442
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

Screening of potential antigens from whole proteome and development of multi-epitope vaccine against Rhizopus delemar using immunoinformatics approaches

ORCID Icon, , &
Pages 2118-2145 | Received 11 Jun 2021, Accepted 08 Jan 2022, Published online: 22 Jan 2022

References

  • Ali, M., Pandey, R. K., Khatoon, N., Narula, A., Mishra, A., & Prajapati, V. K. (2017). Exploring dengue genome to construct a multi-epitope based subunit vaccine by utilizing immunoinformatics approach to battle against dengue infection. Scientific Reports, 7(1), 9232. https://doi.org/10.1038/s41598-017-09199-w.
  • Aliramaei, M. R., Khorasgani, M. R., Rahmani, M. R., Zarkesh Esfahani, S. H., & Emamzadeh, R. (2019). Expression of Helicobacter pylori CagL gene in Lactococcus lactis MG1363 and evaluation of its immunogenicity as an oral vaccine in mice. Microbial Pathogenesis, 142, 103926. https://doi.org/10.1016/j.micpath.2019.103926
  • Alvarez-García, E., Alegre-Cebollada, J., Batanero, E., Monedero, V., Pérez-Martínez, G., García-Fernández, R., Gavilanes, J. G., & del Pozo, A. M. (2008). Lactococcus lactis as a vehicle for the heterologous expression of fungal ribotoxin variants with reduced IgE-binding affinity. Journal of Biotechnology, 134(1–2), 1–8. https://doi.org/10.1016/j.jbiotec.2007.12.011
  • Anderson, R. J., Weng, Z., Campbell, R. K., & Jiang, X. (2005). Main-chain conformational tendencies of amino acids. Proteins, 60(4), 679–689. https://doi.org/10.1002/prot.20530
  • Andreatta, M., Alvarez, B., & Nielsen, M. (2017). GibbsCluster: unsupervised clustering and alignment of peptide sequences. Nucleic Acids Research, 45(W1), W458–W463. https://doi.org/10.1093/nar/gkx248
  • Antonio-Herrera, L., Badillo-Godinez, O., Medina-Contreras, O., Tepale-Segura, A., García- Lozano, A., Gutierrez-Xicotencatl, L., Soldevila, G., Esquivel-Guadarrama, F. R., Idoyaga, J., & Bonifaz, L. C. (2018). The nontoxic Cholera B subunit is a potent adjuvant for intradermal DC-targeted vaccination. Frontiers in Immunology, 9, 2212. https://doi.org/10.3389/fimmu.2018.02212PMID: 30319653; PMCID: PMC6171476.
  • Antunes, D. A., Abella, J. R., Devaurs, D., Rigo, M. M., & Kavraki, L. E. (2018). Structure-based methods for binding mode and binding affinity prediction for peptide-MHC complexes. Current Topics in Medicinal Chemistry, 18(26), 2239–2255. https://doi.org/10.2174/1568026619666181224101744
  • Artyomov, M. N., Lis, M., Devadas, S., Davis, M. M., & Chakraborty, A. K. (2010). CD4 and CD8 binding to MHC molecules primarily acts to enhance Lck delivery. Proceedings of the National Academy of Sciences of the United States of America, 107(39), 16916–16921. https://doi.org/10.1073/pnas.1010568107
  • Azim, K. F., Hasan, M., Hossain, M. N., Somana, S. R., Hoque, S. F., Bappy, M., Chowdhury, A. T., & Lasker, T. (2019). Immunoinformatics approaches for designing a novel multi epitope peptide vaccine against human norovirus (Norwalk virus). Infection, Genetics and Evolution: Journal of Molecular Epidemiology and Evolutionary Genetics in Infectious Diseases, 74, 103936. https://doi.org/10.1016/j.meegid.2019.103936
  • Azuar, A., Li, Z., Shibu, M. A., Zhao, L., Luo, Y., Shalash, A. O., Khalil, Z. G., Capon, R. J., Hussein, W. M., Toth, I., & Skwarczynski, M. (2021). Poly(hydrophobic amino acid)-based self-adjuvanting nanoparticles for group A streptococcus vaccine delivery. Journal of Medicinal Chemistry, 64(5), 2648–2658. https://doi.org/10.1021/acs.jmedchem.0c01660
  • Baker, R. D. (1957). Mucormycosis; a new disease? Journal of the American Medical Association, 163(10), 805–808. https://doi.org/10.1001/jama.1957.02970450007003
  • Bastola, R., & Lee, S. (2019). Physicochemical properties of particulate vaccine adjuvants: their pivotal role in modulating immune responses. Journal of Pharmaceutical Investigation, 49(3), 279–285. https://doi.org/10.1007/s40005-018-0406-4
  • Behbahani, M., Moradi, M., & Mohabatkar, H. (2021). In silico design of a multi-epitope peptide construct as a potential vaccine candidate for Influenza A based on neuraminidase protein. In. In Silico Pharmacology, 9(1), 36. https://doi.org/10.1007/s40203-021-00095-w
  • Berg, J. M., Tymoczko, J. L., & Stryer, L. (2002). Biochemistry (5th ed.). W H Freeman. https://www.ncbi.nlm.nih.gov/books/NBK21154/.
  • Brown, G. D. (2011). Innate antifungal immunity: the key role of phagocytes. Annual Review of Immunology, 29, 1–21. https://doi.org/10.1146/annurev-immunol-030409-101229
  • Bruserud, Ø. (2013). Bidirectional crosstalk between platelets and monocytes initiated by Toll-like receptor: an important step in the early defense against fungal infections? Platelets, 24(2), 85–97. https://doi.org/10.3109/09537104.2012.678426
  • Buchan, D., & Jones, D. T. (2019). The PSIPRED protein analysis workbench: 20 years on. Nucleic Acids Research, 47(W1), W402–W407. https://doi.org/10.1093/nar/gkz297
  • Calis, J. J., Maybeno, M., Greenbaum, J. A., Weiskopf, D., De Silva, A. D., Sette, A., Keşmir, C., & Peters, B. (2013). Properties of MHC class I presented peptides that enhance immunogenicity. PLoS Computational Biology, 9(10), e1003266. https://doi.org/10.1371/journal.pcbi.1003266
  • Carmon, L., Avivi, I., Kovjazin, R., Zuckerman, T., Dray, L., Gatt, M. E., Or, R., & Shapira, M. Y. (2015). Phase I/II study exploring ImMucin, a pan-major histocompatibility complex, anti-MUC1 signal peptide vaccine, in multiple myeloma patients. British Journal of Haematology, 169(1), 44–56. https://doi.org/10.1111/bjh.13245
  • Carroll, C. S., Grieve, C. L., Murugathasan, I., Bennet, A. J., Czekster, C. M., Liu, H., Naismith, J., & Moore, M. M. (2017). The rhizoferrin biosynthetic gene in the fungal pathogen Rhizopus delemar is a novel member of the NIS gene family. The International Journal of Biochemistry & Cell Biology, 89, 136–146. https://doi.org/10.1016/j.biocel.2017.06.005
  • Carvalho, A., Cunha, C., Bozza, S., Moretti, S., Massi-Benedetti, C., Bistoni, F., Aversa, F., & Romani, L. (2012). Immunity and tolerance to fungi in hematopoietic transplantation: principles and perspectives. Frontiers in Immunology, 3, 156. https://doi.org/10.3389/fimmu.2012.00156
  • Castillo, P., Wright, K. E., Kontoyiannis, D. P., Walsh, T., Patel, S., Chorvinsky, E., Bose, S., Hazrat, Y., Omer, B., Albert, N., Leen, A. M., Rooney, C. M., Bollard, C. M., & Cruz, C. (2018). A new method for reactivating and expanding T cells specific for Rhizopus oryzae. Molecular Therapy. Methods & Clinical Development, 9, 305–312. https://doi.org/10.1016/j.omtm.2018.03.003
  • Chamilos, G., Lewis, R. E., Lamaris, G., Walsh, T. J., & Kontoyiannis, D. P. (2008). Zygomycetes hyphae trigger an early, robust proinflammatory response in human polymorphonuclear neutrophils through toll-like receptor 2 induction but display relative resistance to oxidative damage. Antimicrobial Agents and Chemotherapy, 52(2), 722–724. https://doi.org/10.1128/AAC.01136-07
  • Chander, J., Kaur, M., Singla, N., Punia, R., Singhal, S. K., Attri, A. K., Alastruey-Izquierdo, A., Stchigel, A. M., Cano-Lira, J. F., & Guarro, J. (2018). Mucormycosis: battle with the deadly enemy over a five-year period in India. Journal of Fungi, 4(2), 46. https://doi.org/10.3390/jof4020046
  • Chen, X., Zaro, J. L., & Shen, W. C. (2013). Fusion protein linkers: property, design and functionality. Advanced Drug Delivery Reviews, 65(10), 1357–1369. https://doi.org/10.1016/j.addr.2012.09.039
  • Craig, D. B., & Dombkowski, A. A. (2013). Disulfide by Design 2.0: a web-based tool for disulfide engineering in proteins. BMC Bioinformatics, 14, 346. https://doi.org/10.1186/1471-2105-14-346
  • DasGupta, D., Kaushik, R., & Jayaram, B. (2015). From Ramachandran maps to tertiary structures of proteins. The Journal of Physical Chemistry. B, 119(34), 11136–11145. https://doi.org/10.1021/acs.jpcb.5b02999
  • De Luca, A., Iannitti, R. G., Bozza, S., Beau, R., Casagrande, A., D'Angelo, C., Moretti, S., Cunha, C., Giovannini, G., Massi-Benedetti, C., Carvalho, A., Boon, L., Latgé, J. P., & Romani, L. (2012). CD4(+) T cell vaccination overcomes defective cross-presentation of fungal antigens in a mouse model of chronic granulomatous disease. The Journal of Clinical Investigation, 122(5), 1816–1831. https://doi.org/10.1172/JCI60862
  • Delgado, N., Xue, J., Yu, J. J., Hung, C. Y., & Cole, G. T. (2003). A recombinant beta-1,3-glucanosyltransferase homolog of Coccidioides posadasii protects mice against coccidioidomycosis. Infection and Immunity, 71(6), 3010–3019. https://doi.org/10.1128/IAI.71.6.3010-3019.2003.
  • Desta, I. T., Porter, K. A., Xia, B., Kozakov, D., & Vajda, S. (2020). Performance and its limits in rigid body protein-protein docking. Structure (London, England: 1993), 28(9), 1071–1081.e3. https://doi.org/10.1016/j.str.2020.06.006
  • Dhanda, S. K., Gupta, S., Vir, P., & Raghava, G. P. (2013a). Prediction of IL4 inducing peptides. Clinical & Developmental Immunology, 2013, 263952. https://doi.org/10.1155/2013/263952
  • Dhanda, S. K., Vir, P., & Raghava, G. P. (2013b). Designing of interferon-gamma inducing MHC class-II binders. Biology Direct, 8, 30. https://doi.org/10.1186/1745-6150-8-30.
  • Dimitrov, I., Naneva, L., Doytchinova, I., & Bangov, I. (2014). AllergenFP: allergenicity prediction by descriptor fingerprints. Bioinformatics (Oxford, England), 30(6), 846–851. https://doi.org/10.1093/bioinformatics/btt619
  • Ding, S., Li, Y., Shi, Z., & Yan, S. (2014). A protein structural classes prediction method based on predicted secondary structure and PSI-BLAST profile. Biochimie, 97, 60–65. https://doi.org/10.1016/j.biochi.2013.09.013
  • Dong, R., Chu, Z., Yu, F., & Zha, Y. (2020). Contriving multi-epitope subunit of vaccine for COVID-19: Immunoinformatics approaches. Frontiers in Immunology, 11, 1784. https://doi.org/10.3389/fimmu.2020.01784
  • Dos Santos, A. R., Fraga-Silva, T. F., Almeida, D. F., Dos Santos, R. F., Finato, A. C., Amorim, B. C., Andrade, M. I., Soares, C. T., Lara, V. S., Almeida, N. L., de Arruda, O. S., de Arruda, M. S., & Venturini, J. (2020). Rhizopus-host interplay of disseminated mucormycosis in immunocompetent mice. Future Microbiology, 15, 739–752. https://doi.org/10.2217/fmb-2019-0246
  • Dos Santos, A. R., Fraga-Silva, T. F., de Fátima Almeida-Donanzam, D., Dos Santos, R. F., Finato, A. C., Soares, C. T., Lara, V. S., Almeida, N., Andrade, M. I., de Arruda, O. S., de Arruda, M., & Venturini, J. (2021). IFN-γ mediated signaling improves fungal clearance in experimental pulmonary mucormycosis. Mycopathologia, 2021, 1–16. https://doi.org/10.1007/s11046-021-00598-2
  • Doytchinova, I. A., & Flower, D. R. (2008). Bioinformatic approach for identifying parasite and fungal candidate subunit vaccines. Open Vaccines Journal, 2008(1), 22–26.
  • Eisenberg, D., Lüthy, R., & Bowie, J. U. (1997). VERIFY3D: assessment of protein models with three-dimensional profiles. Methods in Enzymology, 277, 396–404. https://doi.org/10.1016/s0076-6879(97)77022-8
  • Elhasan, L. M. E., Hassan, M. B., Elhassan, R. M., Abdelrhman, F. A., Salih, E. A., Ibrahim, H. A., Mohamed, A. A., Osman, H. S., Khalil, M., Alsafi, A. A., Idris, A. B., & Hassan, M. A. (2021). Epitope-based peptide vaccine design against fructose bisphosphate aldolase of Candida glabrata: An immunoinformatics approach. Journal of Immunology Research, 2021, 8280925. https://doi.org/10.1155/2021/8280925
  • El-Manzalawy, Y., Dobbs, D., & Honavar, V. (2008a). Predicting linear B-cell epitopes using string kernels. Journal of Molecular Recognition: JMR, 21(4), 243–255. https://doi.org/10.1002/jmr.893.
  • El-Manzalawy, Y., Dobbs, D., & Honavar, V. (2008b). Predicting flexible length linear B-cell epitopes. Computational Systems Bioinformatics. Computational Systems Bioinformatics Conference, 7, 121–132.
  • Figueiredo, R. T., Carneiro, L. A., & Bozza, M. T. (2011). Fungal surface and innate immune recognition of filamentous fungi. Frontiers in Microbiology, 2, 248. https://doi.org/10.3389/fmicb.2011.00248.
  • Fleri, W., Paul, S., Dhanda, S. K., Mahajan, S., Xu, X., Peters, B., & Sette, A. (2017). The immune epitope database and analysis resource in epitope discovery and synthetic vaccine design. Frontiers in immunology, 8, 278. https://doi.org/10.3389/fimmu.2017.00278
  • Flory, P. J. (1956). Theory of elastic mechanisms in fibrous proteins. Journal of the American Chemical Society, 78(20), 5222–5235. https://doi.org/10.1021/ja01601a025
  • Gasteiger, E., Gattiker, A., Hoogland, C., Ivanyi, I., Appel, R. D., & Bairoch, A. (2003). ExPASy: The proteomics server for in-depth protein knowledge and analysis. Nucleic Acids Research, 31(13), 3784–3788. https://doi.org/10.1093/nar/gkg563.
  • Gebremariam, T., Alkhazraji, S., Soliman, S., Gu, Y., Jeon, H. H., Zhang, L., French, S. W., Stevens, D. A., Edwards, J. E., Jr, Filler, S. G., Uppuluri, P., & Ibrahim, A. S. (2019). Anti-CotH3 antibodies protect mice from mucormycosis by prevention of invasion and augmenting opsonophagocytosis. Science advances, 5(6), eaaw1327. https://doi.org/10.1126/sciadv.aaw1327.
  • Ghuman, H., & Voelz, K. (2017). Innate and adaptive immunity to mucorales. Journal of Fungi (Basel, Switzerland), 3(3), 48. https://doi.org/10.3390/jof3030048.
  • Golubovskaya, V., & Wu, L. (2016). Different subsets of T cells, memory, effector functions, and CAR-T immunotherapy. Cancers, 8(3), 36. https://doi.org/10.3390/cancers8030036
  • Griffiths, J. S., Camilli, G., Kotowicz, N. K., Ho, J., Richardson, J. P., & Naglik, J. R. (2021). Role for IL-1 family cytokines in fungal infections. Frontiers in Microbiology, 12, 633047. https://doi.org/10.3389/fmicb.2021.633047
  • Grote, A., Hiller, K., Scheer, M., Münch, R., Nörtemann, B., Hempel, D. C., & Jahn, D. (2005). JCat: a novel tool to adapt codon usage of a target gene to its potential expression host. Nucleic Acids Research, 33(Web Server issue), W526–W531. https://doi.org/10.1093/nar/gki376
  • Gupta, S., Kapoor, P., Chaudhary, K., Gautam, A., Kumar, R., Open Source Drug Discovery Consortium, & Raghava, G. P. (2013). In silico approach for predicting toxicity of peptides and proteins. PloS One, 8(9), e73957. https://doi.org/10.1371/journal.pone.0073957
  • Guruprasad, K., Reddy, B. V., & Pandit, M. W. (1990). Correlation between stability of a protein and its dipeptide composition: a novel approach for predicting in vivo stability of a protein from its primary sequence. Protein Engineering, 4(2), 155–161. https://doi.org/10.1093/protein/4.2.155
  • Guy, A. J., Irani, V., Beeson, J. G., Webb, B., Sali, A., Richards, J. S., & Ramsland, P. A. (2018). Proteome-wide mapping of immune features onto Plasmodium protein three-dimensional structures. Scientific Reports, 8(1), 4355. https://doi.org/10.1038/s41598-018-22592-3
  • Hayes, F., Daly, C., & Fitzgerald, G. F. (1990). Identification of the minimal replicon of Lactococcus lactis subsp. lactis UC317 plasmid pCI305. Applied and Environmental Microbiology, 56(1), 202–209. https://doi.org/10.1128/aem.56.1.202-209.1990
  • He, Y., Xiang, Z., & Mobley, H. L. (2010). Vaxign: the first web-based vaccine design program for reverse vaccinology and applications for vaccine development. Journal of Biomedicine and Biotechnology, 2010, 1–15. https://doi.org/10.1155/2010/297505
  • Hebditch, M., Carballo-Amador, M. A., Charonis, S., Curtis, R., & Warwicker, J. (2017). Protein-Sol: a web tool for predicting protein solubility from sequence. Bioinformatics (Oxford, England), 33(19), 3098–3100. https://doi.org/10.1093/bioinformatics/btx345
  • Hindustan Times. (2021). https://www.hindustantimes.com/india-news/black-fungus-states-with-highest-number-of-mucormycosis-cases-101621559394002.html. Published on May 21, 2021 07:09 AM IST.
  • Hou, J., Liu, Y., Hsi, J., Wang, H., Tao, R., & Shao, Y. (2014). Cholera toxin B subunit acts as a potent systemic adjuvant for HIV-1 DNA vaccination intramuscularly in mice. Human Vaccines & Immunotherapeutics, 10(5), 1274–1283. https://doi.org/10.4161/hv.28371.
  • Ibrahim, A. S., Edwards, J. E., & Filler, S. G. (2003). Zygomycosis. In W. E. Dismukes, P. G. Pappas, & J. D. Sobel (Eds.), Clinical mycology (pp. 241–251). Oxford University Press.
  • Ibrahim, A. S., Edwards, J. E., Jr, Bryant, R., & Spellberg, B. (2009). Economic burden of mucormycosis in the United States: can a vaccine be cost-effective? Medical Mycology, 47(6), 592–600. https://doi.org/10.1080/13693780802326001.
  • Ibrahim, A. S., & Kontoyiannis, D. P. (2013). Update on mucormycosis pathogenesis. Current Opinion in Infectious Diseases, 26(6), 508–515. https://doi.org/10.1097/QCO.0000000000000008.
  • Ibrahim, A. S., Spellberg, B., Walsh, T. J., & Kontoyiannis, D. P. (2012). Clinical infectious diseases: an official publication of the Infectious Diseases Society of America. Pathogenesis of Mucormycosis, 54(Suppl 1), S16–S22. https://doi.org/10.1093/cid/cir865.
  • Iwai, L. K., Yoshida, M., Sidney, J., Shikanai-Yasuda, M. A., Goldberg, A. C., Juliano, M. A., Hammer, J., Juliano, L., Sette, A., Kalil, J., Travassos, L. R., & Cunha-Neto, E. (2003). In silico prediction of peptides binding to multiple HLA-DR molecules accurately identifies immunodominant epitopes from gp43 of Paracoccidioides brasiliensis frequently recognized in primary peripheral blood mononuclear cell responses from sensitized individuals. Molecular Medicine (Cambridge, MA), 9(9–12), 209–219.
  • Jeong, W., Keighley, C., Wolfe, R., Lee, W. L., Slavin, M. A., Kong, D., & Chen, S. C. (2019). The epidemiology and clinical manifestations of mucormycosis: a systematic review and meta-analysis of case reports. Clinical Microbiology and Infection, 25(1), 26–34. https://doi.org/10.1016/j.cmi.2018.07.011
  • Jin, M. S., Kim, S. E., Heo, J. Y., Lee, M. E., Kim, H. M., Paik, S. G., Lee, H., & Lee, J. O. (2007). Crystal structure of the TLR1-TLR2 heterodimer induced by binding of a tri-acylated lipopeptide. Cell, 130(6), 1071–1082. https://doi.org/10.1016/j.cell.2007.09.008
  • John, T. M., Jacob, C. N., & Kontoyiannis, D. P. (2021). When uncontrolled diabetes mellitus and severe COVID-19 converge: The perfect storm for mucormycosis. Journal of Fungi (Basel, Switzerland), 7(4), 298. https://doi.org/10.3390/jof7040298.
  • Johnson, A. K., Ghazarian, Z., Cendrowski, K. D., & Persichino, J. G. (2021). Pulmonary aspergillosis and mucormycosis in a patient with COVID-19. Medical Mycology Case Reports, 32, 64–67. https://doi.org/10.1016/j.mmcr.2021.03.006
  • Kaba, S. A., Karch, C. P., Seth, L., Ferlez, K., Storme, C. K., Pesavento, D. M., Laughlin, P. Y., Bergmann-Leitner, E. S., Burkhard, P., & Lanar, D. E. (2018). Self-assembling protein nanoparticles with built-in flagellin domains increases protective efficacy of a Plasmodium falciparum based vaccine. Vaccine, 36(6), 906–914. https://doi.org/10.1016/j.vaccine.2017.12.001
  • Kar, T., Narsaria, U., Basak, S., Deb, D., Castiglione, F., Mueller, D. M., & Srivastava, A. P. (2020). A candidate multi-epitope vaccine against SARS-CoV-2. Scientific Reports, 10(1), 10895. https://doi.org/10.1038/s41598-020-67749-1
  • Kazi, A., Chuah, C., Majeed, A., Leow, C. H., Lim, B. H., & Leow, C. Y. (2018). Current progress of immunoinformatics approach harnessed for cellular- and antibody-dependent vaccine design. Pathogens and Global Health, 112(3), 123–131. https://doi.org/10.1080/20477724.2018.1446773
  • Kilander, A., Jertborn, M., Nordstro, I., Czerkinsky, C., & Holmgren, J. A. N. (2001). Local and systemic immune responses to rectal administration of recombinant cholera toxin B subunit in humans. Infection and Immunity, 69(6), 4125–4128. https://doi.org/10.1128/IAI.69.6.4125-4128.2001.
  • Kolaskar, A. S., & Tongaonkar, P. C. (1990). A semi-empirical method for prediction of antigenic determinants on protein antigens. FEBS Letters, 276(1–2), 172–174. https://doi.org/10.1016/0014-5793(90)80535-q
  • Kontoyiannis, D. P., & Lewis, R. E. (2015). Agents of mucormycosis and entomophthoramycosis. In Mandell, Douglas, and Bennett’s principles and practice of infectious diseases (vol. e3, pp. 2909–2919). Elsevier Inc.. https://doi.org/10.1016/b978-1-4557-4801-3.00260-5
  • Kovjazin, R., & Carmon, L. (2014). The use of signal peptide domains as vaccine candidates. Human Vaccines & Immunotherapeutics, 10(9), 2733–2740. https://doi.org/10.4161/21645515.2014.970916
  • Koymans, K. J., Feitsma, L. J., Brondijk, T. H., Aerts, P. C., Lukkien, E., Lössl, P., van Kessel, K. P., de Haas, C. J., van Strijp, J. A., & Huizinga, E. G. (2015). Structural basis for inhibition of TLR2 by staphylococcal superantigen-like protein 3 (SSL3). Proceedings of the National Academy of Sciences of the United States of America, 112(35), 11018–11023. https://doi.org/10.1073/pnas.1502026112
  • Kozakov, D., Hall, D. R., Xia, B., Porter, K. A., Padhorny, D., Yueh, C., Beglov, D., & Vajda, S. (2017). The ClusPro web server for protein-protein docking. Nature Protocols, 12(2), 255–278. https://doi.org/10.1038/nprot.2016.169
  • Krogh, A., Larsson, B., von Heijne, G., & Sonnhammer, E. L. (2001). Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. Journal of Molecular Biology, 305(3), 567–580. https://doi.org/10.1006/jmbi.2000.4315.
  • Kulmanov, M., & Hoehndorf, R. (2020). DeepGOPlus: improved protein function prediction from sequence. Bioinformatics (Oxford, England), 36(2), 422–429. https://doi.org/10.1093/bioinformatics/btz595.
  • Langley, J. M., MacDonald, L. D., Weir, G. M., MacKinnon-Cameron, D., Ye, L., McNeil, S., Schepens, B., Saelens, X., Stanford, M. M., & Halperin, S. A. (2018). A respiratory syncytial virus vaccine based on the small hydrophobic protein ectodomain presented with a novel lipid-based formulation is highly immunogenic and safe in adults: a first-in-humans study. The Journal of Infectious Diseases, 218(3), 378–387. https://doi.org/10.1093/infdis/jiy177
  • Lei, H., Peng, X., Jiao, H., Zhao, D., & Ouyang, J. (2015). Broadly protective immunity against divergent influenza viruses by oral co-administration of Lactococcus lactis expressing nucleoprotein adjuvanted with cholera toxin B subunit in mice. Microbial Cell Factories, 14, 111. https://doi.org/10.1186/s12934-015-0287-4
  • Li, L., Gao, M., Li, J., Zu, S., Wang, Y., Chen, C., Wan, D., Duan, J., Aliyari, R., Wang, J., Zhang, J., Jin, Y., Huang, W., Jin, X., Shi, M., Wang, Y., Qin, C. F., Yang, H., & Cheng, G. (2021). Methods to identify immunogenic peptides in SARS-CoV-2 spike and protective monoclonal antibodies in COVID-19 patients. Small Methods, 5(7), 2100058. https://doi.org/10.1002/smtd.202100058
  • Liu, M., Spellberg, B., Phan, Q. T., Fu, Y., Fu, Y., Lee, A. S., Edwards, J. E., Filler, S. G., & Ibrahim, A. S. (2010). The endothelial cell receptor GRP78 is required for mucormycosis pathogenesis in diabetic mice. The Journal of Clinical Investigation, 120(6), 1914–1924. https://doi.org/10.1172/JCI42164
  • Livingston, B., Crimi, C., Newman, M., Higashimoto, Y., Appella, E., Sidney, J., & Sette, A. (2002). A rational strategy to design multiepitope immunogens based on multiple Th lymphocyte epitopes. Journal of Immunology (Baltimore, MD: 1950), 168(11), 5499–5506. https://doi.org/10.4049/jimmunol.168.11.5499
  • Li, X., Xing, Y., Guo, L., Lv, X., Song, H., & Xi, T. (2014). Oral immunization with recombinant Lactococcus lactis delivering a multi-epitope antigen CTB-UE attenuates Helicobacter pylori infection in mice. Pathogens and Disease, 72(1), 78–86. https://doi.org/10.1111/2049-632X.12173
  • López-Blanco, J. R., Aliaga, J. I., Quintana-Ortí, E. S., & Chacón, P. (2014). iMODS: internal coordinates normal mode analysis server. Nucleic Acids Research, 42(Web Server issue), W271–W276. https://doi.org/10.1093/nar/gku339
  • Lovell, S. C., Davis, I. W., Arendall, W. B., de Bakker, P. I. W., Word, J. M., Prisant, M. G., Richardson, J. S., & Richardson, D. C. (2003). Structure validation by Calpha geometry: phi,psi and Cbeta deviation. Proteins: Structure, Function, and Bioinformatics, 50(3), 437–450. https://doi.org/10.1002/prot.10286
  • Magnan, C. N., Zeller, M., Kayala, M. A., Vigil, A., Randall, A., Felgner, P. L., & Baldi, P. (2010). High-throughput prediction of protein antigenicity using protein microarray data. Bioinformatics, 26(23), 2936–2943. https://doi.org/10.1093/bioinformatics/btq551
  • Ma, L.-J., Ibrahim, A. S., Skory, C., Grabherr, M. G., Burger, G., Butler, M., Elias, M., Idnurm, A., Lang, B. F., Sone, T., Abe, A., Calvo, S. E., Corrochano, L. M., Engels, R., Fu, J., Hansberg, W., Kim, J.-M., Kodira, C. D., Koehrsen, M. J., … Wickes, B. L. (2009). Genomic analysis of the basal lineage fungus Rhizopus oryzae reveals a whole-genome duplication. PLoS Genetics, 5(7), e1000549. https://doi.org/10.1371/journal.pgen.1000549
  • Maini, A., Tomar, G., Khanna, D., Kini, Y., Mehta, H., & Bhagyasree, V. (2021). Sino- orbital mucormycosis in a COVID-19 patient: A case report. International Journal of Surgery Case Reports, 82, 105957. Advance online publication. https://doi.org/10.1016/j.ijscr.2021.105957
  • Mancha-Agresti, P., de Castro, C. P., Dos Santos, J., Araujo, M. A., Pereira, V. B., LeBlanc, J. G., Leclercq, S. Y., & Azevedo, V. (2017). Recombinant invasive lactococcus lactis carrying a DNA vaccine coding the Ag85A antigen increases INF-γ, IL-6, and TNF-α cytokines after intranasal immunization. Frontiers in Microbiology, 8, 1263. https://doi.org/10.3389/fmicb.2017.01263
  • Marr, K. A., Carter, R. A., Crippa, F., Wald, A., & Corey, L. (2002). Epidemiology and outcome of mould infections in hematopoietic stem cell transplant recipients. Clinical Infectious Diseases: An Official Publication of the Infectious Diseases Society of America, 34(7), 909–917. https://doi.org/10.1086/339202
  • Matsuzaki, G., & Umemura, M. (2018). Interleukin-17 family cytokines in protective immunity against infections: role of hematopoietic cell-derived and non-hematopoietic cell-derived interleukin-17s. Microbiology and Immunology, 62(1), 1–13. https://doi.org/10.1111/1348-0421.12560
  • McLellan, C. A., Whitesell, L., King, O. D., Lancaster, A. K., Mazitschek, R., & Lindquist, S. (2012). Inhibiting GPI anchor biosynthesis in fungi stresses the endoplasmic reticulum and enhances immunogenicity. ACS Chemical Biology, 7(9), 1520–1528. https://doi.org/10.1021/cb300235m
  • Mehta, S., & Pandey, A. (2020). Rhino-orbital mucormycosis associated with COVID-19. Cureus, 12(9), e10726. https://doi.org/10.7759/cureus.10726
  • Meza, B., Ascencio, F., Sierra-Beltrán, A. P., Torres, J., & Angulo, C. (2017). A novel design of a multi-antigenic, multistage and multi-epitope vaccine against Helicobacter pylori: An in silico approach. Infection, Genetics and Evolution: Journal of Molecular Epidemiology and Evolutionary Genetics in Infectious Diseases, 49, 309–317. https://doi.org/10.1016/j.meegid.2017.02.007
  • Mizui, M. (2019). Natural and modified IL-2 for the treatment of cancer and autoimmune diseases. Clinical Immunology (Orlando, FL), 206, 63–70. https://doi.org/10.1016/j.clim.2018.11.002
  • Moming, A., Tuoken, D., Yue, X., Xu, W., Guo, R., Liu, D., Li, Y., Hu, Z., Deng, F., Zhang, Y., & Sun, S. (2018). Mapping of B-cell epitopes on the N- terminal and C-terminal segment of nucleocapsid protein from Crimean-Congo hemorrhagic fever virus. PloS One, 13(9), e0204264. https://doi.org/10.1371/journal.pone.0204264
  • Montaño, D. E., & Voigt, K. (2020). Host immune defense upon fungal infections with mucorales: pathogen-immune cell interactions as drivers of inflammatory responses. Journal of Fungi (Basel, Switzerland), 6(3), 173. https://doi.org/10.3390/jof6030173.
  • Mugunthan, S. P., & Harish, M. C. (2021). Multi-epitope-based vaccine designed by targeting cytoadherence proteins of Mycoplasma gallisepticum. ACS Omega, 6(21), 13742–13755. https://doi.org/10.1021/acsomega.1c01032
  • Mukaka, M. M. (2012). Statistics corner: A guide to appropriate use of correlation coefficient in medical research. Malawi Medical Journal: The Journal of Medical Association of Malawi, 24(3), 69–71.
  • Murugan, R., Scally, S. W., Costa, G., Mustafa, G., Thai, E., Decker, T., Bosch, A., Prieto, K., Levashina, E. A., Julien, J.-P., & Wardemann, H. (2020). Evolution of protective human antibodies against Plasmodium falciparum circumsporozoite protein repeat motifs. Nature Medicine, 26(7), 1135–1145. https://doi.org/10.1038/s41591-020-0881-9
  • Nagpal, G., Usmani, S. S., Dhanda, S. K., Kaur, H., Singh, S., Sharma, M., & Raghava, G. P. (2017). Computer-aided designing of immunosuppressive peptides based on IL-10 inducing potential. Scientific Reports, 7, 42851. https://doi.org/10.1038/srep42851
  • Nagy, G., Kiss, S., Varghese, R., Bauer, K., Szebenyi, C., Kocsubé, S., Homa, M., Bodai, L., Zsindely, N., Nagy, G., Vágvölgyi, C., & Papp, T. (2021). Characterization of three pleiotropic drug resistance transporter genes and their participation in the azole resistance of mucor circinelloides. Frontiers in Cellular and Infection Microbiology, 11, 660347. https://doi.org/10.3389/fcimb.2021.660347
  • Nanjappa, S. G., & Klein, B. S. (2014). Vaccine immunity against fungal infections. Current Opinion in Immunology, 28, 27–33. https://doi.org/10.1016/j.coi.2014.01.014
  • NCBI Resource Coordinators. (2018). Database resources of the National Center for Biotechnology Information. Nucleic Acids Research, 46(D1), D8–D13. https://doi.org/10.1093/nar/gkx1095.
  • Nezafat, N., Karimi, Z., Eslami, M., Mohkam, M., Zandian, S., & Ghasemi, Y. (2016). Designing an efficient multi-epitope peptide vaccine against Vibrio cholerae via combined immunoinformatics and protein interaction based approaches. Computational Biology and Chemistry, 62, 82–95. https://doi.org/10.1016/j.compbiolchem.2016.04.006
  • Nielsen, M., & Andreatta, M. (2016). NetMHCpan-3.0; improved prediction of binding to MHC class I molecules integrating information from multiple receptor and peptide length datasets. Genome Medicine, 8(1), 33. https://doi.org/10.1186/s13073-016-0288-x
  • Nielsen, M., & Andreatta, M. (2017). NNAlign: a platform to construct and evaluate artificial neural network models of receptor-ligand interactions. Nucleic Acids Research, 45(W1), W344–W349. https://doi.org/10.1093/nar/gkx276
  • Oliveira-Nascimento, L., Massari, P., & Wetzler, L. M. (2012). The role of TLR2 in infection and immunity. Frontiers in Immunology, 3, 79. https://doi.org/10.3389/fimmu.2012.00079
  • Ozkose, E., Akyol, I., Kar, B., Comlekcioglu, U., & Ekinci, M. S. (2009). Expression of fungal cellulase gene in Lactococcus lactis to construct novel recombinant silage inoculants. Folia Microbiol (Praha), 54(4), 335–342. https://doi.org/10.1007/s12223-009-0043-4
  • Paduraru, M., Moreno-Sanz, C., & Olalla Gallardo, J. M. (2016). Primary cutaneous mucormycosis in an immunocompetent patient. BMJ Case Reports, 2016, bcr2016214982. https://doi.org/10.1136/bcr-2016-214982.
  • Page, L., Weis, P., Müller, T., Dittrich, M., Lazariotou, M., Dragan, M., Waaga-Gasser, A. M., Helm, J., Dandekar, T., Einsele, H., Löffler, J., Ullmann, A. J., & Wurster, S. (2018). Evaluation of Aspergillus and Mucorales specific T-cells and peripheral blood mononuclear cell cytokine signatures as biomarkers of environmental mold exposure. International Journal of Medical Microbiology: IJMM, 308(8), 1018–1026. https://doi.org/10.1016/j.ijmm.2018.09.002
  • Park, H. R., & Voigt, K. (2014). Interaction of Zygomycetes with innate immune cells reconsidered with respect to ecology, morphology, evolution and infection biology: a mini-review. Mycoses, 57 Suppl 3, 31–39. https://doi.org/10.1111/myc.12235
  • Pearson, W. R. (2013). An introduction to sequence similarity ("homology") searching. Current Protocols in Bioinformatics, Chapter 3, Unit3.1. Chapter 3, Unit3.1. https://doi.org/10.1002/0471250953.bi0301s42
  • Petersen, T. N., Brunak, S., von Heijne, G., & Nielsen, H. (2011). SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods, 8(10), 785–786. https://doi.org/10.1038/nmeth.1701
  • Pierleoni, A., Martelli, P. L., & Casadio, R. (2008). PredGPI: a GPI-anchor predictor. BMC Bioinformatics, 9, 392. https://doi.org/10.1186/1471-2105-9-392
  • Pinto, D., Sauer, M. M., Czudnochowski, N., Low, J. S., Tortorici, M. A., Housley, M. P., Noack, J., Walls, A. C., Bowen, J. E., Guarino, B., Rosen, L. E., di Iulio, J., Jerak, J., Kaiser, H., Islam, S., Jaconi, S., Sprugasci, N., Culap, K., Abdelnabi, R., … Veesler, D. (2021). Broad betacoronavirus neutralization by a stem helix-specific human antibody. Science (New York, NY), 373(6559), 1109–1116. https://doi.org/10.1126/science.abj3321
  • Ponomarenko, J., Bui, H. H., Li, W., Fusseder, N., Bourne, P. E., Sette, A., & Peters, B. (2008). ElliPro: a new structure-based tool for the prediction of antibody epitopes. BMC Bioinformatics, 9, 514. https://doi.org/10.1186/1471-2105-9-514
  • Potenza, L., Vallerini, D., Barozzi, P., Riva, G., Forghieri, F., Zanetti, E., Quadrelli, C., Candoni, A., Maertens, J., Rossi, G., Morselli, M., Codeluppi, M., Paolini, A., Maccaferri, M., Del Giovane, C., D'Amico, R., Rumpianesi, F., Pecorari, M., Cavalleri, F., … Luppi, M. (2011). Mucorales-specific T cells emerge in the course of invasive mucormycosis and may be used as a surrogate diagnostic marker in high-risk patients. Blood, 118(20), 5416–5419. https://doi.org/10.1182/blood-2011-07-366526
  • Prakash, H., & Chakrabarti, A. (2019). Global Epidemiology of Mucormycosis. Journal of Fungi, 5(1), 26. https://doi.org/10.3390/jof5010026
  • Pritam, M., Singh, G., Swaroop, S., Singh, A. K., Pandey, B., & Singh, S. P. (2020). A cutting-edge immunoinformatics approach for design of multi-epitope oral vaccine against dreadful human malaria. International Journal of Biological Macromolecules, 158, 159–179. https://doi.org/10.1016/j.ijbiomac.2020.04.191
  • Pritam, M., Singh, G., Swaroop, S., Singh, A. K., & Singh, S. P. (2019). Exploitation of reverse vaccinology and immunoinformatics as promising platform for genome-wide screening of new effective vaccine candidates against Plasmodium falciparum. BMC Bioinformatics, 19(S13), 468. https://doi.org/10.1186/s12859-018-2482-x
  • Pyasi, S., Sharma, V., Dipti, K., Jonniya, N. A., & Nayak, D. (2021). Immunoinformatics approach to design multi-epitope- subunit vaccine against bovine ephemeral fever disease. Vaccines, 9(8), 925. https://doi.org/10.3390/vaccines9080925
  • Rahmani, A., Baee, M., Rostamtabar, M., Karkhah, A., Alizadeh, S., Tourani, M., & Nouri, H. R. (2019). Development of a conserved chimeric vaccine based on helper T-cell and CTL epitopes for induction of strong immune response against Schistosoma mansoni using immunoinformatics approaches. International Journal of Biological Macromolecules, 141, 125–136. https://doi.org/10.1016/j.ijbiomac.2019.08.259
  • Raijmakers, R., Sprenkeler, E., Aleva, F. E., Jacobs, C., Kanneganti, T. D., Joosten, L., van de Veerdonk, F. L., & Gresnigt, M. S. (2017). Toll-like receptor 2 induced cytotoxic T-lymphocyte-associated protein 4 regulates Aspergillus-induced regulatory T-cells with pro-inflammatory characteristics. Scientific Reports, 7(1), 11500. https://doi.org/10.1038/s41598-017-11738-4
  • Rapin, N., Lund, O., Bernaschi, M., & Castiglione, F. (2010). Computational immunology meets bioinformatics: the use of prediction tools for molecular binding in the simulation of the immune system. PloS One, 5(4), e9862. https://doi.org/10.1371/journal.pone.0009862
  • Ras-Carmona, A., Pelaez-Prestel, H. F., Lafuente, E. M., & Reche, P. A. (2021). BCEPS: A web server to predict linear B cell epitopes with enhanced immunogenicity and cross-reactivity. Cells, 10(10), 2744. https://doi.org/10.3390/cells10102744
  • Revannavar, S. M., P S, S., Samaga, L., & V K, V. (2021). COVID-19 triggering mucormycosis in a susceptible patient: a new phenomenon in the developing world? BMJ Case Reports, 14(4), e241663. https://doi.org/10.1136/bcr-2021-241663
  • Roilides, E., Kontoyiannis, D. P., & Walsh, T. J. (2012). Host defenses against zygomycetes. Clinical Infectious Diseases: An Official Publication of the Infectious Diseases Society of America, 54 Suppl 1, S61–S66. https://doi.org/10.1093/cid/cir869
  • Romani, L. (2011). Immunity to fungal infections. Nature Reviews. Immunology, 11(4), 275–288. https://doi.org/10.1038/nri2939
  • Rost, B. (2001). Review: protein secondary structure prediction continues to rise. Journal of Structural Biology, 134(2–3), 204–218. https://doi.org/10.1006/jsbi.2001.4336
  • Rostaminia, S., Aghaei, S. S., Farahmand, B., Nazari, R., & Ghaemi, A. (2021). Computational design and analysis of a multi-epitope against influenza A virus. International Journal of Peptide Research and Therapeutics, 27(4), 2614–2625. Advance online publication. https://doi.org/10.1007/s10989-021-10278-w
  • Samazan, F., Rokbi, B., Seguin, D., Telles, F., Gautier, V., Richarme, G., Chevret, D., Varela, P. F., Velours, C., & Poquet, I. (2015). Production, secretion and purification of a correctly folded staphylococcal antigen in Lactococcus lactis. Microbial Cell Factories, 14, 104. https://doi.org/10.1186/s12934-015-0271-z
  • Sarkar, B., Ullah, M. A., Araf, Y., & Rahman, M. S. (2020). Engineering a novel subunit vaccine against SARS-CoV-2 by exploring immunoinformatics approach. Informatics in Medicine Unlocked, 21, 100478. https://doi.org/10.1016/j.imu.2020.100478
  • Sassone-Corsi, M., Chairatana, P., Zheng, T., Perez-Lopez, A., Edwards, R. A., George, M. D., Nolan, E. M., & Raffatellu, M. (2016). Siderophore-based immunization strategy to inhibit growth of enteric pathogens. Proceedings of the National Academy of Sciences of the United States of America, 113(47), 13462–13467. https://doi.org/10.1073/pnas.1606290113
  • Sato, K., Oinuma, K. I., Niki, M., Yamagoe, S., Miyazaki, Y., Asai, K., Yamada, K., Hirata, K., Kaneko, Y., & Kakeya, H. (2017). Identification of a novel rhizopus-specific antigen by screening with a signal sequence trap and evaluation as a possible diagnostic marker of mucormycosis. Medical Mycology, 55(7), 713–719. https://doi.org/10.1093/mmy/myw146
  • Sayed, S. B., Nain, Z., Khan, M., Abdulla, F., Tasmin, R., & Adhikari, U. K. (2020). Exploring lassa virus proteome to design a multi-epitope vaccine through immunoinformatics and immune simulation analyses. International Journal of Peptide Research and Therapeutics, 2020, 1–19. Advance online publication. https://doi.org/10.1007/s10989-019-10003-8.
  • Schepens, B., Schotsaert, M., & Saelens, X. (2015). Small hydrophobic protein of respiratory syncytial virus as a novel vaccine antigen. Immunotherapy, 7(3), 203–206. https://doi.org/10.2217/imt.15.11
  • Sephton-Clark, P., Muñoz, J. F., Ballou, E. R., Cuomo, C. A., & Voelz, K. (2018). Pathways of pathogenicity: Transcriptional stages of germination in the fatal fungal pathogen Rhizopus delemar. mSphere, 3(5), e00403–18. https://doi.org/10.1128/mSphere.00403-18.
  • Shao, X., Rivera, J., Niang, R., Casadevall, A., & Goldman, D. L. (2005). A dual role for TGF-beta1 in the control and persistence of fungal pneumonia. Journal of Immunology (Baltimore, MD: 1950), 175(10), 6757–6763. https://doi.org/10.4049/jimmunol.175.10.6757
  • Singh, G., Pritam, M., Banerjee, M., Singh, A. K., & Singh, S. P. (2020). Designing of precise vaccine construct against visceral leishmaniasis through predicted epitope ensemble: A contemporary approach. Computational Biology and Chemistry, 86, 107259. https://doi.org/10.1016/j.compbiolchem.2020.107259
  • Sipsas, N. V., Gamaletsou, M. N., Anastasopoulou, A., & Kontoyiannis, D. P. (2018). Therapy of mucormycosis. Journal of Fungi (Basel, Switzerland), 4(3), 90. https://doi.org/10.3390/jof4030090.
  • Sircar, G., Chakrabarti, H. S., Saha, B., & Gupta-Bhattacharya, S. (2012). Identification of aero-allergens from Rhizopus oryzae: an immunoproteomic approach. Journal of Proteomics, 77, 455–468. https://doi.org/10.1016/j.jprot.2012.09.023
  • Skountzou, I., Quan, F. S., Gangadhara, S., Ye, L., Vzorov, A., Selvaraj, P., Jacob, J., Compans, R. W., & Kang, S. M. (2007). Incorporation of glycosylphosphatidylinositol-anchored granulocyte- macrophage colony-stimulating factor or CD40 ligand enhances immunogenicity of chimeric simian immunodeficiency virus-like particles. Journal of Virology, 81(3), 1083–1094. https://doi.org/10.1128/JVI.01692-06
  • Solanki, V., Tiwari, M., & Tiwari, V. (2019). Prioritization of potential vaccine targets using comparative proteomics and designing of the chimeric multi-epitope vaccine against Pseudomonas aeruginosa. Scientific Reports, 9(1), 5240. https://doi.org/10.1038/s41598-019-41496-4
  • Spellberg, B. (2007). Prospects for and barriers to a fungal vaccine. Expert Opinion on Biological Therapy, 7(12), 1785–1788. https://doi.org/10.1517/14712598.7.12.1785
  • Spellberg, B., Edwards, J. Jr, & Ibrahim, A. (2005). Novel perspectives on mucormycosis: pathophysiology, presentation, and management. Clinical Microbiology Reviews, 18(3), 556–569. https://doi.org/10.1128/CMR.18.3.556-569.2005
  • Stajich, J. E., Harris, T., Brunk, B. P., Brestelli, J., Fischer, S., Harb, O. S., Kissinger, J. C., Li, W., Nayak, V., Pinney, D. F., Stoeckert, C. J., Jr,., & Roos, D. S. (2012). FungiDB: an integrated functional genomics database for fungi. Nucleic Acids Research, 40(Database issue), D675–D681. https://doi.org/10.1093/nar/gkr918
  • Stedman, A., Chambers, M. A., & Gutierrez-Merino, J. (2019). Secretion and functional expression of Mycobacterium bovis antigens MPB70 and MPB83 in lactic acid bacteria. Tuberculosis (Edinburgh, Scotland), 117, 24–30. https://doi.org/10.1016/j.tube.2019.05.007
  • Stratmann, T. (2015). Cholera toxin subunit B as adjuvant--An accelerator in protective immunity and a break in autoimmunity. Vaccines, 3(3), 579–596. https://doi.org/10.3390/vaccines3030579
  • Sugar, A. M. (2005). Agents of mucormycosis and related species. In G. L. Mandell, J. E. Bennett, & R. Dolin (Eds.), Principles and practice of infectious diseases (6th ed., 2979). Elsevier.
  • Szczepankowska, A. K., Szatraj, K., Sałański, P., Rózga, A., Górecki, R. K., & Bardowski, J. K. (2017). Recombinant lactococcus lactis expressing haemagglutinin from a Polish Avian H5N1 isolate and its immunological effect in preliminary animal trials. BioMed Research International, 2017, 6747482. https://doi.org/10.1155/2017/6747482
  • Tajiri, K., Ozawa, T., Jin, A., Tokimitsu, Y., Minemura, M., Kishi, H., Sugiyama, T., & Muraguchi, A. (2010). Analysis of the epitope and neutralizing capacity of human monoclonal antibodies induced by hepatitis B vaccine. Antiviral Research, 87(1), 40–49. https://doi.org/10.1016/j.antiviral.2010.04.006
  • Tarang, S., Kesherwani, V., LaTendresse, B., Lindgren, L., Rocha-Sanchez, S. M., & Weston, M. D. (2020). In silico design of a multivalent vaccine against Candida albicans. Scientific Reports, 10(1), 1066. https://doi.org/10.1038/s41598-020-57906-x
  • Tenzer, S., Peters, B., Bulik, S., Schoor, O., Lemmel, C., Schatz, M. M., Kloetzel, P. M., Rammensee, H. G., Schild, H., & Holzhütter, H. G. (2005). Modeling the MHC class I pathway by combining predictions of proteasomal cleavage, TAP transport and MHC class I binding. Cellular and Molecular Life Sciences: CMLS, 62(9), 1025–1037. https://doi.org/10.1007/s00018-005-4528-2
  • Thakur, R., & Shankar, J. (2016). In silico identification of potential peptides or allergen shot candidates against Aspergillus fumigatus. BioResearch Open Access, 5(1), 330–341. https://doi.org/10.1089/biores.2016.0035
  • Torrey, H. L., Kaliaperumal, V., Bramhecha, Y., Weir, G. M., Falsey, A. R., Walsh, E. E., Langley, J. M., Schepens, B., Saelens, X., & Stanford, M. M. (2020). Evaluation of the protective potential of antibody and T cell responses elicited by a novel preventative vaccine towards respiratory syncytial virus small hydrophobic protein. Human Vaccines & Immunotherapeutics, 16(9), 2007–2017. https://doi.org/10.1080/21645515.2020.1756671
  • Urrutia-Baca, V. H., Gomez-Flores, R., De La Garza-Ramos, M. A., Tamez- Guerra, P., Lucio-Sauceda, D. G., & Rodríguez-Padilla, M. C. (2019). Immunoinformatics approach to design a novel epitope-based oral vaccine against Helicobacter pylori. Journal of Computational Biology: Biology, 26(10), 1177–1190. https://doi.org/10.1089/cmb.2019.0062
  • van Zundert, G., Rodrigues, J., Trellet, M., Schmitz, C., Kastritis, P. L., Karaca, E., Melquiond, A., van Dijk, M., de Vries, S. J., & Bonvin, A. (2016). The HADDOCK2.2 Web Server: User-friendly integrative modeling of biomolecular complexes. Journal of Molecular Biology, 428(4), 720–725. https://doi.org/10.1016/j.jmb.2015.09.014
  • Veerasamy, R., Rajak, H., Jain, A., Sivadasan, S., Varghese, C. P., & Agrawal, R. K. (2011). Validation of QSAR models - strategies and importance. International Journal of Drug Design and Discovery, 2(3), 511–519.
  • Vega, A., Ventura, I., Chamorro, C., Aroca, R., Orovigt, A., Gómez, E., Puente, Y., Martínez, A., Asturias, J. A., & Monteseirín, J. (2011). Neutrophil defensins: their possible role in allergic asthma. Journal of Investigational Allergology & Clinical Immunology, 21(1), 38–43.
  • Veisi, A., Bagheri, A., Eshaghi, M., Rikhtehgar, M. H., Rezaei Kanavi, M., & Farjad, R. (2021). Rhino-orbital mucormycosis during steroid therapy in COVID-19 patients: A case report. European Journal of Ophthalmology. 2021, 1-6, https://doi.org/10.1177/11206721211009450.
  • Vigneron, N., Ferrari, V., Stroobant, V., Abi Habib, J., & Van den Eynde, B. J. (2017). Peptide splicing by the proteasome. The Journal of Biological Chemistry, 292(51), 21170–21179. https://doi.org/10.1074/jbc.R117.807560
  • Waizel-Haiat, S., Guerrero-Paz, J. A., Sanchez-Hurtado, L., Calleja-Alarcon, S., & Romero-Gutierrez, L. (2021). A case of fatal rhino-orbital mucormycosis associated with new onset diabetic ketoacidosis and COVID-19. Cureus, 13(2), e13163. https://doi.org/10.7759/cureus.13163
  • Wang, S., Li, W., Liu, S., & Xu, J. (2016). RaptorX-Property: a web server for protein structure property prediction. Nucleic Acids Research, 44(W1), W430–W435. https://doi.org/10.1093/nar/gkw306
  • Wang, P., Sidney, J., Dow, C., Mothé, B., Sette, A., & Peters, B. (2008). A systematic assessment of MHC class II peptide binding predictions and evaluation of a consensus approach. PLoS Computational Biology, 4(4), e1000048. https://doi.org/10.1371/journal.pcbi.1000048.
  • Wang, P., Sidney, J., Kim, Y., Sette, A., Lund, O., Nielsen, M., & Peters, B. (2010). Peptide binding predictions for HLA DR, DP and DQ molecules. BMC Bioinformatics, 11, 568. https://doi.org/10.1186/1471-2105-11-568
  • Weng, G., Wang, E., Wang, Z., Liu, H., Zhu, F., Li, D., & Hou, T. (2019). HawkDock: a web server to predict and analyze the protein-protein complex based on computational docking and MM/GBSA. Nucleic Acids Research, 47(W1), W322–W330. https://doi.org/10.1093/nar/gkz397
  • West, A. P., Koblansky, A. A., & Ghosh, S. (2006). Recognition and signaling by toll-like receptors. Annual Review of Cell and Developmental Biology, 22, 409–437. https://doi.org/10.1146/annurev.cellbio.21.122303.115827
  • WHO Emergency Report. (2021). Retrieved August 30, from https://www.who.int/india/emergencies/coronavirus-disease-(covid-19)/mucormycosis
  • Wilson, W., Ali-Osman, F., Sucher, J., Shirah, G., & Mangram, A. (2019). Invasive fungal wound infection in an otherwise healthy trauma patient (Mucor Trauma). Trauma Case Reports, 24, 100251. https://doi.org/10.1016/j.tcr.2019.100251
  • Wu, Y., Xu, H., Li, Y., Huang, D., Chen, L., Hu, Y., Li, L., Zhang, D., & Huang, W. (2019). miRNA-344b-1-3p modulates the autophagy of NR8383 cells during Aspergillus fumigatus infection via TLR2. Experimental and Therapeutic Medicine, 18(1), 139–146. https://doi.org/10.3892/etm.2019.7569
  • Wüthrich, K., Wagner, G., Richarz, R., & Braun, W. (1980). Correlations between internal mobility and stability of globular proteins. Biophysical Journal, 32(1), 549–560. https://doi.org/10.1016/S0006-3495(80)84989-7
  • Xiang, Z., & He, Y. (2009). Vaxign: a web-based vaccine target design program for reverse vaccinology. Procedia in Vaccinology, 1(1), 23–29. https://doi.org/10.1016/j.provac.2009.07.005
  • Xin, H., Cartmell, J., Bailey, J. J., Dziadek, S., Bundle, D. R., & Cutler, J. E. (2012). Self-adjuvanting glycopeptide conjugate vaccine against disseminated candidiasis. PloS One, 7(4), e35106. https://doi.org/10.1371/journal.pone.0035106
  • Xu, D., & Zhang, Y. (2011). Improving the physical realism and structural accuracy of protein models by a two-step atomic-level energy minimization. Biophysical Journal, 101(10), 2525–2534. https://doi.org/10.1016/j.bpj.2011.10.024
  • Yang, Y., Sun, W., Guo, J., Zhao, G., Sun, S., Yu, H., Guo, Y., Li, J., Jin, X., Du, L., Jiang, S., Kou, Z., & Zhou, Y. (2015). In silico design of a DNA-based HIV-1 multi-epitope vaccine for Chinese populations. Human Vaccines & Immunotherapeutics, 11(3), 795–805. https://doi.org/10.1080/21645515.2015.1012017
  • Yano, A., Onozuka, A., Asahi-Ozaki, Y., Imai, S., Hanada, N., Miwa, Y., & Nisizawa, T. (2005). An ingenious design for peptide vaccines. Vaccine, 23(17-18), 2322–2326. https://doi.org/10.1016/j.vaccine.2005.01.031
  • Yazdani, Z., Rafiei, A., Irannejad, H., Yazdani, M., & Valadan, R. (2020). Designing a novel multiepitope peptide vaccine against melanoma using immunoinformatics approach. Journal of Biomolecular Structure and Dynamics, 2020, 1–13. Advance online publication. https://doi.org/10.1080/07391102.2020.1846625
  • Zeb, A., Ali, S. S., Azad, A. K., Safdar, M., Anwar, Z., Suleman, M., Nizam- Uddin, N., Khan, A., & Wei, D. Q. (2021). Genome-wide screening of vaccine targets prioritization and reverse vaccinology aided design of peptides vaccine to enforce humoral immune response against Campylobacter jejuni. Computers in Biology and Medicine, 133, 104412. Advance online publication. https://doi.org/10.1016/j.compbiomed.2021.104412
  • Zhang, X., Hu, S., Du, X., Li, T., Han, L., & Kong, J. (2016). Heterologous expression of carcinoembryonic antigen in Lactococcus lactis via LcsB-mediated surface displaying system for oral vaccine development. Journal of Microbiology, Immunology, and Infection = Wei mian yu gan ran za zhi, 49(6), 851–858. https://doi.org/10.1016/j.jmii.2014.11.009
  • Zhong, Z., Liu, L. J., Dong, Z. Q., Lu, L., Wang, M., Leung, C. H., Ma, D. L., & Wang, Y. (2015). Structure-based discovery of an immunomodulatory inhibitor of TLR1-TLR2 heterodimerization from a natural product-like database. Chemical Communications, 51(56), 11178–11181. https://doi.org/10.1039/C5CC02728D
  • Zuker, M. (2003). Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Research, 31(13), 3406–3415. https://doi.org/10.1093/nar/gkg595

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.