375
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Immunoinformatics analysis for design of multi-epitope subunit vaccine by using heat shock proteins against Schistosoma mansoni

&
Pages 1859-1878 | Received 24 Nov 2021, Accepted 28 Dec 2021, Published online: 18 Jan 2022

References

  • Amanna, I. J., & Slifka, M. K. (2011). Contributions of humoral and cellular immunity to vaccine-induced protection in humans. Virology, 411(2), 206–215. https://doi.org/10.1016/j.virol.2010.12.016
  • Andreatta, M., & Nielsen, M. (2016). Gapped sequence alignment using artificial neural networks: Application to the MHC class I system. Bioinformatics (Oxford, England), 32(4), 511–517. https://doi.org/10.1093/bioinformatics/btv639
  • Angamuthu, K., & Piramanayagam, S. (2017). Evaluation of in silico protein secondary structure prediction methods by employing statistical techniques. Biomedical and Biotechnology Research Journal (BBRJ), 1(1), 29–36. https://doi.org/10.4103/bbrj.bbrj_28_17
  • Aragon, A. D., Imani, R. A., Blackburn, V. R., Cupit, P. M., Melman, S. D., Goronga, T., Webb, T., Loker, E. S., & Cunningham, C. (2009). Towards an understanding of the mechanism of action of praziquantel. Molecular and Biochemical Parasitology, 164(1), 57–65. https://doi.org/10.1016/j.molbiopara.2008.11.007
  • Arpin, C., Déchanet, J., Van Kooten, C., Merville, P., Grouard, G., Brière, F., Banchereau, J., & Liu, Y. J. (1995). Generation of memory B cells and plasma cells in vitro. Science (New York, N.Y.), 268(5211), 720–722. https://doi.org/10.1126/science.7537388
  • Bhattacharya, D., Nowotny, J., Cao, R., & Cheng, J. (2016). 3Drefine: An interactive web server for efficient protein structure refinement. Nucleic Acids Research, 44(W1), W406–409. https://doi.org/10.1093/nar/gkw336
  • Bosch, F. X., Ribes, J., Díaz, M., & Cléries, R. (2004). Primary liver cancer: Worldwide incidence and trends. Gastroenterology, 127(5 Suppl 1), S5–S16. https://doi.org/10.1053/j.gastro.2004.09.011
  • Boulanger, D., Warter, A., Sellin, B., Lindner, V., Pierce, R. J., Chippaux, J. P., & Capron, A. (1999). Vaccine potential of a recombinant glutathione S-transferase cloned from Schistosoma haematobium in primates experimentally infected with an homologous challenge. Vaccine, 17(4), 319–326. https://doi.org/10.1016/S0264-410X(98)00202-3
  • Chauhan, V., Rungta, T., Goyal, K., & Singh, M. P. (2019). Designing a multi-epitope based vaccine to combat Kaposi Sarcoma utilizing immunoinformatics approach. Scientific Reports, 9(1), 2517–2517. https://doi.org/10.1038/s41598-019-39299-8
  • Chevalier, F. D., Le Clec'h, W., Eng, N., Rugel, A. R., Assis, R. R. d., Oliveira, G., Holloway, S. P., Cao, X., Hart, P. J., LoVerde, P. T., & Anderson, T. J. C. (2016). Independent origins of loss-of-function mutations conferring oxamniquine resistance in a Brazilian schistosome population. International Journal for Parasitology, 46(7), 417–424. https://doi.org/10.1016/j.ijpara.2016.03.006
  • Cioli, D., Pica-Mattoccia, L., Basso, A., & Guidi, A. (2014). Schistosomiasis control: Praziquantel forever? Molecular and Biochemical Parasitology, 195(1), 23–29. https://doi.org/10.1016/j.molbiopara.2014.06.002
  • Craig, D. B., & Dombkowski, A. A. (2013). Disulfide by Design 2.0: A web-based tool for disulfide engineering in proteins. BMC Bioinformatics, 14, 346. https://doi.org/10.1186/1471-2105-14-346
  • Das, J. K., Xiong, X., Ren, X., Yang, J.-M., & Song, J. (2019). Heat Shock Proteins in Cancer Immunotherapy. Journal of Oncology, 2019, 3267207). https://doi.org/10.1155/2019/3267207
  • Doenhoff, M. J., Cioli, D., & Utzinger, J. (2008). Praziquantel: Mechanisms of action, resistance and new derivatives for schistosomiasis. Current Opinion in Infectious Diseases, 21(6), 659–667.
  • Doytchinova, I. A., & Flower, D. R. (2007). VaxiJen: A server for prediction of protective antigens, tumour antigens and subunit vaccines. BMC Bioinformatics, 8(1), 4. https://doi.org/10.1186/1471-2105-8-4
  • EL-Manzalawy, Y., Dobbs, D., & Honavar, V. (2008). Predicting linear B-cell epitopes using string kernels. Journal of Molecular Recognition: JMR, 21(4), 243–255. https://doi.org/10.1002/jmr.893
  • El-Tonsy, M. M., Hussein, H. M., Helal, T. E.-S., Tawfik, R. A., Koriem, K. M., & Hussein, H. M. (2013). Schistosoma mansoni infection: Is it a risk factor for development of hepatocellular carcinoma? Acta Tropica, 128(3), 542–547. https://doi.org/10.1016/j.actatropica.2013.07.024
  • Fallon, P. G., Tao, L. F., Ismail, M. M., & Bennett, J. L. (1996). Schistosome resistance to praziquantel: Fact or artifact? Parasitology Today (Personal ed.), 12(8), 316–320. https://doi.org/10.1016/0169-4758(96)10029-6
  • Finn, O. J. (2014). Vaccines for cancer prevention: A practical and feasible approach to the cancer epidemic. Cancer Immunology Research, 2(8), 708–713. https://doi.org/10.1158/2326-6066.CIR-14-0110
  • Garcia, K. C., Teyton, L., & Wilson, I. A. (1999). Structural basis of T cell recognition. Annual Review of Immunology, 17, 369–397. https://doi.org/10.1146/annurev.immunol.17.1.369
  • Grote, A., Hiller, K., Scheer, M., Münch, R., Nörtemann, B., Hempel, D. C., & Jahn, D. (2005). JCat: A novel tool to adapt codon usage of a target gene to its potential expression host. Nucleic Acids Research, 33(Web Server issue), W526–531. https://doi.org/10.1093/nar/gki376
  • He, C.-Q., Liu, Y.-X., Wang, H.-M., Hou, P.-L., He, H.-B., & Ding, N.-Z. (2016). New genetic mechanism, origin and population dynamic of bovine ephemeral fever virus. Veterinary Microbiology, 182, 50–56. https://doi.org/10.1016/j.vetmic.2015.10.029
  • Ishida, K., & Jolly, E. R. (2016). Hsp70 May Be a Molecular Regulator of Schistosome Host Invasion. PLoS Neglected Tropical Diseases, 10(9), e0004986. https://doi.org/10.1371/journal.pntd.0004986
  • Jespersen, M. C., Peters, B., Nielsen, M., & Marcatili, P. (2017). BepiPred-2.0: Improving sequence-based B-cell epitope prediction using conformational epitopes. Nucleic Acids Research, 45(W1), W24–W29. https://doi.org/10.1093/nar/gkx346
  • Jones, D. T. (1999). Protein secondary structure prediction based on position-specific scoring matrices. Journal of Molecular Biology, 292(2), 195–202. https://doi.org/10.1006/jmbi.1999.3091
  • Källberg, M., Wang, H., Wang, S., Peng, J., Wang, Z., Lu, H., & Xu, J. (2012). Template-based protein structure modeling using the RaptorX web server. Nature Protocols, 7(8), 1511–1522. https://doi.org/10.1038/nprot.2012.085
  • Kane, C. M., Jung, E., & Pearce, E. J. (2008). Schistosoma mansoni egg antigen-mediated modulation of toll-like receptor (TLR)-induced activation occurs independently of TLR2, TLR4, and MyD88. Infection and Immunity, 76(12), 5754–5759. https://doi.org/10.1128/IAI.00497-08
  • Khan, M. A. A., Ami, J. Q., Faisal, K., Chowdhury, R., Ghosh, P., Hossain, F., Abd El Wahed, A., & Mondal, D. (2020). An immunoinformatic approach driven by experimental proteomics: In silico design of a subunit candidate vaccine targeting secretory proteins of Leishmania donovani amastigotes. Parasites & Vectors, 13(1), 196. https://doi.org/10.1186/s13071-020-04064-8
  • Khatoon, N., Pandey, R. K., & Prajapati, V. K. (2017). Exploring Leishmania secretory proteins to design B and T cell multi-epitope subunit vaccine using immunoinformatics approach. Scientific Reports, 7(1), 8285. https://doi.org/10.1038/s41598-017-08842-w
  • Khurana, S., Dubey, M. L., & Malla, N. (2005). Association of parasitic infections and cancers. Indian Journal of Medical Microbiology, 23(2), 74–79. https://doi.org/10.4103/0255-0857.16044
  • Kozakov, D., Hall, D. R., Xia, B., Porter, K. A., Padhorny, D., Yueh, C., Beglov, D., & Vajda, S. (2017). The ClusPro web server for protein–protein docking. Nature Protocols, 12(2), 255–278. https://doi.org/10.1038/nprot.2016.169
  • Kumar, N., Admane, N., Kumari, A., Sood, D., Grover, S., Prajapati, V. K., Chandra, R., & Grover, A. (2021). Cytotoxic T-lymphocyte elicited vaccine against SARS-CoV-2 employing immunoinformatics framework. Scientific Reports, 11(1), 7653. https://doi.org/10.1038/s41598-021-86986-6
  • Kuper, H., Adami, H. O., & Trichopoulos, D. (2000). Infections as a major preventable cause of human cancer. Journal of Internal Medicine, 248(3), 171–183. https://doi.org/10.1046/j.1365-2796.2000.00742.x
  • Lin, C., & Li, Y. (2013). The role of peptide and DNA vaccines in myeloid leukemia immunotherapy. Cancer Cell International, 13(1), 13. https://doi.org/10.1186/1475-2867-13-13
  • Luckheeram, R. V., Zhou, R., Verma, A. D., & Xia, B. (2012). CD4+T cells: Differentiation and functions. Clinical & Developmental Immunology, 2012, 925135. https://doi.org/10.1155/2012/925135
  • Mackenzie-Dyck, S., Kovacs-Nolan, J., Snider, M., Babiuk, L. A., & van Drunen Littel-van den Hurk, S. (2014). Inclusion of the bovine neutrophil beta-defensin 3 with glycoprotein D of bovine herpesvirus 1 in a DNA vaccine modulates immune responses of mice and cattle. Clinical and Vaccine Immunology: CVI, 21(4), 463–477. https://doi.org/10.1128/CVI.00696-13
  • Mahdevar, E., Safavi, A., Abiri, A., Kefayat, A., Hejazi, S. H., Miresmaeili, S. M., & Iranpur Mobarakeh, V. (2021). Exploring the cancer-testis antigen BORIS to design a novel multiepitope vaccine against breast cancer based on immunoinformatics approaches. Journal of Biomolecular Structure and Dynamics, 1–18. https://doi.org/10.1080/07391102.2021.1883111
  • McNulty, S., Colaco, C. A., Blandford, L. E., Bailey, C. R., Baschieri, S., & Todryk, S. (2013). Heat-shock proteins as dendritic cell-targeting vaccines-getting warmer. Immunology, 139(4), 407–415. https://doi.org/10.1111/imm.12104
  • Melman, S. D., Steinauer, M. L., Cunningham, C., Kubatko, L. S., Mwangi, I. N., Wynn, N. B., Mutuku, M. W., Karanja, D. M. S., Colley, D. G., Black, C. L., Secor, W. E., Mkoji, G. M., & Loker, E. S. (2009). Reduced susceptibility to praziquantel among naturally occurring Kenyan isolates of Schistosoma mansoni. PLoS Neglected Tropical Diseases, 3(8), e504. https://doi.org/10.1371/journal.pntd.0000504
  • Michel-Todó, L., Reche, P. A., Bigey, P., Pinazo, M.-J., Gascón, J., & Alonso-Padilla, J. (2019). In silico design of an epitope-based vaccine ensemble for chagas disease. Frontiers in Immunology, 10, 2698. https://doi.org/10.3389/fimmu.2019.02698
  • Nielsen, M., & Andreatta, M. (2016). NetMHCpan-3.0; improved prediction of binding to MHC class I molecules integrating information from multiple receptor and peptide length datasets. Genome Medicine, 8(1), 33. https://doi.org/10.1186/s13073-016-0288-x
  • Onile, O. S., Fadahunsi, A. I., Adekunle, A. A., Oyeyemi, B. F., & Anumudu, C. I. (2020). An immunoinformatics approach for the design of a multi-epitope subunit vaccine for urogenital schistosomiasis. PeerJ., 8, e8795. https://doi.org/10.7717/peerj.8795
  • Oppenheim, J. J., Biragyn, A., Kwak, L. W., & Yang, D. (2003). Roles of antimicrobial peptides such as defensins in innate and adaptive immunity. Annals of the Rheumatic Diseases, 62(Suppl 2), ii17–21. https://doi.org/10.1136/ard.62.suppl_2.ii17
  • Palumbo, E. (2007). Association between Schistosomiasis and cancer: A review. Infectious Diseases in Clinical Practice, 15(3), 145–148. https://doi.org/10.1097/01.idc.0000269904.90155.ce
  • Pandey, R. K., Bhatt, T. K., & Prajapati, V. K. (2018). Novel immunoinformatics approaches to design multi-epitope subunit vaccine for malaria by investigating anopheles salivary protein. Scientific Reports, 8(1), 1125. https://doi.org/10.1038/s41598-018-19456-1
  • Peters, B., Sidney, J., Bourne, P., Bui, H.-H., Buus, S., Doh, G., Fleri, W., Kronenberg, M., Kubo, R., Lund, O., Nemazee, D., Ponomarenko, J. V., Sathiamurthy, M., Schoenberger, S. P., Stewart, S., Surko, P., Way, S., Wilson, S., & Sette, A. (2005). The design and implementation of the immune epitope database and analysis resource. Immunogenetics, 57(5), 326–336. https://doi.org/10.1007/s00251-005-0803-5
  • Rana, A., & Akhter, Y. (2016). A multi-subunit based, thermodynamically stable model vaccine using combined immunoinformatics and protein structure based approach. Immunobiology, 221(4), 544–557. https://doi.org/10.1016/j.imbio.2015.12.004
  • Rasmussen, M., Fenoy, E., Harndahl, M., Kristensen, A. B., Nielsen, I. K., Nielsen, M., & Buus, S. (2016). Pan-specific prediction of peptide-MHC class I complex stability, a correlate of T cell immunogenicity. Journal of Immunology (Baltimore, Md: 1950), 197(4), 1517–1524. https://doi.org/10.4049/jimmunol.1600582
  • Reche, P. A., Glutting, J.-P., Zhang, H., & Reinherz, E. L. (2004). Enhancement to the RANKPEP resource for the prediction of peptide binding to MHC molecules using profiles. Immunogenetics, 56(6), 405–419. https://doi.org/10.1007/s00251-004-0709-7
  • Regan, D., Guth, A., Coy, J., & Dow, S. (2016). Cancer immunotherapy in veterinary medicine: Current options and new developments. The Veterinary Journal, 207, 20–28. https://doi.org/10.1016/j.tvjl.2015.10.008
  • Riveau, G., Schacht, A.-M., Dompnier, J.-P., Deplanque, D., Seck, M., Waucquier, N., Senghor, S., Delcroix-Genete, D., Hermann, E., Idris-Khodja, N., Levy-Marchal, C., Capron, M., & Capron, A. (2018). Safety and efficacy of the rSh28GST urinary schistosomiasis vaccine: A phase 3 randomized, controlled trial in Senegalese children. PLoS Neglected Tropical Diseases, 12(12), e0006968. https://doi.org/10.1371/journal.pntd.0006968
  • Safavi, A., Kefayat, A., Abiri, A., Mahdevar, E., Behnia, A. H., & Ghahremani, F. (2019a). In silico analysis of transmembrane protein 31 (TMEM31) antigen to design novel multiepitope peptide and DNA cancer vaccines against melanoma. Molecular Immunology, 112, 93–102. https://doi.org/10.1016/j.molimm.2019.04.030
  • Safavi, A., Kefayat, A., Mahdevar, E., Abiri, A., & Ghahremani, F. (2020). Exploring the out of sight antigens of SARS-CoV-2 to design a candidate multi-epitope vaccine by utilizing immunoinformatics approaches. Vaccine, 38(48), 7612–7628. https://doi.org/10.1016/j.vaccine.2020.10.016
  • Safavi, A., Kefayat, A., Sotoodehnejadnematalahi, F., Salehi, M., & Modarressi, M. H. (2019b). In Silico Analysis of synaptonemal complex protein 1 (SYCP1) and acrosin binding protein (ACRBP) antigens to design novel multiepitope peptide cancer vaccine against breast cancer. International Journal of Peptide Research and Therapeutics, 25(4), 1343–1359. https://doi.org/10.1007/s10989-018-9780-z
  • Safavi, A., Kefayat, A., Sotoodehnejadnematalahi, F., Salehi, M., & Modarressi, M. H. (2019c). Production, purification, and in vivo evaluation of a novel multiepitope peptide vaccine consisted of immunodominant epitopes of SYCP1 and ACRBP antigens as a prophylactic melanoma vaccine. International Immunopharmacology, 76, 105872. https://doi.org/10.1016/j.intimp.2019.105872
  • Sanches, R. C. O., Tiwari, S., Ferreira, L. C. G., Oliveira, F. M., Lopes, M. D., Passos, M. J. F., Maia, E. H. B., Taranto, A. G., Kato, R., Azevedo, V. A. C., & Lopes, D. O. (2021). Immunoinformatics design of multi-epitope peptide-based vaccine against Schistosoma mansoni using transmembrane proteins as a target. Frontiers in Immunology, 12, 621706. https://doi.org/10.3389/fimmu.2021.621706
  • Santini-Oliveira, M., Coler, R. N., Parra, J., Veloso, V., Jayashankar, L., Pinto, P. M., Ciol, M. A., Bergquist, R., Reed, S. G., & Tendler, M. (2016). Schistosomiasis vaccine candidate Sm14/GLA-SE: Phase 1 safety and immunogenicity clinical trial in healthy, male adults. Vaccine, 34(4), 586–594. https://doi.org/10.1016/j.vaccine.2015.10.027
  • Shamriz, S., Ofoghi, H., & Moazami, N. (2016). Effect of linker length and residues on the structure and stability of a fusion protein with malaria vaccine application. Computers in Biology and Medicine, 76, 24–29. https://doi.org/10.1016/j.compbiomed.2016.06.015
  • Shanmugam, A., Rajoria, S., George, A. L., Mittelman, A., Suriano, R., & Tiwari, R. K. (2012). Synthetic Toll like receptor-4 (TLR-4) agonist peptides as a novel class of adjuvants. PLoS One, 7(2), e30839. https://doi.org/10.1371/journal.pone.0030839
  • Sharp, P. M., & Li, W. H. (1987). The codon Adaptation Index-a measure of directional synonymous codon usage bias, and its potential applications. Nucleic Acids Research, 15(3), 1281–1295. https://doi.org/10.1093/nar/15.3.1281
  • Stephenson, R., You, H., McManus, D. P., & Toth, I. (2014). Schistosome vaccine adjuvants in preclinical and clinical research. Vaccines, 2(3), 654–685. https://doi.org/10.3390/vaccines2030654
  • Urruticoechea, A., Alemany, R., Balart, J., Villanueva, A., Viñals, F., & Capellá, G. (2010). Recent advances in cancer therapy: An overview. Current Pharmaceutical Design, 16(1), 3–10. https://doi.org/10.2174/138161210789941847
  • Venugopal, P. G., Nutman, T. B., & Semnani, R. T. (2009). Activation and regulation of Toll-Like Receptors (TLRs) by helminth parasites. Immunologic Research, 43(1-3), 252–263. https://doi.org/10.1007/s12026-008-8079-0
  • Wiederstein, M., & Sippl, M. J. (2007). ProSA-web: Interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Research, 35(Web Server issue), W407–410. https://doi.org/10.1093/nar/gkm290
  • Wilkins, M. R. (1999). Protein identification and analysis tools in the ExPASy server. Methods in Molecular Biology (Clifton, N.J.), 112, 531–552.
  • Zhang, M., Gao, Y., Du, X., Zhang, D., Ji, M., & Wu, G. (2011). Toll-like receptor (TLR) 2 and TLR4 deficiencies exert differential in vivo effects against Schistosoma japonicum. Parasite Immunology, 33(4), 199–209. https://doi.org/10.1111/j.1365-3024.2010.01265.x
  • Zhang, R. X., Wang, Z., Ling, B., Liu, Y., & Liu, C. (2010). Docking and molecular dynamics studies on the interaction of four imidazoline derivatives with potassium ion channel (Kir6.2). Molecular Simulation, 36(2), 166–174. https://doi.org/10.1080/08927020903141035

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.