547
Views
8
CrossRef citations to date
0
Altmetric
Research Articles

Discovery of new 1,4-disubstituted 1,2,3-triazoles: in silico ADME profiling, molecular docking and biological evaluation studies

, ORCID Icon, &
Pages 1988-2001 | Received 18 Oct 2021, Accepted 01 Jan 2022, Published online: 20 Jan 2022

References

  • Adımcılar, V., Çeşme, M., Şenel, P., Danış, İ., Ünal, D., & Gölcü, A. (2021). Comparative study of cytotoxic activities, DNA binding and molecular docking interactions of anticancer agent epirubicin and its novel copper complex. Journal of Molecular Structure, 1232, 130072. https://doi.org/10.1016/j.molstruc.2021.130072
  • Agalave, S. G., Maujan, S. R., & Pore, V. S. (2011). Click chemistry: 1,2,3-triazoles as pharmacophores. Chemistry, An Asian Journal, 6(10), 2696–2718. https://doi.org/10.1002/asia.201100432
  • Akram, M., Lal, H., & Shakya, S., Kabir-ud-Din (2020). Multispectroscopic and computational analysis insight into the interaction of cationic diester-bonded Gemini surfactants with serine protease α-chymotrypsin. ACS Omega, 5, 3624–3637. https://doi.org/10.1021/acsomega.9b04142
  • Aksu, K., Özgeriş, B., Taslimi, P., Naderi, A., Gülçin, İ., & Göksu, S. (2016). Antioxidant activity, acetylcholinesterase, and carbonic anhydrase inhibitory properties of novel ureas derived from phenethylamines. Archiv Der Pharmazie, 349(12), 944–954. https://doi.org/10.1002/ardp.201600183
  • Alam, M. S., Nam, Y. J., & Lee, D. U. (2013). Synthesis and evaluation of (Z)-2,3-diphenylacrylonitrile analogs as anti-cancer and anti-microbial agents. European Journal of Medicinal Chemistry, 69, 790–797. https://doi.org/10.1016/j.ejmech.2013.08.031
  • Ali, A. A. (2021). 1,2,3-triazoles: Synthesis and biological application. In Azoles – Synth. Prop. Appl. Perspect. IntechOpen, 1-13. https://doi.org/10.5772/intechopen.92692
  • Alqahtani, A. S., Hidayathulla, S., Rehman, M. T., Elgamal, A. A., Al-Massarani, S., Razmovski-Naumovski, V., Alqahtani, M. S., El Dib, R. A., & Alajmi, M. F. (2019). Alpha-amylase and alpha-glucosidase enzyme inhibition and antioxidant potential of 3-oxolupenal and katononic acid isolated from Nuxia oppositifolia. Biomolecules, 10(1), 61. https://doi.org/10.3390/biom10010061
  • Angajala, K. K., Vianala, S., Macha, R., Raghavender, M., Thupurani, M. K., & Pathi, P. J. (2016). Synthesis, anti-inflammatory, bactericidal activities and docking studies of novel 1,2,3-triazoles derived from ibuprofen using click chemistry. Springer Plus, 5(1), 15. https://doi.org/10.1186/s40064-016-2052-5
  • Avula, S. K., Khan, A., Rehman, N. U., Anwar, M. U., Al-Abri, Z., Wadood, A., Riaz, M., Csuk, R., & Al-Harrasi, A. (2018). Synthesis of 1H-1,2,3-triazole derivatives as new α-glucosidase inhibitors and their molecular docking studies. Bioorganic Chemistry, 81, 98–106. https://doi.org/10.1016/j.bioorg.2018.08.008
  • Bashary, R., & Khatik, G. L. (2019). Design, and facile synthesis of 1,3 diaryl-3-(arylamino)propan-1-one derivatives as the potential alpha-amylase inhibitors and antioxidants. Bioorganic Chemistry, 82, 156–162. https://doi.org/10.1016/j.bioorg.2018.10.010
  • Bonandi, E., Christodoulou, M. S., Fumagalli, G., Perdicchia, D., Rastelli, G., & Passarella, D. (2017). The 1,2,3-triazole ring as a bioisostere in medicinal chemistry. Drug Discovery Today, 22(10), 1572–1581. https://doi.org/10.1016/j.drudis.2017.05.014
  • Bozorov, K., Zhao, J., & Aisa, H. A. (2019). 1,2,3-Triazole-containing hybrids as leads in medicinal chemistry: A recent overview. Bioorganic & Medicinal Chemistry, 27(16), 3511–3531. https://doi.org/10.1016/j.bmc.2019.07.005
  • Burdock, G. A., & Flavor Ingredients, A. (2021). https://doi.org/10.1201/9781420037876-7
  • Chen, D., Zhou, X., Chen, X., Huang, L., Xi, X., Ma, C., Zhou, M., Wang, L., & Chen, T. (2019). Evaluating the bioactivity of a novel antimicrobial and anticancer peptide, dermaseptin-PS4(Der-PS4), from the skin secretion of Phyllomedusa sauvagii. Molecules, 24(16), 2974. https://doi.org/10.3390/molecules24162974
  • Daina, A., Michielin, O., & Zoete, V. (2017). SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports, 7, 1–13. https://doi.org/10.1038/srep42717
  • Govender, T., Govinden, U., Mocktar, C., Kruger, H. G., Veljković, J., Cindro, N., Bobinac, D., Žabčić, I., Mlinarić-Majerski, K., & Basarić, N. (2016). In vitro investigation of the antimicrobial activity of a series of lipophilic phenols and naphthols. South African Journal of Chemistry, 69, 44–50. https://doi.org/10.17159/0379-4350/2016/v69a6
  • Gülçin, I. (2006). Antioxidant activity of caffeic acid (3,4-dihydroxycinnamic acid). Toxicology, 217(2–3), 213–220. https://doi.org/10.1016/j.tox.2005.09.011.
  • Gülçin, I. (2010). Antioxidant properties of resveratrol: A structure–activity insight. Innovative Food Science & Emerging Technologies, 11(1), 210–218. https://doi.org/10.1016/j.ifset.2009.07.002
  • Gülçin, I., Mshvildadze, V., Gepdiremen, A., & Elias, R. (2006). Screening of antiradical and antioxidant activity of monodesmosides and crude extract from Leontice smirnowii tuber. Phytomedicine, 13(5), 343–351. https://doi.org/10.1016/j.phymed.2005.03.009
  • Hagar, M., Ahmed, H. A., Aljohani, G., & Alhaddad, O. A. (2020). Investigation of some antiviral N-heterocycles as COVID 19 drug: Molecular docking and DFT calculations. International Journal of Molecular Sciences, 21(11), 3922. https://doi.org/10.3390/ijms21113922
  • Isika, D., Çeşme, M., Osonga, F. J., & Sadik, O. A. (2020). Novel quercetin and apigenin–acetamide derivatives: Design, synthesis, characterization, biological evaluation and molecular docking studies. RSC Advances, 10(42), 25046–25058. https://doi.org/10.1039/D0RA04559D
  • Khan, I. M., Islam, M., Shakya, S., Alam, N., Imtiaz, S., & Islam, M. R. (2021a). Synthesis, spectroscopic characterization, antimicrobial activity, molecular docking and DFT studies of proton transfer (H-bonded) complex of 8-aminoquinoline (donor) with chloranilic acid (acceptor). Journal of Biomolecular Structure & Dynamics,in press. https://doi.org/10.1080/07391102.2021.1969280
  • Khan, I. M., Shakya, S., Islam, M., Khan, S., & Najnin, H. (2021b). Synthesis and spectrophotometric studies of CT complex between 1,2-dimethylimidazole and picric acid in different polar solvents: Exploring antimicrobial activities and molecular (DNA) docking. Physics & Chemistry of Liquids, 59(5), 753–769. https://doi.org/10.1080/00319104.2020.1810250
  • Kulkarni, S. G., & Mehendale, H. M. (2005). Benzyl alcohol. In: Encycl. Toxicol. (pp. 262–264). Elsevier. https://doi.org/10.1016/B0-12-369400-0/00121-6
  • Kumar, P., Duhan, M., Kadyan, K., Sindhu, J., Kumar, S., & Sharma, H. (2017). Synthesis of novel inhibitors of α-amylase based on the thiazolidine-4-one skeleton containing a pyrazole moiety and their configurational studies. MedChemComm, 8(7), 1468–1476. https://doi.org/10.1039/C7MD00080D
  • Kumar, S., Sharma, B., Mehra, V., & Kumar, V. (2021). Recent accomplishments on the synthetic/biological facets of pharmacologically active 1H-1,2,3-triazoles. European Journal of Medicinal Chemistry, 212, 113069. https://doi.org/10.1016/j.ejmech.2020.113069
  • Molinspiration cheminformatics. Choice Reviews Online, 43, 43–6538–43-6538. https://doi.org/10.5860/choice.43-6538
  • Moody, J. E. (1966). Remington’s pharmaceutical sciences. Journal of AOAC International, 49(4), 885–885. https://doi.org/10.1093/jaoac/49.4.885
  • Onur, S., Çeşme, M., Köse, M., & Tümer, F. (2021). New imino-methoxy derivatives: Design, synthesis, characterization, antimicrobial activity, DNA interaction and molecular docking studies. Journal of Biomolecular Structure & Dynamics, 0, 1–13. https://doi.org/10.1080/07391102.2021.1955741
  • Raghi, K. R., Sherin, D. R., Saumya, M. J., Arun, P. S., Sobha, V. N., & Manojkumar, T. K. (2018). Computational study of molecular electrostatic potential, docking and dynamics simulations of gallic acid derivatives as ABL inhibitors. Computational Biology & Chemistry, 74, 239–246. https://doi.org/10.1016/j.compbiolchem.2018.04.001
  • Rani, S., Raheja, K., Luxami, V., & Paul, K. (2021). A review on diverse heterocyclic compounds as the privileged scaffolds in non-steroidal aromatase inhibitors. Bioorganic Chemistry, 113, 105017. https://doi.org/10.1016/j.bioorg.2021.105017
  • Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., & Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology & Medicine, 26(9–10), 1231–1237. https://doi.org/10.1016/S0891-5849(98)00315-3
  • Şahin, İ., Çeşme, M., Özgeriş, F. B., Güngör, Ö., & Tümer, F. (2022). Design and synthesis of 1,4-disubstituted 1,2,3-triazoles: Biological evaluation, in silico molecular docking and ADME screening. Journal of Molecular Structure, 1247, 131344. https://doi.org/10.1016/j.molstruc.2021.131344
  • Şahin, İ., Özgeriş, F. B., Köse, M., Bakan, E., & Tümer, F. (2021). Synthesis, characterization, and antioxidant and anticancer activity of 1,4-disubstituted 1,2,3-triazoles. Journal of Molecular Structure, 1232, 130042. https://doi.org/10.1016/j.molstruc.2021.130042
  • n.d. (2021). Schrödinger Release 2021-1: Maestro. Schrödinger, LLC.
  • Sepay, N., Sepay, N., Al Hoque, A., Mondal, R., Halder, U. C., & Muddassir, M. (2020). In silico fight against novel coronavirus by finding chromone derivatives as inhibitor of coronavirus main proteases enzyme. Structural Chemistry, 31(5), 1831–1840. https://doi.org/10.1007/s11224-020-01537-5
  • Shakya, B., Shakya, S., & Siddique, Y. H. (2019). Effect of geraniol against arecoline induced toxicity in the third instar larvae of transgenic Drosophila melanogaster (hsp70-lacZ) Bg9. Toxicology Mechanisms & Methods, 29(3), 187–202. https://doi.org/10.1080/15376516.2018.1534299.
  • Shakya, S., Khan, I. M., & Ahmad, M. (2020). Charge transfer complex based real-time colorimetric chemosensor for rapid recognition of dinitrobenzene and discriminative detection of Fe2+ ions in aqueous media and human hemoglobin. Journal of Photochemistry & Photobiology A: Chemistry, 392, 112402. https://doi.org/10.1016/j.jphotochem.2020.112402
  • Sulaiman, M., Hassan, Y., Taskin Tok, T., & Noundou, X. S. (2020). Synthesis, antibacterial activity and docking studies of benzyl alcohol derivatives. Journal of the Turkish Chemical Society Section A: Chemistry, 7, 481–488. https://doi.org/10.18596/jotcsa.692113
  • Tahtaci, H., Karacık, H., Ece, A., Er, M., & Şeker, M. G. (2018). Design, synthesis, SAR and molecular modeling studies of novel imidazo[2,1-b][1,3,4]thiadiazole derivatives as highly potent antimicrobial agents. Molecular Informatics, 37(3), 1700083. https://doi.org/10.1002/minf.201700083
  • Tohma, H. S., & Gulçin, I. (2010). Antioxidant and radical scavenging activity of aerial parts and roots of Turkish liquorice (Glycyrrhiza glabra L.). International Journal of Food Properties, 13(4), 657–671. https://doi.org/10.1080/10942911003773916
  • Vieira Veloso, R., Shamim, A., Lamarrey, Y., Stefani, H. A., & Sciani, J. M. (2021). Antioxidant and anti-sickling activity of glucal-based triazoles compounds – An in vitro and in silico study. Bioorganic Chemistry, 109, 104709. https://doi.org/10.1016/j.bioorg.2021.104709
  • Wilson, L., & Martin, S. (1999). Benzyl alcohol as an alternative local anesthetic. Annals of Emergency Medicine, 33(5), 495–499. https://doi.org/10.1016/S0196-0644(99)70335-5
  • Xu, Z., Zhao, S. J., & Liu, Y. (2019). 1,2,3-Triazole-containing hybrids as potential anticancer agents: Current developments, action mechanisms and structure–activity relationships. European Journal of Medicinal Chemistry, 183, 111700. https://doi.org/10.1016/j.ejmech.2019.111700

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.