987
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

In silico identification of potential phytochemical inhibitors targeting farnesyl diphosphate synthase of cotton bollworm (Helicoverpa armigera)

, , , , , ORCID Icon, & ORCID Icon show all
Pages 1978-1987 | Received 01 Jul 2021, Accepted 01 Jan 2022, Published online: 17 Jan 2022

References

  • Abraham, M. J., Murtola, T., Schulz, R., Páll, S., Smith, J. C., Hess, B., & Lindah, E. (2015). Gromacs: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX, 1–2, 19–25. https://doi.org/10.1016/j.softx.2015.06.001
  • Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Basic local alignment search tool. Journal of Molecular Biology, 215(3), 403–410. https://doi.org/10.1016/S0022-2836(05)80360-2
  • Amoabeng, B. W., Gurr, G. M., Gitau, C. W., & Stevenson, P. C. (2014). Cost: Benefit analysis of botanical insecticide use in cabbage: Implications for small holder farmers in developing countries. Crop Protection, 57, 71–76. https://doi.org/10.1016/j.cropro.2013.11.019
  • Aripirala, S., Gonzalez-Pacanowska, D., Oldfield, E., Kaiser, M., Amzel, L. M., & Gabelli, S. B. (2014). Structural and thermodynamic basis of the inhibition of Leishmania major farnesyl diphosphate synthase by nitrogen-containing bisphosphonates. Acta Crystallographica Section D, Biological Crystallography, 70(Pt 3), 802–810. https://doi.org/10.1107/S1399004713033221
  • Ayaz, F. A., Hayirlioglu-Ayaz, S., Alpay-Karaoglu, S., Grúz, J., Valentová, K., Ulrichová, J., & Strnad, M. (2008). Phenolic acid contents of kale (Brassica oleraceae L. var. acephala DC.) extracts and their antioxidant and antibacterial activities. Food Chemistry, 107(1), 19–25. https://doi.org/10.1016/j.foodchem.2007.07.003
  • Balasubramani, G., Raghavendra, K. P., Das, J., Kumar, R., Santosh, H. B., Amudha, J., Kranthi, S., & Kranthi, K. R. (2021). Critical evaluation of GM cotton. Cotton precision breeding (pp. 351–410). Springer International Publishing. https://doi.org/10.1007/978-3-030-64504-5_16
  • Bateman, A. (2019). UniProt: A worldwide hub of protein knowledge. Nucleic Acids Research, 47(D1), D506–D515. https://doi.org/10.1093/nar/gky1049
  • Beninger, C. W., Abou-Zaid, M. M., Kistner, A. L., Hallett, R. H., Iqbal, M. J., Grodzinski, B., & Hall, J. C. (2004). A flavanone and two phenolic acids from Chrysanthemum morifolium with phytotoxic and insect growth regulating activity. Journal of Chemical Ecology, 30(3), 589–606. https://doi.org/10.1023/B:JOEC.0000018631.67394.e5
  • Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., Shindyalov, I. N., & Bourne, P. E. (2000). The protein data bank. Nucleic Acids Research, 28(1), 235–242. https://doi.org/10.1093/nar/28.1.235
  • Besler, B. H., Merz, K. M., Jr., & Kollman, P. A. (1990). Atomic charges derived from semiempirical methods. Journal of Computational Chemistry, 11(4), 431–439. https://doi.org/10.1002/jcc.540110404
  • Cao, G., Feng, H., Guo, F., Wu, K., Li, X., Liang, G., & Desneux, N. (2014). Quantitative analysis of fitness costs associated with the development of resistance to the Bt Toxin Cry1Ac in Helicoverpa armigera. Scientific Reports, 4, 5629–5627. https://doi.org/10.1038/srep05629
  • Cheng, Y. J., & Li, Z. X. (2019). Both farnesyl diphosphate synthase genes are involved in the production of alarm pheromone in the green peach aphid Myzus persicae. Archives of Insect Biochemistry and Physiology, 100(3), e21530. https://doi.org/10.1002/arch.21530
  • Cusson, M., Béliveau, C., Sen, S. K., Vandermoten, S., Rutledge, R. G., Stewart, D., Francis, F., Haubruge, É., Rehse, P., Huggins, D. J., Dowling, A. P. G., & Grant, G. H. (2006). Characterization and tissue-specific expression of two lepidopteran farnesyl diphosphate synthase homologs: Implications for the biosynthesis of ethyl-substituted juvenile hormones. Proteins, 65(3), 742–758. https://doi.org/10.1002/prot.21057
  • Cusson, M., & Palli, S. R. (2000). Can juvenile hormone research help rejuvenate integrated pest management? The Canadian Entomologist, 132(3), 263–280. https://doi.org/10.4039/Ent132263-3
  • Cusson, M., & Sen, S. E., & Shinoda T. (2013). Juvenile hormone biosynthetic enzymes as targets for insecticide discovery. Advanced technologies for managing insect pests (pp. 31–55). Springer. https://doi.org/10.1007/978-94-007-4497-4_3
  • Dallakyan, S., & Olson, A. J. (2015). Small-molecule library screening by docking with PyRx. Methods in Molecular Biology (Clifton, NJ), 1263, 243–250. https://doi.org/10.1007/978-1-4939-2269-7_19
  • Douglas, R. G., Nandekar, P., Aktories, J. E., Kumar, H., Weber, R., Sattler, J. M., Singer, M., Lepper, S., Sadiq, S. K., Wade, R. C., & Frischknecht, F. (2018). Inter-subunit interactions drive divergent dynamics in mammalian and Plasmodium actin filaments. PLoS Biology, 16(7), e2005345. https://doi.org/10.1371/journal.pbio.2005345
  • Eisenberg, D., Lüthy, R., & Bowie, J. U. (1997). VERIFY3D: Assessment of protein models with three-dimensional profiles. Methods in Enzymology, 277, 396–404. https://doi.org/10.1016/S0076-6879(97)77022-8
  • Fiser, A., & Sali, A. (2003). ModLoop: Automated modeling of loops in protein structures. Bioinformatics (Oxford, England), 19(18), 2500–2501. https://doi.org/10.1093/bioinformatics/btg362
  • Fitt, G. P. (1989). The Ecology of Heliothis species in relation to agroecosystems. Annual Review of Entomology, 34(1), 17–53. https://doi.org/10.1146/annurev.en.34.010189.000313
  • Frick, S., Nagel, R., Schmidt, A., Bodemann, R. R., Rahfeld, P., Pauls, G., Brandt, W., Gershenzon, J., Boland, W., & Burse, A. (2013). Metal ions control product specificity of isoprenyl diphosphate synthases in the insect terpenoid pathway. Proceedings of the National Academy of Sciences of the United States of America, 110(11), 4194–4199. https://doi.org/10.1073/pnas.1221489110
  • Gabelli, S. B., McLellan, J. S., Montalvetti, A., Oldfield, E., Docampo, R., & Amzel, L. M. (2006). Structure and mechanism of the farnesyl diphosphate synthase from Trypanosoma cruzi: Implications for drug design. Proteins, 62(1), 80–88. https://doi.org/10.1002/prot.20754
  • Gerwick, B. C., & Sparks, T. C. (2014). Natural products for pest control: An analysis of their role, value and future. Pest Management Science, 70(8), 1169–1185. https://doi.org/10.1002/ps.3744
  • González-Caballero, N., Rodríguez-Vega, A., Dias-Lopes, G., Valenzuela, J. G., Ribeiro, J. M. C., Carvalho, P. C., Valente, R. H., Brazil, R. P., & Cuervo, P. (2014). Expression of the mevalonate pathway enzymes in the Lutzomyia longipalpis (Diptera: Psychodidae) sex pheromone gland demonstrated by an integrated proteomic approach. Journal of Proteomics, 96, 117–132. https://doi.org/10.1016/j.jprot.2013.10.028
  • Goodman, W. G., & Cusson, M. (2012). The juvenile hormones. Insect endocrinology (pp. 310–365). Academic Press. https://doi.org/10.1016/B978-0-12-384749-2.10008-1
  • Gouet, P., Courcelle, E., Stuart, D. I., & Métoz, F. (1999). ESPript: Analysis of multiple sequence alignments in PostScript. Bioinformatics (Oxford, England), 15(4), 305–308. https://doi.org/10.1093/bioinformatics/15.4.305
  • Gunning, R. V., Balfe, M. E., & Easton, C. S. (1992). Carbamate resistance in Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) in Australia. Australian Journal of Entomology, 31(2), 97–103. https://doi.org/10.1111/j.1440-6055.1992.tb00464.x
  • Haile, F., Nowatzki, T., & Storer, N. (2021). Overview of pest status, potential risk, and management considerations of Helicoverpa armigera (Lepidoptera: Noctuidae) for U.S. soybean production. Journal of Integrated Pest Management. 12(1), 3. https://doi.org/10.1093/jipm/pmaa030
  • Heitzman, M. E., Neto, C. C., Winiarz, E., Vaisberg, A. J., & Hammond, G. B. (2005). Ethnobotany, phytochemistry and pharmacology of Uncaria (Rubiaceae). Phytochemistry, 66(1), 5–29. https://doi.org/10.1016/j.phytochem.2004.10.022
  • Hojo, M., Matsumoto, T., & Miura, T. (2007). Cloning and expression of a geranylgeranyl diphosphate synthase gene: Insights into the synthesis of termite defence secretion. Insect Molecular Biology, 16(1), 121–131. https://doi.org/10.1111/j.1365-2583.2007.00709.x
  • Holstein, S. A. (2019). A patent review of bisphosphonates in treating bone disease. Expert Opinion on Therapeutic Patents, 29(5), 315–325. https://doi.org/10.1080/13543776.2019.1608180
  • Hussain, D., Saleem, H. M., Saleem, M., & Abbas, M. (2014). Monitoring of insecticides resistance in field populations of Helicoverpa armigera (Hub.) (Lepidoptera: Noctuidae). Entomology and Zoology Studies, 2(6), 1–8.
  • Joußen, N., Agnolet, S., Lorenz, S., Schöne, S. E., Ellinger, R., Schneider, B., & Heckel, D. G. (2012). Resistance of Australian Helicoverpa armigera to fenvalerate is due to the chimeric P450 enzyme CYP337B3. Proceedings of the National Academy of Sciences of the United States of America, 109(38), 15206–15211. https://doi.org/10.1073/pnas.1202047109
  • Kriticos, D. J., Ota, N., Hutchison, W. D., Beddow, J., Walsh, T., Tay, W. T., Borchert, D. M., Paula-Moreas, S. V., Czepak, C., & Zalucki, M. P. (2015). The potential distribution of invading Helicoverpa armigera in North America: Is it just a matter of time? PLoS One, 10(3), e0119618. https://doi.org/10.1371/journal.pone.0119618
  • Kühnl, T., Koch, U., Heller, W., & Wellmann, E. (1987). Chlorogenic acid biosynthesis: Characterization of a light-induced microsomal 5-O-(4-coumaroyl)-D-quinate/shikimate 3′-hydroxylase from carrot (Daucus carota L.) cell suspension cultures. Archives of Biochemistry and Biophysics, 258(1), 226–232. https://doi.org/10.1016/0003-9861(87)90339-0
  • Kumari, R., Kumar, R., & Lynn, A, Open Source Drug Discovery Consortium. (2014). g_mmpbsa-a GROMACS tool for high-throughput MM-PBSA calculations. Journal of Chemical Information and Modeling, 54(7), 1951–1962. https://doi.org/10.1021/ci500020m
  • L DeLano, W. (2002). Pymol: An open-source molecular graphics tool. CCP4 Newsletter on Protein Crystallography, 40, 1–8. http://www.ccp4.ac.uk/newsletters/newsletter40/11_pymol.pdf
  • Lallemand, L. A., Zubieta, C., Lee, S. G., Wang, Y., Acajjaoui, S., Timmins, J., McSweeney, S., Jez, J. M., McCarthy, J. G., & McCarthy, A. A. (2012). A structural basis for the biosynthesis of the major chlorogenic acids found in coffee. Plant Physiology, 160(1), 249–260. https://doi.org/10.1104/pp.112.202051
  • Landete, J. M. (2011). Ellagitannins, ellagic acid and their derived metabolites: A review about source, metabolism, functions and health. Food Research International, 44(5), 1150–1160. https://doi.org/10.1016/j.foodres.2011.04.027
  • Laskowski, R. A., MacArthur, M. W., Moss, D. S., & Thornton, J. M. (1993). PROCHECK: A program to check the stereochemical quality of protein structures. Journal of Applied Crystallography, 26(2), 283–291. https://doi.org/10.1107/S0021889892009944
  • Lee, J. K., Her, G., Kim, S. Y., & Seo, J. H. (2004). Cloning and functional expression of the DPS gene encoding decaprenyl diphosphate synthase from Agrobacterium tumefaciens. Biotechnology Progress, 20(1), 51–56. https://doi.org/10.1021/bp034213e
  • Li, W., Huang, Z. Y., Liu, F., Li, Z., Yan, L., Zhang, S., Chen, S., Zhong, B., & Su, S. (2013). Molecular cloning and characterization of juvenile hormone acid methyltransferase in the honey bee, Apis mellifera, and its differential expression during caste differentiation. PLoS One, 8(7), e68544. https://doi.org/10.1371/journal.pone.0068544
  • Lipinski, C. A., Lombardo, F., Dominy, B. W., & Feeney, P. J. (2012). Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced Drug Delivery Reviews, 64, 4–17. https://doi.org/10.1016/j.addr.2012.09.019
  • Ma, H. Y., Li, Y. Y., Li, L., Tan, Y., & Pang, B. P. (2021). Regulation of juvenile hormone on summer diapause of geleruca daurica and its pathway analysis. Insects, 12(3), 237–215. https://doi.org/10.3390/insects12030237
  • Montserrat-De La Paz, S., Fernandez-Arche, A., De La Puerta, R., Quilez, A. M., Muriana, F. J., Garcia-Gimenez, M. D., & Bermudez, B. (2016). Mitraphylline inhibits lipopolysaccharide-mediated activation of primary human neutrophils. Phytomedicine: International Journal of Phytotherapy and Phytopharmacology, 23(2), 141–148. https://doi.org/10.1016/j.phymed.2015.12.015
  • Moreau, C. A., Bhargav, S. P., Kumar, H., Quadt, K. A., Piirainen, H., Strauss, L., Kehrer, J., Streichfuss, M., Spatz, J. P., Wade, R. C., Kursula, I., & Frischknecht, F. (2017). A unique profilin-actin interface is important for malaria parasite motility. PLoS Pathogens, 13(5), e1006412. https://doi.org/10.1371/journal.ppat.1006412
  • Moreau, C. A., Quadt, K. A., Piirainen, H., Kumar, H., Bhargav, S. P., Strauss, L., Tolia, N. H., Wade, R. C., Spatz, J. P., Kursula, I., & Frischknecht, F. (2020). A function of profilin in force generation during malaria parasite motility that is independent of actin binding. Journal of Cell Science, 134(5), jcs233775. https://doi.org/10.1242/jcs.233775
  • Mouden, S., Klinkhamer, P. G., Choi, Y. H., & Leiss, K. A. (2017). Towards eco-friendly crop protection: Natural deep eutectic solvents and defensive secondary metabolites. Phytochemistry Reviews, 16(5), 935–951. https://doi.org/10.1007/s11101-017-9502-8
  • Niggeweg, R., Michael, A. J., & Martin, C. (2004). Engineering plants with increased levels of the antioxidant chlorogenic acid. Nature Biotechnology, 22(6), 746–754. https://doi.org/10.1038/nbt966
  • Nyamba, I., Lechanteur, A., Semdé, R., & Evrard, B. (2021). Physical formulation approaches for improving aqueous solubility and bioavailability of ellagic acid: A review. European Journal of Pharmaceutics and Biopharmaceutics: Official Journal of Arbeitsgemeinschaft Fur Pharmazeutische Verfahrenstechnik e.V, 159, 198–210. https://doi.org/10.1016/j.ejpb.2020.11.004
  • Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., & Ferrin, T. E. (2004). UCSF Chimera-a visualization system for exploratory research and analysis. Journal of Computational Chemistry, 25(13), 1605–1612. https://doi.org/10.1002/jcc.20084
  • Picard, M. E., Cusson, M., Sen, S. E., & Shi, R. (2021). Rational design of Lepidoptera-specific insecticidal inhibitors targeting farnesyl diphosphate synthase, a key enzyme of the juvenile hormone biosynthetic pathway. Journal of Pesticide Science, 46(1), 7–15. https://doi.org/10.1584/jpestics.D20-078
  • Picard, M. È., Nisole, A., Béliveau, C., Sen, S., Barbar, A., Shi, R., & Cusson, M. (2018). Structural characterization of a lepidopteran type-II farnesyl diphosphate synthase from the spruce budworm, Choristoneura fumiferana: Implications for inhibitor design. Insect Biochemistry and Molecular Biology, 92, 84–92. https://doi.org/10.1016/j.ibmb.2017.11.011
  • Pires, D. E., Blundell, T. L., & Ascher, D. B. (2015). pkCSM: Predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures. Journal of Medicinal Chemistry, 58(9), 4066–4072. https://doi.org/10.1021/acs.jmedchem.5b00104
  • Raikhel, A. S., Brown, M. R., & Belles, X. (2005). Hormonal control of reproductive processes. In Comprehensive Molecular Insect Science, 3, 433–491. https://doi.org/10.1016/B0-44-451924-6/00040-5
  • Riddiford, L. M. (1994). Cellular and molecular actions of juvenile hormone I. General considerations and premetamorphic actions. Advances in Insect Physiology, 24(C), 213–274. https://doi.org/10.1016/S0065-2806(08)60084-3
  • Rocha, L. D., Monteiro, M. C., & Teodoro, A. J. (2012). Anticancer properties of hydroxycinnamic acids -a review. Cancer and Clinical Oncology, 1(2), 109–121. https://doi.org/10.5539/cco.v1n2p109
  • Saini, G., Dalal, V., Gupta, D. N., Sharma, N., Kumar, P., & Sharma, A. K. (2021). A molecular docking and dynamic approach to screen inhibitors against ZnuA1 of Candidatus Liberibacter asiaticus. Molecular Simulation, 47(6), 510–516. https://doi.org/10.1080/08927022.2021.1888948
  • Šali, A., & Blundell, T. L. (1993). Comparative protein modelling by satisfaction of spatial restraints. Journal of Molecular Biology, 234(3), 779–815. https://doi.org/10.1006/jmbi.1993.1626
  • Santana-Gálvez, J., Cisneros-Zevallos, L., & Jacobo-Velázquez, D. A. (2017). Chlorogenic acid: Recent advances on its dual role as a food additive and a nutraceutical against metabolic syndrome. Molecules, 22(3), 358. https://doi.org/10.3390/molecules22030358
  • Sharma, V., Kumar, H., & Wakode, S. (2016). Pharmacophore generation and atom based 3D-QSAR of quinoline derivatives as selective phosphodiesterase 4B inhibitors. RSC Advances, 6(79), 75805–75819. https://doi.org/10.1039/C6RA11210B
  • Shetty, R., Fretté, X., Jensen, B., Shetty, N. P., Jensen, J. D., Jørgensen, H. J. L., Newman, M. A., & Christensen, L. P. (2011). Silicon-induced changes in antifungal phenolic acids, flavonoids, and key phenylpropanoid pathway genes during the interaction between miniature roses and the biotrophic pathogen Podosphaera pannosa. Plant Physiology, 157(4), 2194–2205. https://doi.org/10.1104/pp.111.185215
  • Sievers, F., Wilm, A., Dineen, D., Gibson, T. J., Karplus, K., Li, W., Lopez, R., McWilliam, H., Remmert, M., Söding, J., Thompson, J. D., & Higgins, D. G. (2011). Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Molecular Systems Biology, 7, 539. https://doi.org/10.1038/msb.2011.75
  • Singh, U. C., & Kollman, P. A. (1984). An approach to computing electrostatic charges for molecules. Journal of Computational Chemistry, 5(2), 129–145. https://doi.org/10.1002/jcc.540050204
  • Smykal, V., Daimon, T., Kayukawa, T., Takaki, K., Shinoda, T., & Jindra, M. (2014). Importance of juvenile hormone signaling arises with competence of insect larvae to metamorphose. Developmental Biology, 390(2), 221–230. https://doi.org/10.1016/j.ydbio.2014.03.006
  • Sparks, T. C., & Nauen, R. (2015). IRAC: Mode of action classification and insecticide resistance management. Pesticide Biochemistry and Physiology, 121, 122–128. https://doi.org/10.1016/j.pestbp.2014.11.014
  • Sung, W. S., & Lee, D. G. (2010). Antifungal action of chlorogenic acid against pathogenic fungi, mediated by membrane disruption. Pure and Applied Chemistry, 82(1), 219–226. https://doi.org/10.1351/PAC-CON-09-01-08
  • Tay, W. T., Soria, M. F., Walsh, T., Thomazoni, D., Silvie, P., Behere, G. T., Anderson, C., & Downes, S. (2013). A brave new world for an old world pest: Helicoverpa armigera (Lepidoptera: Noctuidae) in Brazil. PLoS One, 8(11), e80134. https://doi.org/10.1371/journal.pone.0080134
  • Tian, G., Cheng, L., Qi, X., Ge, Z., Niu, C., Zhang, X., & Jin, S. (2015). Transgenic cotton plants expressing double-stranded RNAs target HMG-CoA reductase (HMGR) gene inhibits the growth, development and survival of cotton bollworms. International Journal of Biological Sciences, 11(11), 1296–1305. https://doi.org/10.7150/ijbs.12463
  • van Aalten, D. M., Bywater, R., Findlay, J. B., Hendlich, M., Hooft, R. W., & Vriend, G. (1996). PRODRG, a program for generating molecular topologies and unique molecular descriptors from coordinates of small molecules. Journal of Computer-Aided Molecular Design, 10(3), 255–262. https://doi.org/10.1007/BF00355047
  • Wang, G. F., Shi, L. P., Ren, Y. D., Liu, Q. F., Liu, H. F., Zhang, R. J., Li, Z., Zhu, F. H., He, P. L., Tang, W., Tao, P. Z., Li, C., Zhao, W. M., & Zuo, J. P. (2009). Anti-hepatitis B virus activity of chlorogenic acid, quinic acid and caffeic acid in vivo and in vitro. Antiviral Research, 83(2), 186–190. https://doi.org/10.1016/j.antiviral.2009.05.002
  • Wiederstein, M., & Sippl, M. J. (2007). ProSA-web: Interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Research, 35, W407–W410. https://doi.org/10.1093/nar/gkm290
  • Williams, C. M. (1967). Third-generation pesticides. Scientific American, 217(1), 13–17. https://doi.org/10.1038/scientificamerican0767-13
  • Wilson, L. J., Whitehouse, M. E. A., & Herron, G. A. (2018). The management of insect pests in Australian cotton: An evolving story. Annual Review of Entomology, 63, 215–237. https://doi.org/10.1146/annurev-ento-020117-043432
  • Yang, Y., Li, Y., & Wu, Y. (2013). Current status of insecticide resistance in Helicoverpa armigera after 15 years of BT cotton planting in China. Journal of Economic Entomology, 106(1), 375–381. https://doi.org/10.1603/ec12286
  • Zhang, W., Ma, L., Xiao, H., Liu, C., Chen, L., Wu, S., & Liang, G. (2017). Identification and characterization of genes involving the early step of juvenile hormone pathway in Helicoverpa armigera. Scientific Reports, 7(1), 1–12. https://doi.org/10.1038/s41598-017-16319-z

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.