino acids of the ‘SDN’ loop (Ser130, Asp131 and Asn132) in a class A β-lactamase studied by site-directed mutagenesis. The Biochemical Journal, 271(2), 399–406. https://doi.org/10.1042/bj2710399
  • Jelsch, C., Mourey, L., Masson, J. M., & Samama, J. P. (1993). Crystal structure of Escherichia coli TEM1 beta-lactamase at 1.8 A resolution. Proteins, 16(4), 364–383. https://doi.org/10.1002/prot.340160406
  • Ke, W., Bethel, C. R., Thomson, J. M., Bonomo, R. A., & van den Akker, F. (2007). Crystal structure of KPC-2: Insights into carbapenemase activity in class A beta-lactamases. Biochemistry, 46(19), 5732–5740. https://doi.org/10.1021/bi700300u
  • Knox, J. R. (1995). Extended-spectrum and inhibitor-resistant TEM-type beta-lactamases: Mutations, specificity, and three-dimensional structure. Antimicrobial Agents and Chemotherapy, 39(12), 2593–2601. https://doi.org/10.1128/AAC.39.12.2593
  • Kumar, G., Biswal, S., Nathan, S., & Ghosh, A. S. (2018). Glutamate residues at positions 162 and 164 influence the beta-lactamase activity of SHV-14 obtained from Klebsiella pneumoniae. FEMS Microbiology Letters, 365(2), fnx259. https://doi.org/10.1093/femsle/fnx259
  • Kumar, K. M., Lavanya, P., Anbarasu, A., & Ramaiah, S. (2014). Molecular dynamics and molecular docking studies on E166A point mutant, R274N/R276N double mutant, and E166A/R274N/R276N triple mutant forms of class A β-lactamases. Journal of Biomolecular Structure & Dynamics, 32(12), 1953–1968. https://doi.org/10.1080/07391102.2013.847804
  • Kuzin, A. P., Nukaga, M., Nukaga, Y., Hujer, A. M., Bonomo, R. A., & Knox, J. R. (1999). Structure of the SHV-1 beta-lactamase. Biochemistry, 38(18), 5720–5727. https://doi.org/10.1021/bi990136d
  • Lahiri, S. D., Mangani, S., Durand-Reville, T., Benvenuti, M., De Luca, F., Sanyal, G., & Docquier, J.-D. (2013). Structural insight into potent broad-spectrum inhibition with reversible recyclization mechanism: Avibactam in complex with CTX-M-15 and Pseudomonas aeruginosa AmpC β-lactamases. Antimicrobial Agents and Chemotherapy, 57(6), 2496–2505. https://doi.org/10.1128/AAC.02247-12
  • Levitt, P. S., Papp-Wallace, K. M., Taracila, M. A., Hujer, A. M., Winkler, M. L., Smith, K. M., Xu, Y., Harris, M. E., & Bonomo, R. A. (2012). Exploring the role of a conserved class A residue in the Ω-loop of KPC-2 β-lactamase: A mechanism for ceftazidime hydrolysis. The Journal of Biological Chemistry, 287(38), 31783–31793. https://doi.org/10.1074/jbc.M112.348540
  • Nukaga, M., Mayama, K., Crichlow, G. V., & Knox, J. R. (2002). Structure of an extended-spectrum class A beta-lactamase from Proteus vulgaris K1. Journal of Molecular Biology, 317(1), 109–117. https://doi.org/10.1006/jmbi.2002.5420
  • Nukaga, M., Mayama, K., Hujer, A. M., Bonomo, R. A., & Knox, J. R. (2003). Ultrahigh resolution structure of a class A β-lactamase: On the mechanism and specificity of the extended-spectrum SHV-2 enzyme. Journal of Molecular Biology, 328(1), 289–301. https://doi.org/10.1016/S0022-2836(03)00210-9
  • Orencia, M. C., Yoon, J. S., Ness, J. E., Stemmer, W. P. C., & Stevens, R. C. (2001). Predicting the emergence of antibiotic resistance by directed evolution and structural analysis. Nature Structural Biology, 8(3), 238–242. https://doi.org/10.1038/84981
  • Palzkill, T. (2018). Structural and mechanistic basis for extended-spectrum drug-resistance mutations in altering the specificity of TEM, CTX-M, and KPC β-lactamases. Frontiers in Molecular Biosciences, 5, 16. https://doi.org/10.3389/fmolb.2018.00016
  • Pan, X., He, Y., Lei, J., Huang, X., & Zhao, Y. (2017). Crystallographic snapshots of class A β-lactamase catalysis reveal structural changes that facilitate β-lactam hydrolysis. The Journal of Biological Chemistry, 292(10), 4022–4033. https://doi.org/10.1074/jbc.M116.764340
  • Papp-Wallace, K. M., Taracila, M. A., Gatta, J. A., Ohuchi, N., Bonomo, R. A., & Nukaga, M. (2013). Insights into β-lactamases from Burkholderia species, two phylogenetically related yet distinct resistance determinants. The Journal of Biological Chemistry, 288(26), 19090–19102. https://doi.org/10.1074/jbc.M113.458315
  • Papp-Wallace, K. M., Taracila, M. A., Smith, K. M., Xu, Y., & Bonomo, R. A. (2012). Understanding the molecular determinants of substrate and inhibitor specificities in the carbapenemase KPC-2: Exploring the roles of Arg220 and Glu276. Antimicrobial Agents and Chemotherapy, 56(8), 4428–4438. https://doi.org/10.1128/AAC.05769-11
  • Papp-Wallace, K. M., Taracila, M., Wallace, C. J., Hujer, K. M., Bethel, C. R., Hornick, J. M., & Bonomo, R. A. (2010). Elucidating the role of Trp105 in the KPC-2 β-lactamase: The role of Trp105 in the KPC-2 β-lactamase. Protein Science, 19(9), 1714–1727. https://doi.org/10.1002/pro.454
  • Petrella, S., Ziental-Gelus, N., Mayer, C., Renard, M., Jarlier, V., & Sougakoff, W. (2008). Genetic and structural insights into the dissemination potential of the extremely broad-spectrum class A β-lactamase KPC-2 identified in an Escherichia coli strain and an Enterobacter cloacae strain isolated from the same patient in France. Antimicrobial Agents and Chemotherapy, 52(10), 3725–3736. https://doi.org/10.1128/AAC.00163-08
  • Philippon, A., Slama, P., Dény, P., & Labia, R. (2016). A structure-based classification of class A β-lactamases, a broadly diverse family of enzymes. Clinical Microbiology Reviews, 29(1), 29–57. https://doi.org/10.1128/CMR.00019-15
  • Ruggiero, M., Kerff, F., Herman, R., Sapunaric, F., Galleni, M., Gutkind, G., Charlier, P., Sauvage, E., & Power, P. (2014). Crystal structure of the extended-spectrum β-lactamase PER-2 and insights into the role of specific residues in the interaction with β-lactams and β-lactamase inhibitors. Antimicrobial Agents and Chemotherapy, 58(10), 5994–6002. https://doi.org/10.1128/AAC.00089-14
  • Sampson, J. M., Ke, W., Bethel, C. R., Pagadala, S. R. R., Nottingham, M. D., Bonomo, R. A., Buynak, J. D., & van den Akker, F. (2011). Ligand-dependent disorder of the omega loop observed in extended-spectrum SHV-type beta-lactamase. Antimicrobial Agents and Chemotherapy, 55(5), 2303–2309. https://doi.org/10.1128/AAC.01360-10
  • Sauvage, E., Fonzé, E., Quinting, B., Galleni, M., Frère, J.-M., & Charlier, P. (2006). Crystal structure of the Mycobacterium fortuitum class A beta-lactamase: Structural basis for broad substrate specificity. Antimicrobial Agents and Chemotherapy, 50(7), 2516–2521. https://doi.org/10.1128/AAC.01226-05
  • Shaikh, S., Fatima, J., Shakil, S., Rizvi, S., Mohd, D., & Kamal, M. A. (2015). Antibiotic resistance and extended spectrum beta-lactamases: Types, epidemiology and treatment. Saudi Journal of Biological Sciences, 22(1), 90–101. https://doi.org/10.1016/j.sjbs.2014.08.002
  • Smith, C. A., Frase, H., Toth, M., Kumarasiri, M., Wiafe, K., Munoz, J., Mobashery, S., & Vakulenko, S. B. (2012). Structural basis for progression toward the carbapenemase activity in the GES family of β-lactamases. Journal of the American Chemical Society, 134(48), 19512–19515. https://doi.org/10.1021/ja308197j
  • Sougakoff, W., L’Hermite, G., Pernot, L., Naas, T., Guillet, V., Nordmann, P., Jarlier, V., & Delettré, J. (2002). Structure of the imipenem-hydrolyzing class A β-lactamase SME-1 from Serratia marcescens. Acta Crystallographica. Section D, Biological Crystallography, 58(Pt 2), 267–274. https://doi.org/10.1107/s0907444901019606
  • Stojanoski, V., Chow, D.-C., Hu, L., Sankaran, B., Gilbert, H. F., Prasad, B. V. V., & Palzkill, T. (2015). A triple mutant in the Ω-loop of TEM-1 β-lactamase changes the substrate profile via a large conformational change and an altered general base for catalysis. The Journal of Biological Chemistry, 290(16), 10382–10394. https://doi.org/10.1074/jbc.M114.633438
  • Sun, Y., Shen, Y., Liang, P., Zhou, J., Yang, Y., & Huang, X. (2016). Multiple antibiotic resistance genes distribution in ten large-scale membrane bioreactors for municipal wastewater treatment. Bioresource Technology, 222, 100–106. https://doi.org/10.1016/j.biortech.2016.09.117
  • Swarén, P., Maveyraud, L., Raquet, X., Cabantous, S., Duez, C., Pédelacq, J.-D., Mariotte-Boyer, S., Mourey, L., Labia, R., Nicolas-Chanoine, M.-H., Nordmann, P., Frère, J.-M., & Samama, J.-P. (1998). X-ray analysis of the NMC-A beta-lactamase at 1.64-A resolution, a class A carbapenemase with broad substrate specificity. The Journal of Biological Chemistry, 273(41), 26714–26721. https://doi.org/10.1074/jbc.273.41.26714
  • Thomas, V. L., Golemi-Kotra, D., Kim, C., Vakulenko, S. B., Mobashery, S., & Shoichet, B. K. (2005). Structural consequences of the inhibitor-resistant Ser130Gly substitution in TEM beta-lactamase. Biochemistry, 44(26), 9330–9338. https://doi.org/10.1021/bi0502700
  • Tooke, C. L., Hinchliffe, P., Bragginton, E. C., Colenso, C. K., Hirvonen, V. H. A., Takebayashi, Y., & Spencer, J. (2019). β-Lactamases and β-lactamase inhibitors in the 21st century. Journal of Molecular Biology, 431(18), 3472–3500. https://doi.org/10.1016/j.jmb.2019.04.002
  • Totir, M. A., Padayatti, P. S., Helfand, M. S., Carey, M. P., Bonomo, R. A., Carey, P. R., & van den Akker, F. (2006). Effect of the inhibitor-resistant M69V substitution on the structures and populations of trans-enamine β-lactamase intermediates. Biochemistry, 45(39), 11895–11904. https://doi.org/10.1021/bi060990m
  • Tranier, S., Bouthors, A.-T., Maveyraud, L., Guillet, V., Sougakoff, W., & Samama, J.-P. (2000). The high resolution crystal structure for class A beta-lactamase PER-1 reveals the bases for its increase in breadth of activity. The Journal of Biological Chemistry, 275(36), 28075–28082. https://doi.org/10.1074/jbc.M003802200
  • Wang, F., Cassidy, C., & Sacchettini, J. C. (2006). Crystal structure and activity studies of the Mycobacterium tuberculosis β-lactamase reveal its critical role in resistance to β-lactam antibiotics. Antimicrobial Agents and Chemotherapy, 50(8), 2762–2771. https://doi.org/10.1128/AAC.00320-06
  • Wang, J.-H., Lu, J., Zhang, Y.-X., Wu, J., Luo, Y., & Liu, H. (2018). Metagenomic analysis of antibiotic resistance genes in coastal industrial mariculture systems. Bioresource Technology, 253, 235–243. https://doi.org/10.1016/j.biortech.2018.01.035
  • Wang, X., Minasov, G., & Shoichet, B. K. (2002). The structural bases of antibiotic resistance in the clinically derived mutant beta-lactamases TEM-30, TEM-32, and TEM-34. The Journal of Biological Chemistry, 277(35), 32149–32156. https://doi.org/10.1074/jbc.M204212200
  • Winkler, M. L., & Bonomo, R. A. (2016). SHV-129: A gateway to global suppressors in the SHV β-lactamase family? Molecular Biology and Evolution, 33(2), 429–441. https://doi.org/10.1093/molbev/msv235
  • Yi, H., Choi, J. M., Hwang, J., Prati, F., Cao, T.-P., Lee, S. H., & Kim, H. S. (2016). High adaptability of the omega loop underlies the substrate-spectrum-extension evolution of a class A β-lactamase, PenL. Scientific Reports, 6(1), 36527. https://doi.org/10.1038/srep36527

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.