210
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

N-acetylglucosamine-phosphatidylinositol de-N-acetylase as a novel target for probing potential inhibitor against Leishmania donovani

, , , , , ORCID Icon & ORCID Icon show all
Pages 1904-1918 | Received 23 Nov 2021, Accepted 30 Dec 2021, Published online: 11 Jan 2022

References

  • Ahammad, F., Alam, R., Mahmud, R., Akhter, S., Talukder, E. K., Tonmoy, A. M., Fahim, S., Al-Ghamdi, K., Samad, A., & Qadri, I. (2021). Pharmacoinformatics and molecular dynamics simulation-based phytochemical screening of neem plant (Azadiractha indica) against human cancer by targeting MCM7 protein. Briefings in Bioinformatics, 22(5), bbab098. https://doi.org/10.1093/bib/bbab098
  • Andrade-Neto, V. V., Cunha-Junior, E. F., dos Santos Faioes, V., Martins, T. P., Silva, R. L., Leon, L. L., & Torres-Santos, E. C. (2018). Leishmaniasis treatment: update of possibilities for drug repurposing. Frontiers in Bioscience-Landmark, 23(5), 967–996.
  • Baell, J. B., & Nissink, J. W. M. (2018). Seven year itch: Pan-Assay Interference Compounds (PAINS) in 2017-utility and limitations. ACS Chemical Biology, 13(1), 36–44. https://doi.org/10.1021/acschembio.7b00903
  • Bathula, R., Lanka, G., Muddagoni, N., Dasari, M., Nakkala, S., Bhargavi, M., Somadi, G., Sivan, S. K., & Rajender Potlapally, S. (2020). Identification of potential Aurora kinase-C protein inhibitors: an amalgamation of energy minimization, virtual screening, prime MMGBSA and AutoDock. Journal of Biomolecular Structure & Dynamics, 38(8), 2314–2325. https://doi.org/10.1080/07391102.2019.1630318
  • Berman, J. (2003). Current treatment approaches to leishmaniasis. Current Opinion in Infectious Diseases, 16(5), 397-401. https://journals.lww.com/co-infectiousdiseases/Fulltext/2003/10000/Current_treatment_approaches_to_leishmaniasis.5.aspx
  • Bharadwaj, S., Dubey, A., Yadava, U., Mishra, S. K., Kang, S. G., & Dwivedi, V. D. (2021). Exploration of natural compounds with anti-SARS-CoV-2 activity via inhibition of SARS-CoV-2 Mpro. Briefings in Bioinformatics, 22(2), 1361–1377. https://doi.org/10.1093/bib/bbaa382
  • Brindisi, M., Brogi, S., Relitti, N., Vallone, A., Butini, S., Gemma, S., Novellino, E., Colotti, G., Angiulli, G., Di Chiaro, F., Fiorillo, A., Ilari, A., & Campiani, G. (2015). Structure-based discovery of the first non-covalent inhibitors of Leishmania major tryparedoxin peroxidase by high throughput docking. Scientific Reports, 5(1), 9705 https://doi.org/10.1038/srep09705
  • Burza, S., Croft, S. L., & Boelaert, M. (2018). Leishmaniasis. The Lancet, 392(10151), 951–970. https://doi.org/10.1016/S0140-6736(18)31204-2
  • Chaudhari, R., & Li, Z. (2015). PyMine: a PyMOL plugin to integrate and visualize data for drug discovery. BMC Research Notes, 8(1), 517. https://doi.org/10.1186/s13104-015-1483-3
  • Chawla, B., & Madhubala, R. (2010). Drug targets in Leishmania. Journal of Parasitic Diseases, 34(1), 1–13. https://doi.org/10.1007/s12639-010-0006-3
  • Chelbi, I., Derbali, M., Al-Ahmadi, Z., Zaafouri, B., El Fahem, A., & Zhioua, E. (2007). Phenology of Phlebotomus papatasi (Diptera: Psychodidae) relative to the seasonal prevalence of Zoonotic Cutaneous Leishmaniasis in Central Tunisia. Journal of Medical Entomology, 44(2), 385–388. https://doi.org/10.1093/jmedent/44.2.385
  • Colotti, G., Baiocco, P., Fiorillo, A., Boffi, A., Poser, E., Chiaro, F. D., & Ilari, A. (2013). Structural insights into the enzymes of the trypanothione pathway: Targets for antileishmaniasis drugs. Future Medicinal Chemistry, 5(15), 1861–1875. https://doi.org/10.4155/fmc.13.146
  • Colovos, C., & Yeates, T. O. (1993). Verification of protein structures: Patterns of nonbonded atomic interactions. Protein Science : a Publication of the Protein Society, 2(9), 1511–1519. https://doi.org/10.1002/pro.5560020916
  • DasGupta, D., Mandalaparthy, V., & Jayaram, B. (2017). A component analysis of the free energies of folding of 35 proteins: A consensus view on the thermodynamics of folding at the molecular level. Journal of Computational Chemistry, 38(32), 2791–2801. https://doi.org/10.1002/jcc.25072
  • De Vivo, M., Masetti, M., Bottegoni, G., & Cavalli, A. (2016). Role of molecular dynamics and related methods in drug discovery. Journal of Medicinal Chemistry, 59(9), 4035–4061. https://doi.org/10.1021/acs.jmedchem.5b01684
  • Friesner, R. A., Murphy, R. B., Repasky, M. P., Frye, L. L., Greenwood, J. R., Halgren, T. A., Sanschagrin, P. C., & Mainz, D. T. (2006). Extra precision glide: Docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes. Journal of Medicinal Chemistry, 49(21), 6177–6196. https://doi.org/10.1021/jm051256o
  • Genheden, S., & Ryde, U. (2015). The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. Expert Opinion on Drug Discovery, 10(5), 449–461. https://doi.org/10.1517/17460441.2015.1032936
  • Halgren, T. A. (2009). Identifying and characterizing binding sites and assessing druggability. Journal of Chemical Information and Modeling, 49(2), 377–389. https://doi.org/10.1021/ci800324m
  • Han, Y., Wang, Z., Ren, J., Wei, Z., & Li, J. (2021). Potential inhibitors for the novel coronavirus (SARS-CoV-2). Briefings in Bioinformatics, 22(2), 1225–1231. https://doi.org/10.1093/bib/bbaa209
  • Handa, N., Terada, T., Kamewari, Y., Hamana, H., Tame, J. R. H., Park, S.-Y., Kinoshita, K., Ota, M., Nakamura, H., Kuramitsu, S., Shirouzu, M., & Yokoyama, S. (2003). Crystal structure of the conserved protein TT1542 from Thermus thermophilus HB8. Protein Science : a Publication of the Protein Society, 12(8), 1621–1632. https://doi.org/10.1110/gad.03104003
  • Kratz, E. G., Duke, R. E., & Cisneros, G. A. (2016). Long-range electrostatic corrections in multipolar/polarizable QM/MM simulations. Theoretical Chemistry Accounts, 135(7), 166. https://doi.org/10.1007/s00214-016-1923-8
  • Kumar, M., Roy, A., Rawat, R. S., Alok, A., Tetala, K. K. R., Biswas, N. R., Kaur, P., & Kumar, S. (2021). Identification and structural studies of natural inhibitors against SARS-CoV-2 viral RNA methyltransferase (NSP16). Journal of Biomolecular Structure and Dynamics, 1–11. https://doi.org/10.1080/07391102.2021.1997821
  • Lansu, K., Karpiak, J., Liu, J., Huang, X.-P., McCorvy, J. D., Kroeze, W. K., Che, T., Nagase, H., Carroll, F. I., Jin, J., Shoichet, B. K., & Roth, B. L. (2017). In silico design of novel probes for the atypical opioid receptor MRGPRX2. Nature Chemical Biology, 13(5), 529–536. https://doi.org/10.1038/nchembio.2334
  • Laskowski, R. A., Rullmann, J. A. C., MacArthur, M. W., Kaptein, R., & Thornton, J. M. (1996). AQUA and PROCHECK-NMR: Programs for checking the quality of protein structures solved by NMR. Journal of Biomolecular NMR, 8(4), 477–486. https://doi.org/10.1007/BF00228148
  • Lawson, A. D. G., MacCoss, M., & Heer, J. P. (2018). Importance of rigidity in designing small molecule drugs to tackle protein-protein interactions (PPIs) through stabilization of desired conformers. Journal of Medicinal Chemistry, 61(10), 4283–4289. https://doi.org/10.1021/acs.jmedchem.7b01120
  • Madhavi Sastry, G., Adzhigirey, M., Day, T., Annabhimoju, R., & Sherman, W. (2013). Protein and ligand preparation: parameters, protocols, and influence on virtual screening enrichments. Journal of Computer-Aided Molecular Design, 27(3), 221–234. https://doi.org/10.1007/s10822-013-9644-8
  • Mahmud, S., Parves, M. R., Riza, Y. M., Sujon, K. M., Ray, S., Tithi, F. A., Zaoti, Z. F., Alam, S., & Absar, N. (2020). Exploring the potent inhibitors and binding modes of phospholipase A2 through in silico investigation. Journal of Biomolecular Structure & Dynamics, 38(14), 4221–4231. https://doi.org/10.1080/07391102.2019.1680440
  • Mahmud, S., Uddin, M. A. R., Paul, G. K., Shimu, M. S. S., Islam, S., Rahman, E., Islam, A., Islam, M. S., Promi, M. M., Emran, T., Bin., & Saleh, M. A. (2021). Virtual screening and molecular dynamics simulation study of plant-derived compounds to identify potential inhibitors of main protease from SARS-CoV-2. Briefings in Bioinformatics, 22(2), 1402–1414. https://doi.org/10.1093/bib/bbaa428
  • Maynes, J. T., Garen, C., Cherney, M. M., Newton, G., Arad, D., Av-Gay, Y., Fahey, R. C., & James, M. N. G. (2003). The Crystal Structure of 1-D-myo-Inosityl 2-acetamido-2-deoxy-alpha-D-glucopyranoside deacetylase (MshB) from Mycobacterium tuberculosis reveals a zinc hydrolase with a lactate dehydrogenase fold*. The Journal of Biological Chemistry, 278(47), 47166–47170. https://doi.org/10.1074/jbc.M308914200
  • Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S., & Olson, A. J. (2009). AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. Journal of Computational Chemistry, 30(16), 2785–2791. https://doi.org/10.1002/jcc.21256
  • Ponte-Sucre, A., Gamarro, F., Dujardin, J.-C., Barrett, M. P., López-Vélez, R., García-Hernández, R., Pountain, A. W., Mwenechanya, R., & Papadopoulou, B. (2017). Drug resistance and treatment failure in leishmaniasis: A 21st century challenge. PLoS Neglected Tropical Diseases, 11(12), e0006052 https://doi.org/10.1371/journal.pntd.0006052
  • Sahayarayan, J. J., Rajan, K. S., Vidhyavathi, R., Nachiappan, M., Prabhu, D., Alfarraj, S., Arokiyaraj, S., & Daniel, A. N. (2021). In-silico protein-ligand docking studies against the estrogen protein of breast cancer using pharmacophore based virtual screening approaches. Saudi J Biol Sci, 28(1), 400–407. https://doi.org/10.1016/j.sjbs.2020.10.023
  • Shivakumar, D., Williams, J., Wu, Y., Damm, W., Shelley, J., & Sherman, W. (2010). Prediction of absolute solvation free energies using molecular dynamics free energy perturbation and the OPLS force field. Journal of Chemical Theory and Computation, 6(5), 1509–1519. https://doi.org/10.1021/ct900587b
  • UniProt: the universal protein knowledgebase in 2021. (2021). Nucleic Acids Research, 49(D1), D480–D489. https://doi.org/10.1093/nar/gkaa1100
  • Urbaniak, M. D., Capes, A. S., Crossman, A., O'Neill, S., Thompson, S., Gilbert, I. H., & Ferguson, M. A. J. (2014). Fragment screening reveals salicylic hydroxamic acid as an inhibitor of Trypanosoma brucei GPI GlcNAc-PI de-N-acetylase. Carbohydrate Research, 387, 54–58. https://doi.org/10.1016/j.carres.2013.12.016
  • Urbaniak, M. D., Crossman, A., Chang, T., Smith, T. K., van Aalten, D. M. F., & Ferguson, M. A. J. (2005). The N-Acetyl-D-glucosaminylphosphatidylinositol De-N-acetylase of Glycosylphosphatidylinositol Biosynthesis Is a Zinc Metalloenzyme*. The Journal of Biological Chemistry, 280(24), 22831–22838. https://doi.org/10.1074/jbc.M502402200
  • Viars, S., Valentine, J., & Hernick, M. (2014). Structure and function of the LmbE-like superfamily. Biomolecules, 4(2), 527–545. https://doi.org/10.3390/biom4020527
  • Watanabe, R., Ohishi, K., Maeda, Y., Nakamura, N., & Kinoshita, T. (1999). Mammalian PIG-L and its yeast homologue Gpi12p are N-acetylglucosaminylphosphatidylinositol de-N-acetylases essential in glycosylphosphatidylinositol biosynthesis. Biochemical Journal, 339(1), 185–192. https://pubmed.ncbi.nlm.nih.gov/10085243 https://doi.org/10.1042/0264-6021:3390185
  • Wiederstein, M., & Sippl, M. J. (2007). ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Research, 35(Web Server issue), W407–W410. https://doi.org/10.1093/nar/gkm290
  • Yang, J., Yan, R., Roy, A., Xu, D., Poisson, J., & Zhang, Y. (2015). The I-TASSER Suite: protein structure and function prediction. Nature Methods, 12(1), 7–8. https://doi.org/10.1038/nmeth.3213

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.