322
Views
1
CrossRef citations to date
0
Altmetric
Review Article

Discovery of compounds inhibiting SARS-COV-2 multi-targets

ORCID Icon, & ORCID Icon
Pages 2602-2617 | Received 29 Sep 2021, Accepted 29 Dec 2021, Published online: 07 Jan 2022

References

  • Adedeji, A. O., & Lazarus, H. (2016). Biochemical characterization of Middle East respiratory syndrome coronavirus helicase. mSphere, 1(5), 1-14. https://doi.org/10.1128/mSphere.00235-16
  • Adhikari, S. P., Meng, S., Wu, Y.-J., Mao, Y.-P., Ye, R.-X., Wang, Q.-Z., Sun, C., Sylvia, S., Rozelle, S., Raat, H., & Zhou, H. (2020). Epidemiology, causes, clinical manifestation and diagnosis, prevention and control of coronavirus disease (COVID-19) during the early outbreak period: A scoping review. Infectious Diseases of Poverty, 9(1), 12. https://doi.org/10.1186/s40249-020-00646-x
  • Ahn, D.-G., Choi, J.-K., Taylor, D. R., & Oh, J.-W. (2012). Biochemical characterization of a recombinant SARS coronavirus nsp12 RNA-dependent RNA polymerase capable of copying viral RNA templates. Archives of Virology, 157(11), 2095–2104. https://doi.org/10.1007/s00705-012-1404-x
  • Al-Sehemi, A. G., Pannipara, M., Parulekar, R. S., Patil, O., Choudhari, P. B., Bhatia, M., Zubaidha, P., & Tamboli, Y. (2020). Potential of NO donor furoxan as SARS-CoV-2 main protease (Mpro) inhibitors: In silico analysis. Journal of Biomolecular Structure and Dynamics., 39, 1–15.
  • Angelini, M. M., Akhlaghpour, M., Neuman, B. W., & Buchmeier, M. J. (2013). Severe acute respiratory syndrome coronavirus nonstructural proteins 3, 4, and 6 induce double-membrane vesicles. MBio, 4(4), 1-10. https://doi.org/10.1128/mBio.00524-13
  • AstraZeneca. (2020). AZD1222 vaccine met primary efficacy endpoint in preventing COVID‐19.
  • Beachboard, D. C., Anderson-Daniels, J. M., & Denison, M. R. (2015). Mutations across murine hepatitis virus nsp4 alter virus fitness and membrane modifications. Journal of Virology, 89(4), 2080–2089. https://doi.org/10.1128/JVI.02776-14
  • Bhardwaj, K., Sun, J., Holzenburg, A., Guarino, L. A., & Kao, C. C. (2006). RNA recognition and cleavage by the SARS coronavirus endoribonuclease. Journal of Molecular Biology, 361(2), 243–256. https://doi.org/10.1016/j.jmb.2006.06.021
  • Bouvet, M., Imbert, I., Subissi, L., Gluais, L., Canard, B., & Decroly, E. (2012). RNA 3'-end mismatch excision by the severe acute respiratory syndrome coronavirus nonstructural protein nsp10/nsp14 exoribonuclease complex. Proceedings of the National Academy of Sciences of the United States of America, 109(24), 9372–9377. https://doi.org/10.1073/pnas.1201130109
  • Bouvet, M., Lugari, A., Posthuma, C. C., Zevenhoven, J. C., Bernard, S., Betzi, S., Imbert, I., Canard, B., Guillemot, J.-C., Lécine, P., Pfefferle, S., Drosten, C., Snijder, E. J., Decroly, E., & Morelli, X. (2014). Coronavirus Nsp10, a critical co-factor for activation of multiple replicative enzymes. The Journal of Biological Chemistry, 289(37), 25783–25796. https://doi.org/10.1074/jbc.M114.577353
  • Brasil, S., Pascoal, C., Francisco, R., dos Reis Ferreira, V., A Videira, P., & Valadão, G. (2019). Artificial intelligence (AI) in rare diseases: Is the future brighter? Genes, 10(12), 978. https://doi.org/10.3390/genes10120978
  • Caly, L., Druce, J. D., Catton, M. G., Jans, D. A., & Wagstaff, K. M. (2020). The FDA-approved drug ivermectin inhibits the replication of SARS-CoV-2 in vitro. Antiviral Research, 178, 104787. https://doi.org/10.1016/j.antiviral.2020.104787
  • Caly, L., Wagstaff, K. M., & Jans, D. A. (2012). Nuclear trafficking of proteins from RNA viruses: Potential target for antivirals? Antiviral Research, 95(3), 202–206. https://doi.org/10.1016/j.antiviral.2012.06.008
  • Cao, B., Wang, Y., Wen, D., Liu, W., Wang, J., Fan, G., Ruan, L., Song, B., Cai, Y., & Wei, M. (2020). A trial of lopinavir–ritonavir in adults hospitalized with severe Covid-19. The New England Journal of Medicine, 382, 1-13.
  • Chan, K. H., Poon, L. L., Cheng, V., Guan, Y., Hung, I., Kong, J., Yam, L. Y., Seto, W. H., Yuen, K. Y., & Peiris, J. S. M. (2004). Detection of SARS coronavirus in patients with suspected SARS. Emerging Infectious Diseases, 10(2), 294–299. https://doi.org/10.3201/eid1002.030610
  • Chan, J. F.-W., Yuan, S., Kok, K.-H., To, K. K.-W., Chu, H., Yang, J., Xing, F., Liu, J., Yip, C. C.-Y., Poon, R. W.-S., Tsoi, H.-W., Lo, S. K.-F., Chan, K.-H., Poon, V. K.-M., Chan, W.-M., Ip, J. D., Cai, J.-P., Cheng, V. C.-C., Chen, H., Hui, C. K.-M., & Yuen, K.-Y. (2020). A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: A study of a family cluster. The Lancet, 395(10223), 514–523. https://doi.org/10.1016/S0140-6736(20)30154-9
  • Chatterjee, B., & Thakur, S. S. (2020). ACE2 as a potential therapeutic target for pandemic COVID-19. RSC Advances, 10(65), 39808–39813. https://doi.org/10.1039/D0RA08228G
  • Chen, Y., Cai, H., Pan, J., Xiang, N., Tien, P., Ahola, T., & Guo, D. (2009). Functional screen reveals SARS coronavirus nonstructural protein nsp14 as a novel cap N7 methyltransferase. Proceedings of the National Academy of Sciences of the United States of America, 106(9), 3484–3489. https://doi.org/10.1073/pnas.0808790106
  • Cheng, P. K., Wong, D. A., Tong, L. K., Ip, S.-M., Lo, A. C., Lau, C.-S., Yeung, E. Y., & Lim, W. W. (2004). Viral shedding patterns of coronavirus in patients with probable severe acute respiratory syndrome. The Lancet, 363(9422), 1699–1700. https://doi.org/10.1016/S0140-6736(04)16255-7
  • Chen, C., Huang, J., Cheng, Z., Wu, J., Chen, S., Zhang, Y., Chen, B., Lu, M., Luo, Y., & Zhang, J. (2020). Favipiravir versus arbidol for COVID-19: A randomized clinical trial. MedRxiv, 1-29.
  • Chen, Y., Su, C., Ke, M., Jin, X., Xu, L., Zhang, Z., Wu, A., Sun, Y., Yang, Z., Tien, P., Ahola, T., Liang, Y., Liu, X., & Guo, D. (2011). Biochemical and structural insights into the mechanisms of SARS coronavirus RNA ribose 2′-O-methylation by nsp16/nsp10 protein complex. PLoS Pathogens, 7(10), e1002294. https://doi.org/10.1371/journal.ppat.1002294
  • Corman, V. M., Albarrak, A. M., Omrani, A. S., Albarrak, M. M., Farah, M. E., Almasri, M., Muth, D., Sieberg, A., Meyer, B., Assiri, A. M., Binger, T., Steinhagen, K., Lattwein, E., Al-Tawfiq, J., Müller, M. A., Drosten, C., & Memish, Z. A. (2016). Viral shedding and antibody response in 37 patients with Middle East respiratory syndrome coronavirus infection. Clinical Infectious Diseases: An Official Publication of the Infectious Diseases Society of America, 62(4), 477–483.
  • Cottam, E. M., Whelband, M. C., & Wileman, T. (2014). Coronavirus NSP6 restricts autophagosome expansion. Autophagy, 10(8), 1426–1441. https://doi.org/10.4161/auto.29309
  • De Clercq, E. (2004). Antivirals and antiviral strategies. Nature Reviews Microbiology, 2(9), 704–720. https://doi.org/10.1038/nrmicro975
  • De Wit, E., Van Doremalen, N., Falzarano, D., & Munster, V. J. (2016). SARS and MERS: Recent insights into emerging coronaviruses. Nature Reviews. Microbiology, 14(8), 523–534. https://doi.org/10.1038/nrmicro.2016.81
  • Decroly, E., Debarnot, C., Ferron, F., Bouvet, M., Coutard, B., Imbert, I., Gluais, L., Papageorgiou, N., Sharff, A., Bricogne, G., Ortiz-Lombardia, M., Lescar, J., & Canard, B. (2011). Crystal structure and functional analysis of the SARS-coronavirus RNA cap 2′-O-methyltransferase nsp10/nsp16 complex. PLoS Pathogens, 7(5), e1002059. https://doi.org/10.1371/journal.ppat.1002059
  • Deng, X., Hackbart, M., Mettelman, R. C., O'Brien, A., Mielech, A. M., Yi, G., Kao, C. C., & Baker, S. C. (2017). Coronavirus nonstructural protein 15 mediates evasion of dsRNA sensors and limits apoptosis in macrophages. Proceedings of the National Academy of Sciences of the United States of America, 114(21), E4251–E4260. https://doi.org/10.1073/pnas.1618310114
  • Eckerle, L. D., Becker, M. M., Halpin, R. A., Li, K., Venter, E., Lu, X., Scherbakova, S., Graham, R. L., Baric, R. S., Stockwell, T. B., Spiro, D. J., & Denison, M. R. (2010). Infidelity of SARS-CoV Nsp14-exonuclease mutant virus replication is revealed by complete genome sequencing. PLoS Pathogens, 6(5), e1000896. https://doi.org/10.1371/journal.ppat.1000896
  • Egloff, M.-P., Ferron, F., Campanacci, V., Longhi, S., Rancurel, C., Dutartre, H., Snijder, E. J., Gorbalenya, A. E., Cambillau, C., & Canard, B. (2004). The severe acute respiratory syndrome-coronavirus replicative protein nsp9 is a single-stranded RNA-binding subunit unique in the RNA virus world. Proceedings of the National Academy of Sciences of the United States of America, 101(11), 3792–3796. https://doi.org/10.1073/pnas.0307877101
  • Elfiky, A. A. (2020). Anti-HCV, nucleotide inhibitors, repurposing against COVID-19. Life Sciences, 248, 117477. https://doi.org/10.1016/j.lfs.2020.117477
  • Fang, S. G., Shen, H., Wang, J., Tay, F. P., & Liu, D. X. (2008). Proteolytic processing of polyproteins 1a and 1ab between non-structural proteins 10 and 11/12 of Coronavirus infectious bronchitis virus is dispensable for viral replication in cultured cells. Virology, 379(2), 175–180. https://doi.org/10.1016/j.virol.2008.06.038
  • Furuta, Y., Komeno, T., & Nakamura, T. (2017). Favipiravir (T-705), a broad spectrum inhibitor of viral RNA polymerase. Proceedings of the Japan Academy. Series B, Physical and Biological Sciences, 93(7), 449–463. https://doi.org/10.2183/pjab.93.027
  • Gadlage, M. J., Graham, R. L., & Denison, M. R. (2008). Murine coronaviruses encoding nsp2 at different genomic loci have altered replication, protein expression, and localization. Journal of Virology, 82(23), 11964–11969. https://doi.org/10.1128/JVI.01126-07
  • Gadlage, M. J., Sparks, J. S., Beachboard, D. C., Cox, R. G., Doyle, J. D., Stobart, C. C., & Denison, M. R. (2010). Murine hepatitis virus nonstructural protein 4 regulates virus-induced membrane modifications and replication complex function. Journal of Virology, 84(1), 280–290. https://doi.org/10.1128/JVI.01772-09
  • Gil, C., Ginex, T., Maestro, I., Nozal, V., Barrado-Gil, L., Cuesta-Geijo, M. Á., Urquiza, J., Ramírez, D., Alonso, C., Campillo, N. E., & Martinez, A. (2020). COVID-19: Drug targets and potential treatments. Journal of Medicinal Chemistry, 63(21), 12359–12386. https://doi.org/10.1021/acs.jmedchem.0c00606
  • Graham, R. L., Sims, A. C., Brockway, S. M., Baric, R. S., & Denison, M. R. (2005). The nsp2 replicase proteins of murine hepatitis virus and severe acute respiratory syndrome coronavirus are dispensable for viral replication. Journal of Virology, 79(21), 13399–13411. https://doi.org/10.1128/JVI.79.21.13399-13411.2005
  • Guan, W.-J., Ni, Z.-Y., Hu, Y., Liang, W.-H., Ou, C.-Q., He, J.-X., Liu, L., Shan, H., Lei, C.-L., Hui, D. S. C., Du, B., Li, L.-J., Zeng, G., Yuen, K.-Y., Chen, R.-C., Tang, C.-L., Wang, T., Chen, P.-Y., Xiang, J., … Zhong, N.-S, China Medical Treatment Expert Group for Covid-19. (2020). Clinical characteristics of coronavirus disease 2019 in China. The New England Journal of Medicine, 382(18), 1708–1720. https://doi.org/10.1056/NEJMoa2002032
  • Guebre-Xabier, M., Patel, N., Tian, J.-H., Zhou, B., Maciejewski, S., Lam, K., Portnoff, A. D., Massare, M. J., Frieman, M. B., Piedra, P. A., Ellingsworth, L., Glenn, G., & Smith, G. (2020). NVX-CoV2373 vaccine protects cynomolgus macaque upper and lower airways against SARS-CoV-2 challenge. Vaccine, 38(50), 7892–7896. https://doi.org/10.1016/j.vaccine.2020.10.064
  • Hamza, M., Ali, A., Khan, S., Ahmed, S., Attique, Z., Ur Rehman, S., Khan, A., Ali, H., Rizwan, M., & Munir, A. (2020). nCOV-19 peptides mass fingerprinting identification, binding, and blocking of inhibitors flavonoids and anthraquinone of Moringa oleifera and hydroxychloroquine. Journal of Biomolecular Structure and Dynamics, 39, 1–11.
  • Hao, W., Wojdyla, J. A., Zhao, R., Han, R., Das, R., Zlatev, I., Manoharan, M., Wang, M., & Cui, S. (2017). Crystal structure of Middle East respiratory syndrome coronavirus helicase. PLoS Pathogens, 13(6), e1006474. https://doi.org/10.1371/journal.ppat.1006474
  • Hindson, J. (2020). COVID-19: Faecal-oral transmission? Nature Reviews Gastroenterology & Hepatology, 17(5), 259–259. https://doi.org/10.1038/s41575-020-0295-7
  • Hoffmann, M., Kleine-Weber, H., Schroeder, S., Krüger, N., Herrler, T., Erichsen, S., Schiergens, T. S., Herrler, G., Wu, N. H., Nitsche, A., Müller, M. A., Drosten, C., & Pöhlmann, S. (2020). SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell, 181(2), 271–280. https://doi.org/10.1016/j.cell.2020.02.052
  • Huang, C., Lokugamage, K. G., Rozovics, J. M., Narayanan, K., Semler, B. L., & Makino, S. (2011). SARS coronavirus nsp1 protein induces template-dependent endonucleolytic cleavage of mRNAs: Viral mRNAs are resistant to nsp1-induced RNA cleavage. PLoS Pathogens, 7(12), e1002433. https://doi.org/10.1371/journal.ppat.1002433
  • Huang, C., Wang, Y., Li, X., Ren, L., Zhao, J., Hu, Y., Zhang, L., Fan, G., Xu, J., Gu, X., Cheng, Z., Yu, T., Xia, J., Wei, Y., Wu, W., Xie, X., Yin, W., Li, H., Liu, M., … Cao, B. (2020). Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. The Lancet, 395(10223), 497–506. https://doi.org/10.1016/S0140-6736(20)30183-5
  • Hung, I. F. N., Cheng, V. C. C., Wu, A. K. L., Tang, B. S. F., Chan, K. H., Chu, C. M., Wong, M. M. L., Hui, W. T., Poon, L. L. M., Tse, D. M. W., Chan, K. S., Woo, P. C. Y., Lau, S. K. P., Peiris, J. S. M., & Yuen, K. Y. (2004). Viral loads in clinical specimens and SARS manifestations. Emerging Infectious Diseases, 10(9), 1550–1557. https://doi.org/10.3201/eid1009.040058
  • Hussain, S., Pan, J., Chen, Y., Yang, Y., Xu, J., Peng, Y., Wu, Y., Li, Z., Zhu, Y., Tien, P., & Guo, D. (2005). Identification of novel subgenomic RNAs and noncanonical transcription initiation signals of severe acute respiratory syndrome coronavirus. Journal of Virology, 79(9), 5288–5295. https://doi.org/10.1128/JVI.79.9.5288-5295.2005
  • Jackson, N. A., Kester, K. E., Casimiro, D., Gurunathan, S., & DeRosa, F. (2020). The promise of mRNA vaccines: A biotech and industrial perspective. npj Vaccines, 5(1), 1–6. https://doi.org/10.1038/s41541-020-0159-8
  • Jia, Z., Yan, L., Ren, Z., Wu, L., Wang, J., Guo, J., Zheng, L., Ming, Z., Zhang, L., Lou, Z., & Rao, Z. (2019). Delicate structural coordination of the Severe Acute Respiratory Syndrome coronavirus Nsp13 upon ATP hydrolysis. Nucleic Acids Research, 47(12), 6538–6550. https://doi.org/10.1093/nar/gkz409
  • Kadam, R. U., & Wilson, I. A. (2017). Structural basis of influenza virus fusion inhibition by the antiviral drug Arbidol. Proceedings of the National Academy of Sciences of the United States of America, 114(2), 206–214. https://doi.org/10.1073/pnas.1617020114
  • Kirchdoerfer, R. N., & Ward, A. B. (2019). Structure of the SARS-CoV nsp12 polymerase bound to nsp7 and nsp8 co-factors. Nature Communications, 10(1), 1–9. https://doi.org/10.1038/s41467-019-10280-3
  • Koren, G., King, S., Knowles, S., & Phillips, E. (2003). Ribavirin in the treatment of SARS: A new trick for an old drug? CMAJ: Canadian Medical Association Journal = Journal de L'Association Medicale Canadienne, 168(10), 1289–1292.
  • Lauer, S. A., Grantz, K. H., Bi, Q., Jones, F. K., Zheng, Q., Meredith, H. R., Azman, A. S., Reich, N. G., & Lessler, J. (2020). The incubation period of coronavirus disease 2019 (COVID-19) from publicly reported confirmed cases: Estimation and application. Annals of Internal Medicine, 172(9), 577–582. https://doi.org/10.7326/M20-0504
  • Lei, J., Kusov, Y., & Hilgenfeld, R. (2018). Nsp3 of coronaviruses: Structures and functions of a large multi-domain protein. Antiviral Research, 149, 58–74. https://doi.org/10.1016/j.antiviral.2017.11.001
  • Li, H., Zhou, Y., Zhang, M., Wang, H., Zhao, Q., & Liu, J. (2020). Updated approaches against SARS-CoV-2. Antimicrobial Agents and Chemotherapy., 64, 1-7.
  • Liu, W., Tang, F., Fontanet, A., Zhan, L., Zhao, Q.-M., Zhang, P.-H., Wu, X.-M., Zuo, S.-Q., Baril, L., Vabret, A., Xin, Z.-T., Shao, Y.-M., Yang, H., & Cao, W.-C. (2004). Long-term SARS coronavirus excretion from patient cohort, China. Emerging Infectious Diseases, 10(10), 1841–1843. https://doi.org/10.3201/eid1010.040297
  • Ma, Y., Wu, L., Shaw, N., Gao, Y., Wang, J., Sun, Y., Lou, Z., Yan, L., Zhang, R., & Rao, Z. (2015). Structural basis and functional analysis of the SARS coronavirus nsp14-nsp10 complex. Proceedings of the National Academy of Sciences of the United States of America, 112(30), 9436–9441. https://doi.org/10.1073/pnas.1508686112
  • Makhoba, X. H., Viegas, C., Jr, Mosa, R. A., Viegas, F. P., & Pooe, O. J. (2020). Potential impact of the multi-target drug approach in the treatment of some complex diseases. Drug Design, Development and Therapy, 14, 3235–3249. https://doi.org/10.2147/DDDT.S257494
  • Memish, Z. A., Assiri, A. M., & Al-Tawfiq, J. A. (2014). Middle East respiratory syndrome coronavirus (MERS-CoV) viral shedding in the respiratory tract: An observational analysis with infection control implications. International Journal of Infectious Diseases: IJID: Official Publication of the International Society for Infectious Diseases, 29, 307–308. https://doi.org/10.1016/j.ijid.2014.10.002
  • Minskaia, E., Hertzig, T., Gorbalenya, A. E., Campanacci, V., Cambillau, C., Canard, B., & Ziebuhr, J. (2006). Discovery of an RNA virus 3'->5' exoribonuclease that is critically involved in coronavirus RNA synthesis. Proceedings of the National Academy of Sciences of the United States of America, 103(13), 5108–5113. https://doi.org/10.1073/pnas.0508200103
  • Moderna, Ms. (2020). COVID-19 vaccine candidate meets its primary efficacy endpoint in the first interim analysis of the phase 3 COVE study. Moderna, 16
  • Monteiro, N. R., Ribeiro, B., & Arrais, J. (2020). Drug-target interaction prediction: End-to-end deep learning approach. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 18, 2364-2374.
  • Mueller, S., Stauft, C. B., Kalkeri, R., Koidei, F., Kushnir, A., Tasker, S., & Coleman, J. R. (2020). A codon-pair deoptimized live-attenuated vaccine against respiratory syncytial virus is immunogenic and efficacious in non-human primates. Vaccine, 38(14), 2943–2948. https://doi.org/10.1016/j.vaccine.2020.02.056
  • Mulangu, S., Dodd, L. E., Davey, R. T., Tshiani Mbaya, O., Proschan, M., Mukadi, D., Lusakibanza Manzo, M., Nzolo, D., Tshomba Oloma, A., Ibanda, A., Ali, R., Coulibaly, S., Levine, A. C., Grais, R., Diaz, J., Lane, H. C., Muyembe-Tamfum, J.-J., Sivahera, B., Camara, M., … Nordwall, J., PALM Consortium Study Team. (2019). A randomized, controlled trial of Ebola virus disease therapeutics. The New England Journal of Medicine, 381(24), 2293–2303. https://doi.org/10.1056/NEJMoa1910993
  • Murray, C. J., & Piot, P. (2021). The potential future of the COVID-19 pandemic: Will SARS-CoV-2 become a recurrent seasonal infection? Jama, 325(13), 1249–1250. https://doi.org/10.1001/jama.2021.2828
  • Murugan, N. A., Kumar, S., Jeyakanthan, J., & Srivastava, V. (2020). Searching for target-specific and multi-targeting organics for Covid-19 in the Drugbank database with a double scoring approach. Scientific Reports., 10, 1–16.
  • Nascimento, A. C., Prudêncio, R. B., & Costa, I. G. (2019). A drug-target network-based supervised machine learning repurposing method allowing the use of multiple heterogeneous information sources, In Computational Methods for Drug Repurposing (pp. 281–289). Springer.
  • Nath, A., Kumari, P., & Chaube, R. (2018). Prediction of human drug targets and their interactions using machine learning methods: Current and future perspectives. Computational Drug Discovery and Design, 21–30.
  • Pasquereau, S., Nehme, Z., Haidar Ahmad, S., Daouad, F., Van Assche, J., Wallet, C., Schwartz, C., Rohr, O., Morot-Bizot, S., & Herbein, G. (2021). Resveratrol inhibits HCoV-229E and SARS-CoV-2 coronavirus replication in vitro. Viruses, 13(2), 354. https://doi.org/10.3390/v13020354
  • Peiris, J. S. M., Chu, C. M., Cheng, V. C. C., Chan, K. S., Hung, I. F. N., Poon, L. L. M., Law, K. I., Tang, B. S. F., Hon, T. Y. W., Chan, C. S., Chan, K. H., Ng, J. S. C., Zheng, B. J., Ng, W. L., Lai, R. W. M., Guan, Y., & Yuen, K. Y. (2003). Clinical progression and viral load in a community outbreak of coronavirus-associated SARS pneumonia: A prospective study. The Lancet, 361(9371), 1767–1772. https://doi.org/10.1016/S0140-6736(03)13412-5
  • Poland, G. A., Ovsyannikova, I. G., Crooke, S. N., & Kennedy, R. B. (2020). SARS-CoV-2 vaccine development: Current status. Mayo Clinic Proceedings, 95(10), 2172–2188. https://doi.org/10.1016/j.mayocp.2020.07.021
  • Rodriguez-Morales, A. J., Cardona-Ospina, J. A., Gutiérrez-Ocampo, E., Villamizar-Peña, R., Holguin-Rivera, Y., Escalera-Antezana, J. P., Alvarado-Arnez, L. E., Bonilla-Aldana, D. K., Franco-Paredes, C., Henao-Martinez, A. F., Paniz-Mondolfi, A., Lagos-Grisales, G. J., Ramírez-Vallejo, E., Suárez, J. A., Zambrano, L. I., Villamil-Gómez, W. E., Balbin-Ramon, G. J., Rabaan, A. A., Harapan, H., … Sah, R. (2020). Clinical, laboratory and imaging features of COVID-19: A systematic review and meta-analysis. Travel Medicine and Infectious Disease, 34, 101623. https://doi.org/10.1016/j.tmaid.2020.101623
  • Rothe, C., Schunk, M., Sothmann, P., Bretzel, G., Froeschl, G., Wallrauch, C., Zimmer, T., Thiel, V., Janke, C., Guggemos, W., Seilmaier, M., Drosten, C., Vollmar, P., Zwirglmaier, K., Zange, S., Wölfel, R., & Hoelscher, M. (2020). Transmission of 2019-nCoV infection from an asymptomatic contact in Germany. The New England Journal of Medicine, 382(10), 970–971. https://doi.org/10.1056/NEJMc2001468
  • Runfeng, L., Yunlong, H., Jicheng, H., Weiqi, P., Qinhai, M., Yongxia, S., Chufang, L., Jin, Z., Zhenhua, J., Haiming, J., Kui, Z., Shuxiang, H., Jun, D., Xiaobo, L., Xiaotao, H., Lin, W., Nanshan, Z., & Zifeng, Y. (2020). Lianhuaqingwen exerts anti-viral and anti-inflammatory activity against novel coronavirus (SARS-CoV-2). Pharmacological Research, 156, 104761. https://doi.org/10.1016/j.phrs.2020.104761
  • Saberian, N., Peyvandipour, A., Donato, M., Ansari, S., & Draghici, S. (2019). A new computational drug repurposing method using established disease-drug pair knowledge. Bioinformatics (Oxford, England), 35(19), 3672–3678. https://doi.org/10.1093/bioinformatics/btz156
  • Sapkal, G. N., Yadav, P. D., Ella, R., Deshpande, G. R., Sahay, R. R., Gupta, N., Mohan, V. K., Abraham, P., Panda, S., & Bhargava, B. (2021). Inactivated COVID-19 vaccine BBV152/COVAXIN effectively neutralizes recently emerged B 1.1. 7 variant of SARS-CoV-2. Journal of Travel Medicine, 28, 1–3.
  • Sarzi-Puttini, P., Giorgi, V., Sirotti, S., Marotto, D., Ardizzone, S., Rizzardini, G., Antinori, S., & Galli, M. (2020). COVID-19, cytokines and immunosuppression: What can we learn from severe acute respiratory syndrome? Clinical and Experimental Rheumatology, 38(2), 337–342.
  • Sasidharan, S., Selvaraj, C., Singh, S. K., Dubey, V. K., Kumar, S., Fialho, A. M., & Saudagar, P. (2020). Bacterial protein azurin and derived peptides as potential anti-SARS-CoV-2 agents: Insights from molecular docking and molecular dynamics simulations. Journal of Biomolecular Structure and Dynamics, 39, 1–16.
  • Savarino, A., Boelaert, J. R., Cassone, A., Majori, G., & Cauda, R. (2003). Effects of chloroquine on viral infections: An old drug against today's diseases. The Lancet Infectious Diseases, 3(11), 722–727. https://doi.org/10.1016/S1473-3099(03)00806-5
  • Saxena, A. (2020). Drug targets for COVID-19 therapeutics: Ongoing global efforts. Journal of Biosciences, 45, 1–24.
  • Serrano, P., Johnson, M. A., Chatterjee, A., Neuman, B. W., Joseph, J. S., Buchmeier, M. J., Kuhn, P., & Wüthrich, K. (2009). Nuclear magnetic resonance structure of the nucleic acid-binding domain of severe acute respiratory syndrome coronavirus nonstructural protein 3. Journal of Virology, 83(24), 12998–13008. https://doi.org/10.1128/JVI.01253-09
  • Shamsi, A., Mohammad, T., Anwar, S., AlAjmi, M. F., Hussain, A., Rehman, M., Islam, A., & Hassan, M. (2020). Glecaprevir and Maraviroc are high-affinity inhibitors of SARS-CoV-2 main protease: Possible implication in COVID-19 therapy. Bioscience Reports, 40, 1-8.
  • Shang, J., Ye, G., Shi, K., Wan, Y., Aihara, H., & Li, F. (2020). Structure of 2019-nCoV chimeric receptor-binding domain complexed with its receptor human ACE2. Worldw. Protein Data Bank.
  • Shi, P., Su, Y., Li, R., Liang, Z., Dong, S., & Huang, J. (2019). PEDV nsp16 negatively regulates innate immunity to promote viral proliferation. Virus Research, 265, 57–66. https://doi.org/10.1016/j.virusres.2019.03.005
  • Sputnik, V. (2020). Second interim analysis of clinical trial data showed a 91.4% efficacy for the Sputnik V vaccine on day 28 after the first dose; vaccine efficacy is over 95% 42 days after the first dose. Press Release, 24 November 2020. sputnikvaccine. com/newsroom/pressreleases/second-interim-analysis-of-clinical-trial-data-showed-a-91-4-efficacy-for-the-sputnik-v-vaccine-on-d.
  • Spychalski, P., Błażyńska-Spychalska, A., & Kobiela, J. (2020). Estimating case fatality rates of COVID-19. The Lancet. Infectious Diseases.
  • Stobart, C. C., Sexton, N. R., Munjal, H., Lu, X., Molland, K. L., Tomar, S., Mesecar, A. D., & Denison, M. R. (2013). Chimeric exchange of coronavirus nsp5 proteases (3CLpro) identifies common and divergent regulatory determinants of protease activity. Journal of Virology, 87(23), 12611–12618. https://doi.org/10.1128/JVI.02050-13
  • Surveillances. (2020). The epidemiological characteristics of an outbreak of 2019 novel coronavirus diseases (COVID-19)—China, 2020. China CDC Weekly, 2(8), 113–122. https://doi.org/10.46234/ccdcw2020.032
  • Talevi, A. (2015). Multi-target pharmacology: Possibilities and limitations of the “skeleton key approach” from a medicinal chemist perspective. Frontiers in Pharmacology, 6, 205. https://doi.org/10.3389/fphar.2015.00205
  • Tanaka, T., Kamitani, W., DeDiego, M. L., Enjuanes, L., & Matsuura, Y. (2012). Severe acute respiratory syndrome coronavirus nsp1 facilitates efficient propagation in cells through a specific translational shutoff of host mRNA. Journal of Virology, 86(20), 11128–11137. https://doi.org/10.1128/JVI.01700-12
  • Te Velthuis, A. J., Arnold, J. J., Cameron, C. E., van den Worm, S. H., & Snijder, E. J. (2010). The RNA polymerase activity of SARS-coronavirus nsp12 is primer dependent. Nucleic Acids Research, 38(1), 203–214. https://doi.org/10.1093/nar/gkp904
  • Te Velthuis, A. J., Van Den Worm, S. H., & Snijder, E. J. (2012). The SARS-coronavirus nsp7 + nsp8 complex is a unique multimeric RNA polymerase capable of both de novo initiation and primer extension. Nucleic Acids Research, 40(4), 1737–1747. https://doi.org/10.1093/nar/gkr893
  • Tebas, P., Yang, S., Boyer, J. D., Reuschel, E. L., Patel, A., Christensen-Quick, A., Andrade, V. M., Morrow, M. P., Kraynyak, K., Agnes, J., Purwar, M., Sylvester, A., Pawlicki, J., Gillespie, E., Maricic, I., Zaidi, F. I., Kim, K. Y., Dia, Y., Frase, D., … Humeau, L. M. (2021). Safety and immunogenicity of INO-4800 DNA vaccine against SARS-CoV-2: A preliminary report of an open-label, Phase 1 clinical trial. EClinicalMedicine, 31, 100689. https://doi.org/10.1016/j.eclinm.2020.100689
  • Ton, A. T., Gentile, F., Hsing, M., Ban, F., & Cherkasov, A. (2020). Rapid identification of potential inhibitors of SARS‐CoV‐2 main protease by deep docking of 1.3 billion compounds. Molecular Informatics, 39(8), 2000028. https://doi.org/10.1002/minf.202000028
  • Tong, T. R. (2009). Drug targets in severe acute respiratory syndrome (SARS) virus and other coronavirus infections. Infectious Disorders Drug Targets, 9(2), 223–245. https://doi.org/10.2174/187152609787847659
  • Ura, T., Okuda, K., & Shimada, M. (2014). Developments in viral vector-based vaccines. Vaccines, 2(3), 624–641. https://doi.org/10.3390/vaccines2030624
  • Vela, J. M. (2020). Repurposing sigma-1 receptor ligands for COVID-19 therapy? Frontiers in Pharmacology, 11, 582310. https://doi.org/10.3389/fphar.2020.582310
  • Velavan, T. P., & Meyer, C. G. (2020). The COVID-19 epidemic. Tropical Medicine & International Health: TM & IH, 25(3), 278–280. https://doi.org/10.1111/tmi.13383
  • Vincent, M. J., Bergeron, E., Benjannet, S., Erickson, B. R., Rollin, P. E., Ksiazek, T. G., Seidah, N. G., & Nichol, S. T. (2005). Chloroquine is a potent inhibitor of SARS coronavirus infection and spread. Virology Journal, 2(1), 69. https://doi.org/10.1186/1743-422X-2-69
  • Wagstaff, K. M., Sivakumaran, H., Heaton, S. M., Harrich, D., & Jans, D. A. (2012). Ivermectin is a specific inhibitor of importin α/β-mediated nuclear import able to inhibit replication of HIV-1 and dengue virus. The Biochemical Journal, 443(3), 851–856. https://doi.org/10.1042/BJ20120150
  • Walsh, E. E., Frenck, R. W., Falsey, A. R., Kitchin, N., Absalon, J., Gurtman, A., Lockhart, S., Neuzil, K., Mulligan, M. J., Bailey, R., Swanson, K. A., Li, P., Koury, K., Kalina, W., Cooper, D., Fontes-Garfias, C., Shi, P.-Y., Türeci, Ö., Tompkins, K. R., … Gruber, W. C. (2020). Safety and immunogenicity of two RNA-based Covid-19 vaccine candidates. The New England Journal of Medicine, 383(25), 2439–2450. https://doi.org/10.1056/NEJMoa2027906
  • Wang, M., Cao, R., Zhang, L., Yang, X., Liu, J., Xu, M., Shi, Z., Hu, Z., Zhong, W., & Xiao, G. (2020b). Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Research, 30(3), 269–271. https://doi.org/10.1038/s41422-020-0282-0
  • Wang, D., Hu, B., Hu, C., Zhu, F., Liu, X., Zhang, J., Wang, B., Xiang, H., Cheng, Z., Xiong, Y., Zhao, Y., Li, Y., Wang, X., & Peng, Z. (2020a). Clinical characteristics of 138 hospitalized patients with 2019 novel Coronavirus-Infected Pneumonia in Wuhan, China. Jama, 323(11), 1061–1069. https://doi.org/10.1001/jama.2020.1585
  • Wang, W., Xu, Y., Gao, R., Lu, R., Han, K., Wu, G., & Tan, W. (2020c). Detection of SARS-CoV-2 in different types of clinical specimens. Jama, 323(18), 1843–1844. https://doi.org/10.1001/jama.2020.3786
  • Ward, B. J., Gobeil, P., Seguin, A., Atkins, J., Boulay, I., Charbonneau, P.-Y., Couture, M., D'Aoust, M.-A., Dhaliwall, J., & Finkle, C. (2020). Phase 1 trial of a candidate recombinant virus-like particle vaccine for Covid-19 disease produced in plants. medRxiv, 1–58.
  • Wu, D., & Yang, X. O. (2020). TH17 responses in cytokine storm of COVID-19: An emerging target of JAK2 inhibitor Fedratinib. Journal of Microbiology, Immunology and Infection, 53, 368-370.
  • Wu, F., Zhao, S., Yu, B., Chen, Y.-M., Wang, W., Song, Z.-G., Hu, Y., Tao, Z.-W., Tian, J.-H., Pei, Y.-Y., Yuan, M.-L., Zhang, Y.-L., Dai, F.-H., Liu, Y., Wang, Q.-M., Zheng, J.-J., Xu, L., Holmes, E. C., & Zhang, Y.-Z. (2020a). A new coronavirus associated with human respiratory disease in China. Nature, 579(7798), 265–269. https://doi.org/10.1038/s41586-020-2008-3
  • Wu, S., Zhong, G., Zhang, J., Shuai, L., Zhang, Z., Wen, Z., Wang, B., Zhao, Z., Song, X., Chen, Y., Liu, R., Fu, L., Zhang, J., Guo, Q., Wang, C., Yang, Y., Fang, T., Lv, P., Wang, J., … Chen, W. (2020b). A single dose of an adenovirus-vectored vaccine provides protection against SARS-CoV-2 challenge. Nature Communications, 11(1), 7. https://doi.org/10.1038/s41467-020-17972-1
  • Xia, S., Zhang, Y., Wang, Y., Wang, H., Yang, Y., Gao, G. F., Tan, W., Wu, G., Xu, M., Lou, Z., Huang, W., Xu, W., Huang, B., Wang, H., Wang, W., Zhang, W., Li, N., Xie, Z., Ding, L., … Yang, X. (2021). Safety and immunogenicity of an inactivated SARS-CoV-2 vaccine, BBIBP-CorV: A randomised, double-blind, placebo-controlled, phase 1/2 trial. The Lancet Infectious Diseases, 21(1), 39–51. https://doi.org/10.1016/S1473-3099(20)30831-8
  • Xu, Y., Li, X., Zhu, B., Liang, H., Fang, C., Gong, Y., Guo, Q., Sun, X., Zhao, D., Shen, J., Zhang, H., Liu, H., Xia, H., Tang, J., Zhang, K., & Gong, S. (2020). Characteristics of pediatric SARS-CoV-2 infection and potential evidence for persistent fecal viral shedding. Nature Medicine, 26(4), 502–505. https://doi.org/10.1038/s41591-020-0817-4
  • Young, B. E., Ong, S. W. X., Kalimuddin, S., Low, J. G., Tan, S. Y., Loh, J., Ng, O.-T., Marimuthu, K., Ang, L. W., Mak, T. M., Lau, S. K., Anderson, D. E., Chan, K. S., Tan, T. Y., Ng, T. Y., Cui, L., Said, Z., Kurupatham, L., Chen, M. I.-C., … Lye, D. C., Singapore 2019 Novel Coronavirus Outbreak Research Team. (2020). Epidemiologic features and clinical course of patients infected with SARS-CoV-2 in Singapore. JAMA, 323(15), 1488–1494. https://doi.org/10.1001/jama.2020.3204
  • Yu, P., Zhu, J., Zhang, Z., & Han, Y. (2020). A familial cluster of infection associated with the 2019 novel coronavirus indicating possible person-to-person transmission during the incubation period. The Journal of Infectious Diseases, 221(11), 1757–1761. https://doi.org/10.1093/infdis/jiaa077
  • Zeng, Z., Deng, F., Shi, K., Ye, G., Wang, G., Fang, L., Xiao, S., Fu, Z., & Peng, G. (2018). Dimerization of coronavirus nsp9 with diverse modes enhances its nucleic acid binding affinity. Journal of Virology, 92, 1-15.
  • Zeng, X., Zhu, S., Hou, Y., Zhang, P., Li, L., Li, J., Huang, L. F., Lewis, S. J., Nussinov, R., & Cheng, F. (2020). Network-based prediction of drug-target interactions using an arbitrary-order proximity embedded deep forest . Bioinformatics (Oxford, England), 36(9), 2805–2812. https://doi.org/10.1093/bioinformatics/btaa010
  • Zhai, Y., Sun, F., Li, X., Pang, H., Xu, X., Bartlam, M., & Rao, Z. (2005). Insights into SARS-CoV transcription and replication from the structure of the nsp7-nsp8 hexadecamer. Nature Structural & Molecular Biology, 12(11), 980–986. https://doi.org/10.1038/nsmb999
  • Zhang, Y., Chen, C., Zhu, S., Shu, C., Wang, D., Song, J., Song, Y., Zhen, W., Feng, Z., Wu, G., Xu, J., & Xu, W. (2020b). Isolation of 2019-nCoV from a stool specimen of a laboratory-confirmed case of the coronavirus disease 2019 (COVID-19). China CDC Weekly, 2(8), 123–124. https://doi.org/10.46234/ccdcw2020.033
  • Zhang, W., Du, R.-H., Li, B., Zheng, X.-S., Yang, X.-L., Hu, B., Wang, Y.-Y., Xiao, G.-F., Yan, B., Shi, Z.-L., & Zhou, P. (2020a). Molecular and serological investigation of 2019-nCoV infected patients: Implication of multiple shedding routes. Emerging Microbes & Infections, 9(1), 386–389. https://doi.org/10.1080/22221751.2020.1729071
  • Zhang, L., Lin, D., Sun, X., Curth, U., Drosten, C., Sauerhering, L., Becker, S., Rox, K., & Hilgenfeld, R. (2020d). Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved α-ketoamide inhibitors. Science (New York, N.Y.), 368(6489), 409–412.
  • Zhang, Z., Li, J., Ou, Y., Yang, G., Deng, K., Wang, Q., Wang, Z., Wang, W., Zhang, Q., Wang, H., Sun, W., Sun, P., & Yang, S. (2020c). Overcoming cancer therapeutic bottleneck by drug repurposing. Signal Transduction and Targeted Therapy, 5(1), 25. https://doi.org/10.1038/s41392-020-00213-8
  • Zhang, L., Li, L., Yan, L., Ming, Z., Jia, Z., Lou, Z., & Rao, Z. (2018). Structural and biochemical characterization of endoribonuclease Nsp15 encoded by Middle East respiratory syndrome coronavirus. Journal of Virology, 92, 1-16.
  • Zhang, H., Penninger, J. M., Li, Y., Zhong, N., & Slutsky, A. S. (2020e). Angiotensin-converting enzyme 2 (ACE2) as a SARS-CoV-2 receptor: Molecular mechanisms and potential therapeutic target. Intensive Care Medicine, 46(4), 586–590. https://doi.org/10.1007/s00134-020-05985-9
  • Zhao, K., & So, H.-C. (2019). Drug repositioning for schizophrenia and depression/anxiety disorders: A machine learning approach leveraging expression data. IEEE Journal of Biomedical and Health Informatics, 23(3), 1304–1315. https://doi.org/10.1109/JBHI.2018.2856535
  • Zhuang, G., Shen, M., Zeng, L., Mi, B., Chen, F., Liu, W., Pei, L., Qi, X., & Li, C. (2020). WITHDRAWN: Potential false-positive rate among the'asymptomatic infected individuals' in close contacts of COVID-19 patients. Zhonghua Liu Xing Bing Xue za Zhi = Zhonghua Liuxingbingxue Zazhi, 41(4), 485–488.
  • Zhu, X., Fang, L., Wang, D., Yang, Y., Chen, J., Ye, X., Foda, M. F., & Xiao, S. (2017a). Porcine deltacoronavirus nsp5 inhibits interferon-β production through the cleavage of NEMO. Virology, 502, 33–38. https://doi.org/10.1016/j.virol.2016.12.005
  • Zhu, X., Wang, D., Zhou, J., Pan, T., Chen, J., Yang, Y., Lv, M., Ye, X., Peng, G., & Fang, L. (2017b). Porcine deltacoronavirus nsp5 antagonizes type I interferon signaling by cleaving STAT2. Virology, 500, 91–95. https://doi.org/10.1016/j.virol.2016.10.014
  • Zumla, A., Hui, D. S., & Perlman, S. (2015). Middle East respiratory syndrome. The Lancet, 386(9997), 995–1007. https://doi.org/10.1016/S0140-6736(15)60454-8

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.