323
Views
3
CrossRef citations to date
0
Altmetric
Research Articles

Bovine serum albumin interaction, molecular docking, anticancer and antimicrobial activities of Co(II) Schiff base complex derived from Nophen ligand

, , &
Pages 1895-1903 | Received 21 Sep 2021, Accepted 29 Dec 2021, Published online: 17 Jan 2022

References

  • Abd-Elzaher, M. M. (2000). Synthesis and spectroscopic characterization of some tetradentate schiff bases and their nickel, copper and zinc complexes. Synthesis and Reactivity in Inorganic and Metal-Organic Chemistry, 30(9), 1805–1816. https://doi.org/10.1080/00945710009351870
  • Ambika, S., Manojkumar, Y., Arunachalam, S., Gowdhami, B., Meenakshi Sundaram, K. K., Solomon, R. V., Venuvanalingam, P., Akbarsha, M. A., & Sundararaman, M. (2019). Biomolecular interaction, anti-cancer and anti-angiogenic properties of cobalt(III) Schiff base complexes. Scientific Reports, 9(1), 2721. https://doi.org/10.1038/s41598-019-39179-1
  • Ammar, R. A., Alaghaz, A.-N M. A., Zayed, M. E., & Al-Bedair, L. A. (2017). Synthesis, spectroscopic, molecular structure, antioxidant, antimicrobial and antitumor behavior of Mn(II), Co(II), Ni(II), Cu(II) and Zn(II) complexes of O 2 N type tridentate chromone-2-carboxaldehyde Schiff’s base ligand. Journal of Molecular Structure, 1141, 368–381. https://doi.org/10.1016/j.molstruc.2017.03.080
  • Aramesh-Boroujeni, Z., Jahani, S., Khorasani-Motlagh, M., Kerman, K., Aramesh, N., Asadpour, S., & Noroozifar, M. (2020). Experimental and theoretical investigations of Dy(III) complex with 2,2'-bipyridine ligand: DNA and BSA interactions and antimicrobial activity study . Journal of Biomolecular Structure & Dynamics, 38(16), 4746–4763. https://doi.org/10.1080/07391102.2019.1689170
  • Beebe, S. J., Celestine, M. J., Bullock, J. L., Sandhaus, S., Arca, J. F., Cropek, D. M., Ludvig, T. A., Foster, S. R., Clark, J. S., Beckford, F. A., Tano, C. M., Tonsel-White, E. A., Gurung, R. K., Stankavich, C. E., Tse-Dinh, Y.-C., Jarrett, W. L., & Holder, A. A. (2020). Synthesis, characterization, DNA binding, topoisomerase inhibition, and apoptosis induction studies of a novel cobalt(III) complex with a thiosemicarbazone ligand. Journal of Inorganic Biochemistry, 203, 110907. https://doi.org/10.1016/j.jinorgbio.2019.1109
  • Chen, K.-Y., Zhou, K.-L., Lou, Y.-Y., & Shi, J.-H. (2019). Exploring the binding interaction of calf thymus DNA with lapatinib, a tyrosine kinase inhibitor: multi-spectroscopic techniques combined with molecular docking. Journal of Biomolecular Structure & Dynamics, 37(3), 576–583. https://doi.org/10.1080/07391102.2018.1433067
  • Chakraborty, N., Bhuiya, S., Chakraborty, A., Mandal, D., & Das, S. (2018). Synthesis and photophysical investigation of 2-hydroxyquinoline-3-carbaldehyde: AIEE phenomenon, fluoride optical sensing and BSA interaction study. Journal of Photochemistry and Photobiology A: Chemistry, 359, 53–63. https://doi.org/10.1016/j.jphotochem.2018.03.039
  • Devi, J., Yadav, M., Kumar, D., Naik, L. S., & Jindal, D. K. (2019). Some divalent metal(II) complexes of salicylaldehyde-derived Schiff bases: Synthesis, spectroscopic characterization, antimicrobial and in vitro anticancer studies. Applied Organometallic Chemistry, 33(2), e4693. https://doi.org/10.1002/aoc.4693
  • Eskandari, A., Kundu, A., Lu, C., Ghosh, S., & Suntharalingam, K. (2018). Synthesis, characterization, and cytotoxic properties of mono- and di-nuclear cobalt(ii)-polypyridyl complexes . Dalton Transactions (Cambridge, England : 2003), 47(16), 5755–5763. https://doi.org/10.1039/c8dt00577j
  • Fekri, R., Salehi, M., Asadi, A., & Kubicki, M. (2018). Spectroscopic studies, structural characterization and electrochemical studies of two cobalt (III) complexes with tridentate hydrazone Schiff base ligands: Evaluation of antibacterial activities, DNA-binding, BSA interaction and molecular docking. Applied Organometallic Chemistry, 32(2), e4019. https://doi.org/10.1002/aoc.4019
  • Ganeshpandian, M., Loganathan, R., Suresh, E., Riyasdeen, A., Akbarsha, M. A., & Palaniandavar, M. (2014). New ruthenium(ii) arene complexes of anthracenyl-appended diazacycloalkanes: Effect of ligand intercalation and hydrophobicity on DNA and protein binding and cleavage and cytotoxicity. Dalton Transactions (Cambridge, England : 2003), 43(3), 1203–1219. https://doi.org/10.1039/c3dt51641e
  • Heydari, A., & Mansouri-Torshizi, H. (2016). Design, synthesis, characterization, cytotoxicity, molecular docking and analysis of binding interactions of novel acetylacetonatopalladium(ii) alanine and valine complexes with CT-DNA and BSA. RSC Advances, 6(98), 96121–96137. https://doi.org/10.1039/C6RA18803F
  • Jalali, F., & Dorraji, P. S. (2012). Electrochemical and spectroscopic studies of the interaction between the neuroleptic drug, gabapentin, and DNA. Journal of Pharmaceutical and Biomedical Analysis, 70, 598–601. https://doi.org/10.1016/j.jpba.2012.06.005
  • Jeevitha, J. R., Jayaseeli, A. M. I., Rajagopal, S., Seenithurai, S., Chai, J.-D., Raja, J. D., & Rajasekaran, R. (2021). Synthesis, characterization, antimicrobial, BSA binding, DFT calculation, molecular docking and cytotoxicity of Ni(II) complexes with Schiff base ligands. Journal of Molecular Liquids, 328, 115457. https://doi.org/10.1016/j.molliq.2021.115457
  • Jayanthi, E., Anusuya, M., Bhuvanesh, N. S. P., Khalil, K. A., & Dharmaraj, N. (2015). Synthesis and characterization of ruthenium(II) hydrazone complexes as anticancer chemotherapeutic agents: in vitro DNA/BSA protein binding and cytotoxicity assay. Journal of Coordination Chemistry, 68(20), 3551–3565. https://doi.org/10.1080/00958972.2015.1077950
  • Kaczmarek, M. T., Pospieszna-Markiewicz, I., Kubicki, M., & Radecka-Paryzek, W. (2004). Novel lanthanide salicylaldimine complexes with unusual coordination mode. Inorganic Chemistry Communications, 7(12), 1247–1249. https://doi.org/10.1016/j.inoche.2004.09.022
  • King, A. P., Gellineau, H. A., Ahn, J.-E., MacMillan, S. N., & Wilson, J. J. (2017). Bis(thiosemicarbazone) Complexes of cobalt(III). Synthesis, characterization, and anticancer potential. Inorganic Chemistry, 56(11), 6609–6623. https://doi.org/10.1021/acs.inorgchem.7b00710
  • Kesavan, M. P., Kumar, G. G. V., Anitha, K., Ravi, L., Raja, J. D., Rajagopal, G., & Rajesh, J. (2017). Natural alkaloid Luotonin A and its affixed acceptor molecules: Serum albumin binding studies. Journal of Photochemistry and Photobiology. B, Biology, 173, 499–507. https://doi.org/10.1016/j.jphotobiol.2017.06.030
  • Khan, S., Singh, S., Gaikwad, S., Nawani, N., Junnarkar, M., & Pawar, S. V. (2020). Optimization of process parameters for the synthesis of silver nanoparticles from Piper betle leaf aqueous extract, and evaluation of their antiphytofungal activity. Environmental Science and Pollution Research International, 27(22), 27221–27233. https://doi.org/10.1007/s11356-019-05239-2
  • Koksal, E., Tohma, H., Kılıc, O., Alan, Y., Aras, A., Gulcin, I., & Bursal, E. (2017). Assessment of antimicrobial and antioxidant activities of Nepeta trachonitica: Analysis of its phenolic compounds using HPLCMS/MS. Scientia Pharmaceutica, 85(2), 24. https://doi.org/10.3390/scipharm85020024
  • Kou, S.-B., Lin, Z.-Y., Wang, B.-L., Shi, J.-H., & Liu, Y.-X. (2021). Evaluation of the binding behavior of olmutinib (HM61713) with model transport protein: Insights from spectroscopic and molecular docking studies. Journal of Molecular Structure, 1224, 129024. https://doi.org/10.1016/j.molstruc.2020.129024
  • Lazarevic, T., Rilak, A., & Bugarcic, Z. D. (2017). Platinum, palladium, gold and ruthenium complexes as anticancer agents: Current clinical uses, cytotoxicity studies and future perspectives. European Journal of Medicinal Chemistry, 142, 8–31. https://doi.org/10.1016/j.ejmech.2017.04.007
  • Li, Y., Yang, Z., Zhou, M., Li, Y., He, J., Wang, X., & Lin, Z. (2017). Ni(ii) and Co(ii) complexes of an asymmetrical aroylhydrazone: synthesis, molecular structures, DNA binding, protein interaction, radical scavenging and cytotoxic activity. RSC Advances, 7(66), 41527–41539. https://doi.org/10.1039/C7RA05504H
  • Li, Y., Li, Y., Liu, X., Yang, Y., Lin, D., & Gao, Q. (2020). The synthesis, characterization, DNA/protein interaction, molecular docking and catecholase activity of two Co(II) complexes constructed from the aroylhydrazone ligand. Journal of Molecular Structure, 1202, 127229. https://doi.org/10.1016/j.molstruc.2019.127229
  • Li, N., Ma, Y., Yang, C., Guo, L., & Yang, X. (2005). Interaction of anticancer drug mitoxantrone with DNA analyzed by electrochemical and spectroscopic methods. Biophysical Chemistry, 116(3), 199–205. https://doi.org/10.1016/j.bpc.2005.04.009
  • Mahanthappa, M., Gowda, J. I., Raghavendran, Giriya, B., & Rengaswamy, G. (2016). Spectroscopic, voltammetry and molecular docking study of binding interaction of antipsychotic drug with bovine serum albumin. Journal of Electrochemical Science and Engineering, 6(2), 155–164. https://doi.org/10.5599/jese.205
  • Mathavan, A., Ramdass, A., & Rajagopal, S. (2015). A spectroscopy approach for the study of the interaction of oxovanadium(IV)-salen complexes with proteins. Journal of Fluorescence, 25(4), 1141–1149. https://doi.org/10.1007/s10895-015-1604-3
  • Mathews, N. A., Jose, A., & Kurup, M. R. P. (2019). Synthesis and characterization of a new aroylhydrazone ligand and its cobalt(III) complexes: X-ray crystallography and in vitro evaluation of antibacterial and antifungal activities. Journal of Molecular Structure, 1178, 544–553. https://doi.org/10.1016/j.molstruc.2018.10.061
  • Meng, T., Qin, Q.-P., Zou, H.-H., Wang, K., & Liang, F. (2019). Eighteen 5,7-dihalo-8-quinolinol and 2,2’-bipyridine Co(II) complexes as a new class of promising anticancer agents. ACS Medicinal Chemistry Letters, 10(12), 1603–1608. https://doi.org/10.1021/acsmedchemlett.9b00356
  • Munteanu, C. R., & Suntharalingam, K. (2015). Advances in cobalt complexes as anticancer agents. Dalton Transactions (Cambridge, England : 2003), 44(31), 13796–13808. https://doi.org/10.1039/c5dt02101d
  • Munde, A. S., Jagdale, A. N., Jadhav, S. M., & Chondhekar, T. K. (2010). Synthesis, characterization and thermal study of some transition metal complexes of an asymmetrical tetradentate Schiff base ligand. Journal of the Serbian Chemical Society, 75(3), 349–359. https://doi.org/10.2298/JSC090408009M
  • Muralisankar, M., Sujith, S., Bhuvanesh, N. S. P., & Sreekanth, A. (2016). Synthesis and crystal structure of new monometallic and bimetallic copper(II) complexes with N-substituted isatin thiosemicarbazone ligands: Effects of the complexes on DNA/protein-binding property, DNA cleavage study and in vitro anticancer activity. Polyhedron, 118, 103–117. https://doi.org/10.1016/j.poly.2016.06.017
  • Muralisankar, M., Basheer, S. M., Haribabu, J., Bhuvanesh, N. S. P., Karvembu, R., & Sreekanth, A. (2017). An investigation on the DNA/protein binding, DNA cleavage and in vitro anticancer properties of SNO pincer type palladium(II) complexes with N-substituted isatin thiosemicarbazone ligands. Inorganica Chimica Acta, 466, 61–70. https://doi.org/10.1016/j.ica.2017.05.044
  • Neelofar, N., Ali, N., Ahmad, S., Abd El-Salam, N. M., Ullah, R., Nawaz, R., & Ahmad, S. (2017). Synthesis and evaluation of antioxidant and antimicrobial activities of Schiff base tin (II) complexes. Tropical Journal of Pharmaceutical Research, 15(12), 2693. https://doi.org/10.4314/tjpr.v15i12.22
  • Patel, M. N., Joshi, H. N., & Patel, C. R. (2013). Cytotoxic, antibacterial, DNA interaction and superoxide dismutase like activities of sparfloxacin drug based copper(II) complexes with nitrogen donor ligands. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 104, 48–55. https://doi.org/10.1016/j.saa.2012.11.045
  • Perontsis, S., Geromichalou, E., Perdih, F., Hatzidimitriou, A. G., Geromichalos, G. D., Turel, I., & Psomas, G. (2020). Synthesis, structural determination, in vitro and in silico biological evaluation of divalent or trivalent cobalt complexes with indomethacin. Journal of Inorganic Biochemistry, 212, 111213. https://doi.org/10.1016/j.jinorgbio.2020.1112
  • Sakthikumar, K., Solomon, R. V., & Raja, J. D. (2019). Spectro-electrochemical assessments of DNA/BSA interactions, cytotoxicity, radical scavenging and pharmacological implications of biosensitive and biologically active morpholine-based metal(ii) complexes: a combined experimental and computational investigation. RSC Advances, 9(25), 14220–14241. https://doi.org/10.1039/C8RA09218D
  • Sankareswari, G. V., Vinod, D., Mahalakshmi, A., Alamelu, M., Kumaresan, G., Ramaraj, R., & Rajagopal, S. (2014). Interaction of oxovanadium(IV)-salphen complexes with bovine serum albumin and their cytotoxicity against cancer. Dalton Transactions (Cambridge, England : 2003), 43(8), 3260–3272. https://doi.org/10.1039/c3dt52505h
  • Sankarganesh, M., Dhaveethu Raja, J., Adwin Jose, P. R., Vinoth Kumar, G. G., Rajesh, J., & Rajasekaran, R. (2018). Spectroscopic, computational, antimicrobial, DNA interaction, in vitro anticancer and molecular docking properties of biochemically active Cu(II) and Zn(II) complexes of pyrimidine-ligand. Journal of Fluorescence, 28(4), 975–985. https://doi.org/10.1007/s10895-018-2261-0
  • Saswati, Mohanty, M., Banerjee, A., Biswal, S., Horn, A., Schenk, G., & Dinda, R. (2020). Polynuclear zinc(II) complexes of thiosemicarbazone: Synthesis, X-ray structure and biological evaluation. Journal of Inorganic Biochemistry, 203, 110908. https://doi.org/10.1016/j.jinorgbio.2019.110908
  • Shah, S., Gaikwad, S., Nagar, S., Kulshrestha, S., Vaidya, V., Nawani, N., & Pawar, S. (2019). Biofilm inhibition and anti-quorum sensing activity of phytosynthesized silver nanoparticles against the nosocomial pathogen Pseudomonas aeruginosa. Biofouling, 35(1), 34–49. https://doi.org/10.1080/08927014.2018.1563686
  • Shi, J.-H., Lou, Y.-Y., Zhou, K.-L., & Pan, D.-Q. (2018). Probing the behavior of calf thymus DNA upon binding to a carboxamide fungicide boscalid: Insights from spectroscopic and molecular docking approaches. Journal of Biomolecular Structure & Dynamics, 36(10), 2738–2745. https://doi.org/10.1080/07391102.2017.1365012
  • Singh, B. K., Rajour, H. K., & Prakash, A. (2012). Synthesis, characterization and biological activity of transition metal complexes with Schiff bases derived from 2-nitrobenzaldehyde with glycine and methionine. Spectrochimica Acta Part A, Molecular and Biomolecular Spectroscopy, 94, 143–151. https://doi.org/10.1016/j.saa.2012.03.077
  • Taha, Z. A., Ajlouni, A. M., Al Momani, W., & Al-Ghzawi, A. A. (2011). Syntheses, characterization, biological activities and photophysical properties of lanthanides complexes with a tetradentate Schiff base ligand. Spectrochimica Acta Part A, Molecular and Biomolecular Spectroscopy, 81(1), 570–577. https://doi.org/10.1016/j.saa.2011.06.052
  • Thota, S., Rodrigues, D. A., Crans, D. C., & Barreiro, E. J. (2018). Ru(II) compounds: Next-generation anticancer metallotherapeutics. Journal of Medicinal Chemistry, 61(14), 5805–5821. https://doi.org/10.1021/acs.jmedchem.7b01689
  • Veeralakshmi, S., Sabapathi, G., Nehru, S., Venuvanalingam, P., & Arunachalam, S. (2017). Surfactant–cobalt(III) complexes: The impact of hydrophobicity on interaction with HSA and DNA – insights from experimental and theoretical approach. Colloids and Surfaces. B, Biointerfaces, 153, 85–94. https://doi.org/10.1016/j.colsurfb.2017.02.01
  • Wang, X., Wang, X., Jin, S., Muhammad, N., & Guo, Z. (2019). Stimuli-responsive therapeutic metallodrugs. Chemical Reviews, 119(2), 1138–1192. https://doi.org/10.1021/acs.chemrev.8b00209
  • Wang, Q., Huang, C.-R., Jiang, M., Zhu, Y.-Y., Wang, J., Chen, J., & Shi, J.-H. (2016). Binding interaction of atorvastatin with bovine serum albumin: Spectroscopic methods and molecular docking. Spectrochimica Acta Part A, Molecular and Biomolecular Spectroscopy, 156, 155–163. https://doi.org/10.1016/j.saa.2015.12.003
  • Wei, Q., Dong, J., Zhao, P., Li, M., Cheng, F., Kong, J., & Li, L. (2016). DNA binding, BSA interaction and SOD activity of two new nickel(II) complexes with glutamine Schiff base ligands. Journal of Photochemistry and Photobiology. B, Biology, 161, 355–367. https://doi.org/10.1016/j.jphotobiol.2016.03.053
  • Wetlaufer, D. B. (1963). Ultraviolet spectra of proteins and amino acids. Advances in Protein Chemistry, 17, 303–390. https://doi.org/10.1016/s0065-3233(08)60056-x
  • Manojkumar, Y., Ambika, S., Arulkumar, R., Gowdhami, B., Balaji, P., Vignesh, G., Arunachalam, S., Venuvanalingam, P., Thirumurugan, R., & Akbarsha, M. A. (2019). Synthesis, DNA and BSA binding, in vitro anti-proliferative and in vivo anti-angiogenic properties of some cobalt(III) Schiff base complexes. New Journal of Chemistry, 43(28), 11391–11407. https://doi.org/10.1039/C9NJ01269A
  • Zeng, L., Gupta, P., Chen, Y., Wang, E., Ji, L., Chao, H., & Chen, Z.-S. (2017). The development of anticancer ruthenium(ii) complexes: from single molecule compounds to nanomaterials. Chemical Society Reviews, 46(19), 5771–5804. https://doi.org/10.1039/c7cs00195a

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.