251
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Identification of natural products against enoyl-acyl-carrier-protein reductase in malaria via combined pharmacophore modeling, molecular docking and simulations studies

ORCID Icon, , , & ORCID Icon
Pages 2002-2015 | Received 16 Jun 2021, Accepted 01 Jan 2022, Published online: 19 Jan 2022

References

  • Accelrys 4.0, S. D., USA. (2021). Accelrys Discovery Studio version 4.0. www.accelrys.com/products/collaborativescience/biovia-discovery-studio/
  • Bernstein, F. C., Koetzle, T. F., Williams, G. J. B., Meyer, E. F., Brice, M. D., Rodgers, J. R., Kennard, O., Shimanouchi, T., & Tasumi, M. (1977). The Protein Data Bank. A computer-based archival file for macromolecular structures. European Journal of Biochemistry, 80(2), 319–324. https://doi.org/10.1111/j.1432-1033.1977.tb11885.x
  • Bhardwaj, V. K., Purohit, R., & Kumar, S. (2021). Himalayan bioactive molecules as potential entry inhibitors for the human immunodeficiency virus. Food Chemistry, 347, 128932.
  • Böhm, H.-J. (1994). The development of a simple empirical scoring function to estimate the binding constant for a protein-ligand complex of known three-dimensional structure. Journal of Computer-Aided Molecular Design, 8(3), 243–256.
  • Brooks, B. R., Bruccoleri, R. E., Olafson, B. D., States, D. J., Swaminathan, S., & Karplus, M. (1983). CHARMM: A program for macromolecular energy, minimization, and dynamics calculations. Journal of Computational Chemistry, 4(2), 187–217. https://doi.org/10.1002/jcc.540040211
  • Cereto-Massagué, A., Guasch, L., Valls, C., Mulero, M., Pujadas, G., & Garcia-Vallvé, S. (2012). DecoyFinder: An easy-to-use python GUI application for building target-specific decoy sets. Bioinformatics, 28(12), 1661–1662.
  • Darden, T., York, D., & Pedersen, L. (1993). Particle mesh Ewald: An N⋅ log (N) method for Ewald sums in large systems. The Journal of Chemical Physics, 98(12), 10089–10092. https://doi.org/10.1063/1.464397
  • Dixon, S. L., Smondyrev, A. M., & Rao, S. N. (2006). PHASE: A novel approach to pharmacophore modeling and 3D database searching. Chemical Biology & Drug Design, 67(5), 370–372. https://doi.org/10.1111/j.1747-0285.2006.00384.x
  • Fawcett, T. (2006). An introduction to ROC analysis. Pattern Recognition Letters, 27(8), 861–874. https://doi.org/10.1016/j.patrec.2005.10.010
  • Freundlich, J. S., Wang, F., Tsai, H.-C., Kuo, M., Shieh, H.-M., Anderson, J. W., Nkrumah, L. J., Valderramos, J.-C., Yu, M., Kumar, T. R S., Valderramos, S. G., Jacobs, W. R., Schiehser, G. A., Jacobus, D. P., Fidock, D. A., & Sacchettini, J. C. (2007). X-ray structural analysis of Plasmodium falciparum enoyl acyl carrier protein reductase as a pathway toward the optimization of triclosan antimalarial efficacy. Journal of Biological Chemistry, 282(35), 25436–25444. https://doi.org/10.1074/jbc.M701813200
  • Gu, J., Gui, Y., Chen, L., Yuan, G., Lu, H.-Z., & Xu, X. (2013). Use of natural products as chemical library for drug discovery and network pharmacology. PloS One, 8(4), e62839.
  • Güner, O. F. (2000). Pharmacophore perception, development, and use in drug design (Vol. 2). Internat'l University Line.
  • Heath, R. J., & Rock, C. O. (1995). Enoyl-acyl carrier protein reductase (fabI) plays a determinant role in completing cycles of fatty acid elongation in Escherichia coli. Journal of Biological Chemistry, 270(44), 26538–26542. https://doi.org/10.1074/jbc.270.44.26538
  • Irwin, J. J., & Shoichet, B. K. (2005). ZINC-a free database of commercially available compounds for virtual screening. Journal of Chemical Information and Modeling, 45(1), 177–182.
  • Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W., & Klein, M. L. (1983). Comparison of simple potential functions for simulating liquid water. The Journal of Chemical Physics, 79(2), 926–935. https://doi.org/10.1063/1.445869
  • Jorgensen, W. L., Maxwell, D. S., & Tirado-Rives, J. (1996). Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. Journal of the American Chemical Society, 118(45), 11225–11236. https://doi.org/10.1021/ja9621760
  • Kumar, R., Sharma, R., Kumar, I., Upadhyay, P., Dhiman, A. K., Kumar, R., Kumar, R., Purohit, R., Sahal, D., & Sharma, U. (2019). Evaluation of antiplasmodial potential of C2 and C8 modified quinolines: In vitro and in silico study. Medicinal Chemistry, 15(7), 790–800. https://doi.org/10.2174/1573406414666181015144413
  • Kumar, S., George, L., Jasrai, Y., & Pandya, H. (2015). Prioritization of active antimalarials using structural interaction profile of Plasmodium falciparum enoyl-acyl carrier protein reductase (PfENR)-triclosan derivatives. SAR and QSAR in Environmental Research, 26(1), 61–77. https://doi.org/10.1080/1062936X.2014.984628
  • Lambrakos, S., Boris, J., Oran, E., Chandrasekhar, I., & Nagumo, M. (1989). A modified shake algorithm for maintaining rigid bonds in molecular dynamics simulations of large molecules. Journal of Computational Physics, 85(2), 473–486. https://doi.org/10.1016/0021-9991(89)90160-5
  • LeadIt. (2021). BioSolveIT GmbH Sankt Augustin Germany. version 2.1.8.
  • Li, J., Abel, R., Zhu, K., Cao, Y., Zhao, S., & Friesner, R. A. (2011). The VSGB 2.0 model: A next generation energy model for high resolution protein structure modeling. Proteins: Structure, Function, and Bioinformatics, 79(10), 2794–2812. https://doi.org/10.1002/prot.23106
  • LigPrep, S. V. (2020). LLC, New York, NY.
  • Lindert, S., & McCammon, J. A. (2012). Dynamics of Plasmodium falciparum enoyl‐ACP reductase and implications on drug discovery. Protein Science, 21(11), 1734–1745.
  • Lipinski, C. A., Lombardo, F., Dominy, B. W., & Feeney, P. J. (1997). Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced Drug Delivery Reviews, 23(1-3), 3–25. https://doi.org/10.1016/S0169-409X(96)00423-1
  • Lu, J. Z., Lee, P. J., Waters, N. C., & Prigge, S. T. (2005). Fatty acid synthesis as a target for antimalarial drug discovery. Combinatorial Chemistry & High Throughput Screening, 8(1), 15–26. https://doi.org/10.2174/1386207053328192
  • Lu, S.-H., Wu, J. W., Liu, H.-L., Zhao, J.-H., Liu, K.-T., Chuang, C.-K., Lin, H.-Y., Tsai, W.-B., & Ho, Y. (2011). The discovery of potential acetylcholinesterase inhibitors: A combination of pharmacophore modeling, virtual screening, and molecular docking studies. Journal of Biomedical Science, 18(8), 8. https://doi.org/10.1186/1423-0127-18-8
  • Manhas, A., Dubey, S., & Jha, P. C. (2020). A profound computational study to prioritize the natural compound inhibitors against the P. falciparum orotidine-5-monophosphate decarboxylase enzyme. Journal of Biomolecular Structure and Dynamics, 38(9), 2704–2716. https://doi.org/10.1080/07391102.2019.1644197
  • Manhas, A., Kumar, S., & Jha, P. C. (2020). Identification of the natural compound inhibitors against Plasmodium falciparum plasmepsin-II via common feature based screening and molecular dynamics simulations. Journal of Biomolecular Structure and Dynamics, 410(1), 31–43.
  • Manhas, A., Lone, M. Y., & Jha, P. C. (2019). In search of the representative pharmacophore hypotheses of the enzymatic proteome of Plasmodium falciparum: A multicomplex-based approach. Molecular Diversity, 23(2), 453–470.
  • Manhas, A., Patel, A., Lone, M. Y., Jha, P. K., & Jha, P. C. (2018). Identification of PfENR inhibitors: A hybrid structure‐based approach in conjunction with molecular dynamics simulations. Journal of Cellular Biochemistry, 119(10), 8490–8500.
  • Martyna, G. J., Tobias, D. J., & Klein, M. L. (1994). Constant pressure molecular dynamics algorithms. The Journal of Chemical Physics, 101(5), 4177–4189. https://doi.org/10.1063/1.467468
  • Massengo-Tiassé, R. P., & Cronan, J. E. (2009). Diversity in enoyl-acyl carrier protein reductases. Cellular and Molecular Life Sciences, 66(9), 1507–1517.
  • Nicola, G., Smith, C. A., Lucumi, E., Kuo, M. R., Karagyozov, L., Fidock, D. A., Sacchettini, J. C., & Abagyan, R. (2007). Discovery of novel inhibitors targeting enoyl–acyl carrier protein reductase in Plasmodium falciparum by structure-based virtual screening. Biochemical and Biophysical Research Communications, 358(3), 686–691.
  • Nosé, S. (1984). A unified formulation of the constant temperature molecular dynamics methods. The Journal of Chemical Physics, 81(1), 511–519. https://doi.org/10.1063/1.447334
  • Perozzo, R., Kuo, M., Sidhu, A. b. S., Valiyaveettil, J. T., Bittman, R., Jacobs, W. R., Fidock, D. A., & Sacchettini, J. C. (2002). Structural elucidation of the specificity of the antibacterial agent triclosan for malarial enoyl acyl carrier protein reductase. The Journal of Biological Chemistry, 277(15), 13106–13114.
  • Ralph, S. A., D'Ombrain, M. C., & McFadden, G. I. (2001). The apicoplast as an antimalarial drug target. Drug Resistance Updates, 4(3), 145–151.
  • Rarey, M., Kramer, B., & Lengauer, T. (1997). Multiple automatic base selection: Protein–ligand docking based on incremental construction without manual intervention. Journal of Computer-Aided Molecular Design, 11(4), 369–384.
  • Rarey, M., Kramer, B., Lengauer, T., & Klebe, G. (1996). A fast flexible docking method using an incremental construction algorithm. Journal of Molecular Biology, 261(3), 470–489.
  • Reulecke, I., Lange, G., Albrecht, J., Klein, R., & Rarey, M. (2008). Towards an integrated description of hydrogen bonding and dehydration: Decreasing false positives in virtual screening with the HYDE scoring function. ChemMedChem, 3(6), 885–897. https://doi.org/10.1002/cmdc.200700319
  • Rich, S. M., Leendertz, F. H., Xu, G., LeBreton, M., Djoko, C. F., Aminake, M. N., Takang, E. E., Diffo, J. L. D., Pike, B. L., Rosenthal, B. M., Formenty, P., Boesch, C., Ayala, F. J., & Wolfe, N. D. (2009). The origin of malignant malaria. Proceedings of the National Academy of Sciences, 106(35), 14902–14907. https://doi.org/10.1073/pnas.0907740106
  • Shah, P., & Siddiqi, M. (2010). 3D-QSAR studies on triclosan derivatives as Plasmodium falciparum enoyl acyl carrier reductase inhibitors. SAR and QSAR in Environmental Research, 21(5-6), 527–545.
  • Singh, R., Bhardwaj, V., & Purohit, R. (2021). Identification of a novel binding mechanism of Quinoline based molecules with lactate dehydrogenase of Plasmodium falciparum. Journal of Biomolecular Structure & Dynamics, 39(1), 348–356.
  • Sorokina, M., & Steinbeck, C. (2020). Review on natural products databases: Where to find data in 2020. Journal of Cheminformatics, 12(1), 20–51. https://doi.org/10.1186/s13321-020-00424-9
  • Surolia, A., Ramya, T., Ramya, V., & Surolia, N. (2004). FAS’t inhibition of malaria. Biochemical Journal, 383(3), 401–412. https://doi.org/10.1042/BJ20041051
  • SYBYL. (1994). TRIPOS Associates Inc. http://www.tripos.com/
  • Tuckerman, M., Berne, B. J., & Martyna, G. J. (1992). Reversible multiple time scale molecular dynamics. The Journal of Chemical Physics, 97(3), 1990–2001. https://doi.org/10.1063/1.463137
  • Veber, D. F., Johnson, S. R., Cheng, H.-Y., Smith, B. R., Ward, K. W., & Kopple, K. D. (2002). Molecular properties that influence the oral bioavailability of drug candidates. Journal of Medicinal Chemistry, 45(12), 2615–2623.
  • White, N. J. (2004). Antimalarial drug resistance. The Journal of Clinical Investigation, 113(8), 1084–1092. https://doi.org/10.1172/JCI21682
  • Wilson, R. I. (2002). Progress with parasite plastids. Journal of Molecular Biology, 319(2), 257–274.
  • World Health Organization. (2020). World malaria report 2020: 20 years of global progress and challenges. Geneva: World Health Organization; 2020. Licence: CC BY-NC-SA 3.0 IGO .
  • Yamashita, F., & Hashida, M. (2004). In silico approaches for predicting ADME properties of drugs. Drug Metabolism and Pharmacokinetics, 19(5), 327–338. https://doi.org/10.2133/dmpk.19.327

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.