335
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

An in-silico analysis to identify structural, functional and regulatory role of SNPs in hMRE11

ORCID Icon & ORCID Icon
Pages 2160-2174 | Received 10 Nov 2021, Accepted 08 Jan 2022, Published online: 20 Jan 2022

References

  • Adzhubei, I. A., Schmidt, S., Peshkin, L., Ramensky, V. E., Gerasimova, A., Bork, P., Kondrashov, A. S., & Sunyaev, S. R. (2010). A method and server for predicting damaging missense mutations. Nature Methods, 7(4), 248–249. https://doi.org/10.1038/nmeth0410-248
  • Ashkenazy, H., Abadi, S., Martz, E., Chay, O., Mayrose, I., Pupko, T., & Ben-Tal, N. (2016). ConSurf 2016: An improved methodology to estimate and visualize evolutionary conservation in macromolecules. Nucleic Acids Research, 44(W1), W344–350. https://doi.org/10.1093/nar/gkw408
  • Badgujar, N. V., Tarapara, B. V., & Shah, F. D. (2019). Computational analysis of high-risk SNPs in human CHK2 gene responsible for hereditary breast cancer: A functional and structural impact. PLoS One, 14(8), e0220711. https://doi.org/10.1371/journal.pone.0220711
  • Bartkova, J., Tommiska, J., Oplustilova, L., Aaltonen, K., Tamminen, A., Heikkinen, T., Mistrik, M., Aittomaki, K., Blomqvist, C., Heikkila, P., Lukas, J., Nevanlinna, H., & Bartek, J. (2008). Aberrations of the MRE11-RAD50-NBS1 DNA damage sensor complex in human breast cancer: MRE11 as a candidate familial cancer-predisposing gene. Molecular Oncology, 2(4), 296–316. https://doi.org/10.1016/j.molonc.2008.09.007
  • Bian, L., Meng, Y., Zhang, M., & Li, D. (2019). MRE11-RAD50-NBS1 complex alterations and DNA damage response: Implications for cancer treatment. Molecular Cancer, 18(1), 169. https://doi.org/10.1186/s12943-019-1100-5
  • Bohlega, S. A., Shinwari, J. M., Al Sharif, L. J., Khalil, D. S., Alkhairallah, T. S., & Al Tassan, N. A. (2011). Clinical and molecular characterization of ataxia with oculomotor apraxia patients in Saudi Arabia. BMC Medical Genetics, 12, 27. https://doi.org/10.1186/1471-2350-12-27
  • Boyle, A. P., Hong, E. L., Hariharan, M., Cheng, Y., Schaub, M. A., Kasowski, M., Karczewski, K. J., Park, J., Hitz, B. C., Weng, S., Cherry, J. M., & Snyder, M. (2012). Annotation of functional variation in personal genomes using RegulomeDB. Genome Research, 22(9), 1790–1797. https://doi.org/10.1101/gr.137323.112
  • Calabrese, R., Capriotti, E., Fariselli, P., Martelli, P. L., & Casadio, R. (2009). Functional annotations improve the predictive score of human disease-related mutations in proteins. Human Mutation, 30(8), 1237–1244. https://doi.org/10.1002/humu.21047
  • Capriotti, E., Calabrese, R., & Casadio, R. (2006). Predicting the insurgence of human genetic diseases associated to single point protein mutations with support vector machines and evolutionary information. Bioinformatics, 22(22), 2729–2734. https://doi.org/10.1093/bioinformatics/btl423
  • Capriotti, E., Fariselli, P., & Casadio, R. (2005). I-Mutant2.0: Predicting stability changes upon mutation from the protein sequence or structure. Nucleic Acids Research, 33, W306–W 310. https://doi.org/10.1093/nar/gki375
  • Cheng, J., Randall, A., & Baldi, P. (2006). Prediction of protein stability changes for single-site mutations using support vector machines. Proteins, 62(4), 1125–1132. https://doi.org/10.1002/prot.20810
  • Chistiakov, D. A., Voronova, N. V., & Chistiakov, P. A. (2008). Genetic variations in DNA repair genes, radiosensitivity to cancer and susceptibility to acute tissue reactions in radiotherapy-treated cancer patients. Acta Oncologica, 47(5), 809–824. https://doi.org/10.1080/02841860801885969
  • Choi, Y., & Chan, A. P. (2015). PROVEAN web server: A tool to predict the functional effect of amino acid substitutions and indels. Bioinformatics, 31(16), 2745–2747. https://doi.org/10.1093/bioinformatics/btv195
  • Choudhury, A., Elliott, F., Iles, M. M., Churchman, M., Bristow, R. G., Bishop, D. T., & Kiltie, A. E. (2008). Analysis of variants in DNA damage signalling genes in bladder cancer. BMC Medical Genetics, 9, 69. https://doi.org/10.1186/1471-2350-9-69
  • Delia, D., Piane, M., Buscemi, G., Savio, C., Palmeri, S., Lulli, P., Carlessi, L., Fontanella, E., & Chessa, L. (2004). MRE11 mutations and impaired ATM-dependent responses in an Italian family with Ataxia-telangiectasia-like disorder. Human Molecular Genetics, 13(18), 2155–2163. https://doi.org/10.1093/hmg/ddh221
  • Dzikiewicz-Krawczyk, A. (2008). The importance of making ends meet: Mutations in genes and altered expression of proteins of the MRN complex and cancer. Mutation Research, 659(3), 262–273. https://doi.org/10.1016/j.mrrev.2008.05.005.
  • El-Gebali, S., Mistry, J., Bateman, A., Eddy, S. R., Luciani, A., Potter, S. C., Qureshi, M., Richardson, L. J., Salazar, G. A., Smart, A., Sonnhammer, E. L. L., Hirsh, L., Paladin, L., Piovesan, D., Tosatto, S. C. E., & Finn, R. D. (2019). The Pfam protein families database in 2019. Nucleic Acids Research, 47(D1), D427–D432. https://doi.org/10.1093/nar/gky995
  • Fernet, M., Gribaa, M., Salih, M. A., Seidahmed, M. Z., Hall, J., & Koenig, M. (2005). Identification and functional consequences of a novel MRE11 mutation affecting 10 Saudi Arabian patients with the ataxia telangiectasia-like disorder. Human Molecular Genetics, 14(2), 307–318. https://doi.org/10.1093/hmg/ddi027
  • Geourjon, C., & Deleage, G. (1995). SOPMA: Significant improvements in protein secondary structure prediction by consensus prediction from multiple alignments. Computer Applications in the Biosciences, 11(6), 681–684. https://doi.org/10.1093/bioinformatics/11.6.681
  • Guo, L., & Wang, J. (2018). rSNPBase 3.0: An updated database of SNP-related regulatory elements, element-gene pairs and SNP-based gene regulatory networks. Nucleic Acids Research, 46(D1), D1111–D1116. https://doi.org/10.1093/nar/gkx1101
  • Heikkinen, K., Karppinen, S. M., Soini, Y., Makinen, M., & Winqvist, R. (2003). Mutation screening of Mre11 complex genes: Indication of RAD50 involvement in breast and ovarian cancer susceptibility. Journal of Medical Genetics, 40(12), e131. https://doi.org/10.1136/jmg.40.12.e131.
  • Huang, L. T., Gromiha, M. M., & Ho, S. Y. (2007). iPTREE-STAB: Interpretable decision tree based method for predicting protein stability changes upon mutations. Bioinformatics, 23(10), 1292–1293. https://doi.org/10.1093/bioinformatics/btm100
  • Karczewski, K. J., Francioli, L. C., Tiao, G., Cummings, B. B., Alfoldi, J., Wang, Q., Collins, R. L., Laricchia, K. M., Ganna, A., Birnbaum, D. P., Gauthier, L. D., Brand, H., Solomonson, M., Watts, N. A., Rhodes, D., Singer-Berk, M., England, E. M., Seaby, E. G., Kosmicki, J. A., … MacArthur, D. G. (2020). The mutational constraint spectrum quantified from variation in 141,456 humans. Nature, 581(7809), 434–443. https://doi.org/10.1038/s41586-020-2308-7
  • Koppensteiner, R., Samartzis, E. P., Noske, A., von Teichman, A., Dedes, I., Gwerder, M., Imesch, P., Ikenberg, K., Moch, H., Fink, D., Stucki, M., & Dedes, K. J. (2014). Effect of MRE11 loss on PARP-inhibitor sensitivity in endometrial cancer in vitro. PLoS One, 9(6), e100041. https://doi.org/10.1371/journal.pone.0100041
  • Laskowski, R. A., Rullmannn, J. A., MacArthur, M. W., Kaptein, R., & Thornton, J. M. (1996). AQUA and PROCHECK-NMR: Programs for checking the quality of protein structures solved by NMR. Journal of Biomolecular NMR, 8(4), 477–486. https://doi.org/10.1007/BF00228148
  • Lee, J. H., Ghirlando, R., Bhaskara, V., Hoffmeyer, M. R., Gu, J., & Paull, T. T. (2003). Regulation of Mre11/Rad50 by Nbs1: Effects on nucleotide-dependent DNA binding and association with ataxia-telangiectasia-like disorder mutant complexes. The Journal of Biological Chemistry, 278(46), 45171–45181. https://doi.org/10.1074/jbc.M308705200
  • Loganathan, L., Kuriakose, B. B., Mushfiq, S., & Muthusamy, K. (2021). Mechanistic insights on nsSNPs on binding site of renin and cytochrome P450 proteins: A computational perceptual study for pharmacogenomics evaluation. Journal of Cellular Biochemistry, 122(10), 1460–1474. https://doi.org/10.1002/jcb.30069
  • Lopez-Ferrando, V., Gazzo, A., de la Cruz, X., Orozco, M., & Gelpi, J. L. (2017). PMut: A web-based tool for the annotation of pathological variants on proteins, 2017 update. Nucleic Acids Research, 45(W1), W222–W228. https://doi.org/10.1093/nar/gkx313
  • Lu, S., Wang, J., Chitsaz, F., Derbyshire, M. K., Geer, R. C., Gonzales, N. R., Gwadz, M., Hurwitz, D. I., Marchler, G. H., Song, J. S., Thanki, N., Yamashita, R. A., Yang, M., Zhang, D., Zheng, C., Lanczycki, C. J., & Marchler-Bauer, A. (2020). CDD/SPARCLE: The conserved domain database in 2020. Nucleic Acids Research, 48(D1), D265–D268. https://doi.org/10.1093/nar/gkz991
  • Maxwell, K. N., Wubbenhorst, B., D'Andrea, K., Garman, B., Long, J. M., Powers, J., Rathbun, K., Stopfer, J. E., Zhu, J., Bradbury, A. R., Simon, M. S., DeMichele, A., Domchek, S. M., & Nathanson, K. L. (2015). Prevalence of mutations in a panel of breast cancer susceptibility genes in BRCA1/2-negative patients with early-onset breast cancer. Genetics in Medicine: Official Journal of the American College of Medical Genetics, 17(8), 630–638. https://doi.org/10.1038/gim.2014.176
  • Mi, H., Muruganujan, A., Casagrande, J. T., & Thomas, P. D. (2013). Large-scale gene function analysis with the PANTHER classification system. Nature Protocols, 8(8), 1551–1566. https://doi.org/10.1038/nprot.2013.092
  • Mitchell, A. L., Attwood, T. K., Babbitt, P. C., Blum, M., Bork, P., Bridge, A., Brown, S. D., Chang, H. Y., El-Gebali, S., Fraser, M. I., Gough, J., Haft, D. R., Huang, H., Letunic, I., Lopez, R., Luciani, A., Madeira, F., Marchler-Bauer, A., Mi, H., … Finn, R. D. (2019). InterPro in 2019: Improving coverage, classification and access to protein sequence annotations. Nucleic Acids Research, 47(D1), D351–D360. https://doi.org/10.1093/nar/gky1100
  • Mosor, M., Ziółkowska, I., Pernak-Schwarz, M., Januszkiewicz-Lewandowska, D., & Nowak, J. (2006). Association of the heterozygous germline I171V mutation of the NBS1 gene with childhood acute lymphoblastic leukemia. Leukemia, 20(8), 1454–1456. https://doi.org/10.1038/sj.leu.2404285
  • Naccarati, A., Rosa, F., Vymetalkova, V., Barone, E., Jiraskova, K., Gaetano, C. D., Novotny, J., Levy, M., Vodickova, L., Gemignani, F., Buchler, T., Landi, S., Vodicka, P., & Pardini, B. (2016). Double-strand break repair and colorectal cancer: Gene variants within 3' UTRs and microRNAs binding as modulators of cancer risk and clinical outcome. Oncotarget, 7(17), 23156–23169. https://doi.org/10.18632/oncotarget.6804
  • Nielsen, F. C., van Overeem Hansen, T., & Sorensen, C. S. (2016). Hereditary breast and ovarian cancer: New genes in confined pathways. Nature Reviews. Cancer, 16(9), 599–612. https://doi.org/10.1038/nrc.2016.72
  • Nishi, H., Nakata, J., & Kinoshita, K. (2016). Distribution of single-nucleotide variants on protein-protein interaction sites and its relationship with minor allele frequency. Protein Science, 25(2), 316–321. https://doi.org/10.1002/pro.2845
  • Park, Y. B., Chae, J., Kim, Y. C., & Cho, Y. (2011). Crystal structure of human Mre11: Understanding tumorigenic mutations. Structure, 19(11), 1591–1602. https://doi.org/10.1016/j.str.2011.09.010
  • Pejaver, V., Hsu, W. L., Xin, F., Dunker, A. K., Uversky, V. N., & Radivojac, P. (2014). The structural and functional signatures of proteins that undergo multiple events of post-translational modification. Protein Science: A Publication of the Protein Society, 23(8), 1077–1093. https://doi.org/10.1002/pro.2494
  • Pejaver, V., Urresti, J., Lugo-Martinez, J., Pagel, K. A., Lin, G. N., Nam, H. J., Mort, M., Cooper, D. N., Sebat, J., Iakoucheva, L. M., Mooney, S. D., & Radivojac, P. (2020). Inferring the molecular and phenotypic impact of amino acid variants with MutPred2. Nature Communications, 11(1), 5918. https://doi.org/10.1038/s41467-020-19669-x
  • Petersen, B., Petersen, T. N., Andersen, P., Nielsen, M., & Lundegaard, C. (2009). A generic method for assignment of reliability scores applied to solvent accessibility predictions. BMC Structural Biology, 9, 51. https://doi.org/10.1186/1472-6807-9-51
  • Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., & Ferrin, T. E. (2004). UCSF Chimera-a visualization system for exploratory research and analysis. Journal of Computational Chemistry, 25(13), 1605–1612. https://doi.org/10.1002/jcc.20084
  • Pires, D. E., Ascher, D. B., & Blundell, T. L. (2014). mCSM: Predicting the effects of mutations in proteins using graph-based signatures. Bioinformatics, 30(3), 335–342. https://doi.org/10.1093/bioinformatics/btt691
  • Prokunina, L., & Alarcon-Riquelme, M. E. (2004). Regulatory SNPs in complex diseases: Their identification and functional validation. Expert Reviews in Molecular Medicine, 6(10), 1–15. https://doi.org/10.1017/S1462399404007690
  • Rahman, S., Canny, M. D., Buschmann, T. A., & Latham, M. P. (2020). A survey of reported disease-related mutations in the MRE11-RAD50-NBS1 complex. Cells, 9(7), 1678. https://doi.org/10.3390/cells9071678
  • Ramensky, V., Bork, P., & Sunyaev, S. (2002). Human non-synonymous SNPs: Server and survey. Nucleic Acids Research, 30(17), 3894–3900. https://doi.org/10.1093/nar/gkf493
  • Regal, J. A., Festerling, T. A., Buis, J. M., & Ferguson, D. O. (2013). Disease-associated MRE11 mutants impact ATM/ATR DNA damage signaling by distinct mechanisms. Human Molecular Genetics, 22(25), 5146–5159. https://doi.org/10.1093/hmg/ddt368
  • Sedghi, M., Salari, M., Moslemi, A. R., Kariminejad, A., Davis, M., Goullee, H., Olsson, B., Laing, N., & Tajsharghi, H. (2018). Ataxia-telangiectasia-like disorder in a family deficient for MRE11A, caused by a MRE11 variant. Neurology. Genetics, 4(6), e295. https://doi.org/10.1212/NXG.0000000000000295
  • Sharma Bhai, P., Sharma, D., Saxena, R., & Verma, I. C. (2017). Next-generation sequencing reveals a nonsense mutation (p.Arg364Ter) in MRE11A gene in an Indian patient with familial breast cancer. Breast Care (Basel), 12(2), 114–116. https://doi.org/10.1159/000457786
  • Shibata, A., Moiani, D., Arvai, A. S., Perry, J., Harding, S. M., Genois, M. M., Maity, R., van Rossum-Fikkert, S., Kertokalio, A., Romoli, F., Ismail, A., Ismalaj, E., Petricci, E., Neale, M. J., Bristow, R. G., Masson, J. Y., Wyman, C., Jeggo, P. A., & Tainer, J. A. (2014). DNA double-strand break repair pathway choice is directed by distinct MRE11 nuclease activities. Molecular Cell, 53(1), 7–18. https://doi.org/10.1016/j.molcel.2013.11.003
  • Sim, N. L., Kumar, P., Hu, J., Henikoff, S., Schneider, G., & Ng, P. C. (2012). SIFT web server: Predicting effects of amino acid substitutions on proteins. Nucleic Acids Res, 40, W452–W 457. https://doi.org/10.1093/nar/gks539
  • Situ, Y., Chung, L., Lee, C. S., & Ho, V. (2019). MRN (MRE11-RAD50-NBS1) complex in human cancer and prognostic implications in colorectal cancer. International Journal of Molecular Sciences, 20(4), 816. https://doi.org/10.3390/ijms20040816
  • Stracker, T. H., & Petrini, J. H. (2011). The MRE11 complex: Starting from the ends. Nature Reviews Molecular Cell Biology, 12(2), 90–103. https://doi.org/10.1038/nrm3047
  • Tavtigian, S. V., Byrnes, G. B., Goldgar, D. E., & Thomas, A. (2008). Classification of rare missense substitutions, using risk surfaces, with genetic- and molecular-epidemiology applications. Human Mutation, 29(11), 1342–1354. https://doi.org/10.1002/humu.20896
  • Teo, M. T. W., Dyrskjot, L., Nsengimana, J., Buchwald, C., Snowden, H., Morgan, J., Jensen, J. B., Knowles, M. A., Taylor, G., Barrett, J. H., Borre, M., Orntoft, T. F., Bishop, D. T., & Kiltie, A. E. (2014). Next-generation sequencing identifies germline MRE11A variants as markers of radiotherapy outcomes in muscle-invasive bladder cancer. Annals of Oncology, 25(4), 877–883. https://doi.org/10.1093/annonc/mdu014
  • Teo, M. T., Landi, D., Taylor, C. F., Elliott, F., Vaslin, L., Cox, D. G., Hall, J., Landi, S., Bishop, D. T., & Kiltie, A. E. (2012). The role of microRNA-binding site polymorphisms in DNA repair genes as risk factors for bladder cancer and breast cancer and their impact on radiotherapy outcomes. Carcinogenesis, 33(3), 581–586. https://doi.org/10.1093/carcin/bgr300
  • Venselaar, H., Te Beek, T. A., Kuipers, R. K., Hekkelman, M. L., & Vriend, G. (2010). Protein structure analysis of mutations causing inheritable diseases. An e-Science approach with life scientist friendly interfaces. BMC Bioinformatics, 11, 548. https://doi.org/10.1186/1471-2105-11-548
  • Wang, J., Pitarque, M., & Ingelman-Sundberg, M. (2006). 3'-UTR polymorphism in the human CYP2A6 gene affects mRNA stability and enzyme expression. Biochemical and Biophysical Research Communications, 340(2), 491–497. https://doi.org/10.1016/j.bbrc.2005.12.035
  • Warde-Farley, D., Donaldson, S. L., Comes, O., Zuberi, K., Badrawi, R., Chao, P., Franz, M., Grouios, C., Kazi, F., Lopes, C. T., Maitland, A., Mostafavi, S., Montojo, J., Shao, Q., Wright, G., Bader, G. D., & Morris, Q. (2010). The GeneMANIA prediction server: Biological network integration for gene prioritization and predicting gene function. Nucleic Acids Research, 38, W214– W 220. https://doi.org/10.1093/nar/gkq537
  • Wen, Q., Scorah, J., Phear, G., Rodgers, G., Rodgers, S., & Meuth, M. (2008). A mutant allele of MRE11 found in mismatch repair-deficient tumor cells suppresses the cellular response to DNA replication fork stress in a dominant negative manner. Molecular Biology of the Cell, 19(4), 1693–1705. https://doi.org/10.1091/mbc.e07-09-0975
  • Xu, Z., & Taylor, J. A. (2009). SNPinfo: Integrating GWAS and candidate gene information into functional SNP selection for genetic association studies. Nucleic Acids Research, 37, W600–W 605. https://doi.org/10.1093/nar/gkp290
  • Yamada, K. D., Nishi, H., Nakata, J., & Kinoshita, K. (2016). Structural characterization of single nucleotide variants at ligand binding sites and enzyme active sites of human proteins. Biophysics and Physicobiology, 13, 157–163. https://doi.org/10.2142/biophysico.13.0_157
  • Yang, Y., Faraggi, E., Zhao, H., & Zhou, Y. (2011). Improving protein fold recognition and template-based modeling by employing probabilistic-based matching between predicted one-dimensional structural properties of query and corresponding native properties of templates. Bioinformatics, 27(15), 2076–2082. https://doi.org/10.1093/bioinformatics/btr350
  • Zhang, Y., & Skolnick, J. (2005). TM-align: A protein structure alignment algorithm based on the TM-score. Nucleic Acids Research, 33(7), 2302–2309. https://doi.org/10.1093/nar/gki524
  • Ziółkowska-Suchanek, I., Mosor, M., Wierzbicka, M., Rydzanicz, M., Baranowska, M., & Nowak, J. (2013). The MRN protein complex genes: MRE11 and RAD50 and susceptibility to head and neck cancers. Molecular Cancer, 12(1), 113. https://doi.org/10.1186/1476-4598-12-113

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.