270
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Green synthesized silver nanoparticles obtained from Stachys schtschegleevii extract: ct-DNA interaction and in silico and in vitro investigation of antimicrobial activity

&
Pages 2175-2188 | Received 18 Aug 2021, Accepted 08 Jan 2022, Published online: 20 Jan 2022

References

  • Abichandani, M., Nahar, L., Singh, P., Chitnis, R., Nazemiyeh, H., Delazar, A., & Sarker, S. (2010). Antibacterial and free-radical-scavenging properties of Stachys schtschegleevii (Lamiaceae). Archives of Biological Sciences, 62(4), 941–945. https://doi.org/10.2298/ABS1004941A
  • Ahmad, N., Sharma, S., Alam, M. K., Singh, V., Shamsi, S., Mehta, B., & Fatma, A. (2010). Rapid synthesis of silver nanoparticles using dried medicinal plant of basil. Colloids and Surfaces B: Biointerfaces, 81(1), 81–86. https://doi.org/10.1016/j.colsurfb.2010.06.029
  • Alsammarraie, F. K., Wang, W., Zhou, P., Mustapha, A., & Lin, M. (2018). Green synthesis of silver nanoparticles using turmeric extracts and investigation of their antibacterial activities. Colloids and Surfaces B: Biointerfaces, 171, 398–405. https://doi.org/10.1016/j.colsurfb.2018.07.059
  • Andrusier, N., Nussinov, R., & Wolfson, H. J. (2007). FireDock: Fast interaction refinement in molecular docking. Proteins, 69(1), 139–159. https://doi.org/10.1002/prot.21495
  • Anju, T., Parvathy, S., Veettil, M. V., Rosemary, J., Ansalna, T., Shahzabanu, M., & Devika, S. (2021). Green synthesis of silver nanoparticles from Aloe vera leaf extract and its antimicrobial activity. Materials Today: Proceedings, 43, 3956–3960. https://doi.org/10.1016/j.matpr.2021.02.665
  • Arjmand, F., & Aziz, M. (2009). Synthesis and characterization of dinuclear macrocyclic cobalt(II), copper(II) and zinc(II) complexes derived from 2,2,2('),2(')-S,S[bis(bis-N,N-2-thiobenzimidazolyloxalato-1,2-ethane)]: DNA binding and cleavage studies. European Journal of Medicinal Chemistry, 44(2), 834–844. https://doi.org/10.1016/j.ejmech.2008.05.006
  • Azami, S., Fahimi, B., Bagheri, M., & Mohsenzadeh, S. (2016). The comparison of antibacterial effect of Schrophularia striata Boiss. and Stachys schtschegleevii Sosn. extracts on pathogens isolated from urinary tract infections. Journal of Herbal Drugs (An International Journal on Medicinal Herbs), 7(1), 15–20.
  • Balakrishnan, G., Rajendran, T., Murugan, K. S., Ganesan, M., Sivasubramanian, V. K., & Rajagopal, S. (2019). Synthesis, photophysics and the binding studies of rhenium (I) diimine surfactant complexes with serum albumins: A spectroscopic and docking study approach. Journal of Luminescence, 205, 51–60. https://doi.org/10.1016/j.jlumin.2018.08.078
  • Birnbaum, A., & Pique, A. (2011). Laser induced extraplanar propulsion for three-dimensional microfabrication. Applied Physics Letters, 98(13), 134101. https://doi.org/10.1063/1.3567763
  • Castellano, J. J., Shafii, S. M., Ko, F., Donate, G., Wright, T. E., Mannari, R. J., Payne, W. G., Smith, D. J., & Robson, M. C. (2007). Comparative evaluation of silver-containing antimicrobial dressings and drugs. International Wound Journal, 4(2), 114–122. https://doi.org/10.1111/j.1742-481X.2007.00316.x
  • Chandran, S. P., Chaudhary, M., Pasricha, R., Ahmad, A., & Sastry, M. (2006). Synthesis of gold nanotriangles and silver nanoparticles using Aloe vera plant extract. Biotechnology Progress, 22(2), 577–583. https://doi.org/10.1021/bp0501423
  • Cheviron, P., Gouanvé, F., & Espuche, E. (2014). Green synthesis of colloid silver nanoparticles and resulting biodegradable starch/silver nanocomposites. Carbohydrate Polymers, 108, 291–298. https://doi.org/10.1016/j.carbpol.2014.02.059
  • Chouhan, S., & Guleria, S. (2020). Green synthesis of AgNPs using Cannabis sativa leaf extract: Characterization, antibacterial, anti-yeast and α-amylase inhibitory activity. Materials Science for Energy Technologies, 3, 536–544. https://doi.org/10.1016/j.mset.2020.05.004
  • Decker, E. (1998). Strategies for manipulating the prooxidative/antioxidative balance of foods to maximize oxidative stability. Trends in Food Science & Technology, 9(6), 241–248. https://doi.org/10.1016/S0924-2244(98)00045-4
  • Dutta, T., Chowdhury, S. K., Ghosh, N. N., Chattopadhyay, A. P., Das, M., & Mandal, V. (2021). Green synthesis of antimicrobial silver nanoparticles using fruit extract of Glycosmis pentaphylla and its theoretical explanations. Journal of Molecular Structure, 1247, 131361.
  • Fatimah, I. (2016). Green synthesis of silver nanoparticles using extract of Parkia speciosa Hassk pods assisted by microwave irradiation. Journal of Advanced Research, 7(6), 961–969. https://doi.org/10.1016/j.jare.2016.10.002
  • Gade, A., Gaikwad, S., Duran, N., & Rai, M. (2014). Green synthesis of silver nanoparticles by Phoma glomerata. Micron (Oxford, England: 1993), 59, 52–59. https://doi.org/10.1016/j.micron.2013.12.005
  • Gardea-Torresdey, J., Parsons, J., Gomez, E., Peralta-Videa, J., Troiani, H., Santiago, P., & Yacaman, M. J. (2002). Formation and growth of Au nanoparticles inside live alfalfa plants. Nano Letters, 2(4), 397–401. https://doi.org/10.1021/nl015673+
  • Gurunathan, S., Lee, K.-J., Kalishwaralal, K., Sheikpranbabu, S., Vaidyanathan, R., & Eom, S. H. (2009). Antiangiogenic properties of silver nanoparticles. Biomaterials, 30(31), 6341–6350. https://doi.org/10.1016/j.biomaterials.2009.08.008
  • Hagens, W. I., Oomen, A. G., de Jong, W. H., Cassee, F. R., & Sips, A. J. (2007). What do we (need to) know about the kinetic properties of nanoparticles in the body? Regulatory Toxicology and Pharmacology, 49(3), 217–229. https://doi.org/10.1016/j.yrtph.2007.07.006
  • Harshiny, M., Matheswaran, M., Arthanareeswaran, G., Kumaran, S., & Rajasree, S. (2015). Enhancement of antibacterial properties of silver nanoparticles-ceftriaxone conjugate through Mukia maderaspatana leaf extract mediated synthesis. Ecotoxicology and Environmental Safety, 121, 135–141. https://doi.org/10.1016/j.ecoenv.2015.04.041
  • Hussain, A., Alajmi, M. F., Khan, M. A., Pervez, S. A., Ahmed, F., Amir, S., Husain, F. M., Khan, M. S., Shaik, G. M., Hassan, I., Khan, R. A., & Rehman, M. T. (2019). Biosynthesized silver nanoparticle (AgNP) from Pandanus odorifer leaf extract exhibits anti-metastasis and anti-biofilm potentials. Frontiers in Microbiology, 10, 8. https://doi.org/10.3389/fmicb.2019.00008
  • Izumrudov, V. A., Zhiryakova, M. V., & Goulko, A. A. (2002). Ethidium bromide as a promising probe for studying DNA interaction with cationic amphiphiles and stability of the resulting complexes. Langmuir, 18(26), 10348–10356. https://doi.org/10.1021/la020592u
  • Jacob, S. J. P., Finub, J., & Narayanan, A. (2012). Synthesis of silver nanoparticles using Piper longum leaf extracts and its cytotoxic activity against Hep-2 cell line. Colloids and Surfaces B: Biointerfaces, 91, 212–214. https://doi.org/10.1016/j.colsurfb.2011.11.001
  • Jalilian, F., Chahardoli, A., Sadrjavadi, K., Fattahi, A., & Shokoohinia, Y. (2020). Green synthesized silver nanoparticle from Allium ampeloprasum aqueous extract: Characterization, antioxidant activities, antibacterial and cytotoxicity effects. Advanced Powder Technology, 31(3), 1323–1332. https://doi.org/10.1016/j.apt.2020.01.011
  • Jha, D., Thiruveedula, P. K., Pathak, R., Kumar, B., Gautam, H. K., Agnihotri, S., Sharma, A. K., & Kumar, P. (2017). Multifunctional biosynthesized silver nanoparticles exhibiting excellent antimicrobial potential against multi-drug resistant microbes along with remarkable anticancerous properties. Materials Science & Engineering. C, Materials for Biological Applications, 80, 659–669. https://doi.org/10.1016/j.msec.2017.07.011
  • Joshi, S. J., S. J, G., Al-Mamari, S., & Al-Azkawi, A. (2018). Green synthesis of silver nanoparticles using pomegranate peel extracts and its application in photocatalytic degradation of methylene blue. Jundishapur Journal of Natural Pharmaceutical Products, 13(3), e67846. https://doi.org/10.5812/jjnpp.67846
  • Mashwani, Z-U-R., Khan, M. A., Khan, T., & Nadhman, A. (2016). Applications of plant terpenoids in the synthesis of colloidal silver nanoparticles. Advances in Colloid and Interface Science, 234, 132–141. https://doi.org/10.1016/j.cis.2016.04.008
  • Krishnaraj, C., Jagan, E., Rajasekar, S., Selvakumar, P., Kalaichelvan, P., & Mohan, N. (2010). Synthesis of silver nanoparticles using Acalypha indica leaf extracts and its antibacterial activity against water borne pathogens. Colloids and Surfaces B: Biointerfaces, 76(1), 50–56. https://doi.org/10.1016/j.colsurfb.2009.10.008
  • Kumar, P. V., Pammi, S., Kollu, P., Satyanarayana, K., & Shameem, U. (2014). Green synthesis and characterization of silver nanoparticles using Boerhaavia diffusa plant extract and their anti bacterial activity. Industrial Crops and Products, 52, 562–566. https://doi.org/10.1016/j.indcrop.2013.10.050
  • Kumar, V., Singh, S., Srivastava, B., Bhadouria, R., & Singh, R. (2019). Green synthesis of silver nanoparticles using leaf extract of Holoptelea integrifolia and preliminary investigation of its antioxidant, anti-inflammatory, antidiabetic and antibacterial activities. Journal of Environmental Chemical Engineering, 7(3), 103094. https://doi.org/10.1016/j.jece.2019.103094
  • Manikandan, D. B., Sridhar, A., Sekar, R. K., Perumalsamy, B., Veeran, S., Arumugam, M., Karuppaiah, P., & Ramasamy, T. (2021). Green fabrication, characterization of silver nanoparticles using aqueous leaf extract of Ocimum americanum (Hoary Basil) and investigation of its in vitro antibacterial, antioxidant, anticancer and photocatalytic reduction. Journal of Environmental Chemical Engineering, 9(1), 104845. https://doi.org/10.1016/j.jece.2020.104845
  • Medina-Ramirez, I., Bashir, S., Luo, Z., & Liu, J. L. (2009). Green synthesis and characterization of polymer-stabilized silver nanoparticles. Colloids and Surfaces B: Biointerfaces, 73(2), 185–191. https://doi.org/10.1016/j.colsurfb.2009.05.015
  • Mishra, N. P., Mohapatra, S., Sahoo, C. R., Raiguru, B. P., Nayak, S., Jena, S., & Padhy, R. N. (2021). Design, one-pot synthesis, molecular docking study, and antibacterial evaluation of novel 2H-chromene based imidazo [1, 2-a] pyridine derivatives as potent peptide deformylase inhibitors. Journal of Molecular Structure, 1246, 131183. https://doi.org/10.1016/j.molstruc.2021.131183
  • Mofolo, M. J., Kadhila, P., Chinsembu, K. C., Mashele, S., & Sekhoacha, M. (2020). Green synthesis of silver nanoparticles from extracts of Pechuel-loeschea leubnitziae: their anti-proliferative activity against the U87 cell line. Inorganic and Nano-Metal Chemistry, 50(10), 949–955. https://doi.org/10.1080/24701556.2020.1729191
  • Mohammadi, F., & Mansouri-Torshizi, H. (2020). Five novel palladium(II) complexes of 8-hydroxyquinoline and amino acids with hydrophobic side chains: synthesis, characterization, cytotoxicity, DNA- and BSA-interaction studies. Journal of Biomolecular Structure & Dynamics, 38(10), 3059–3073. https://doi.org/10.1080/07391102.2019.1651219
  • Mozaffarian, V. (1996). A dictionary of Iranian plant names. Farhang Moaser 396.
  • Mubayi, A., Chatterji, S., Rai, P. M., & Watal, G. (2012). Evidence based green synthesis of nanoparticles. Advanced Materials Letters, 3(6), 519–525. https://doi.org/10.5185/amlett.2012.icnano.353
  • Narayanan, K. B., & Sakthivel, N. (2010). Phytosynthesis of gold nanoparticles using leaf extract of Coleus amboinicus Lour. Materials Characterization, 61(11), 1232–1238. https://doi.org/10.1016/j.matchar.2010.08.003
  • Nazemiyeh, H., Shoeb, M., Movahhedin, N., Kumarasamy, Y., Talebpour, A. H., Delazar, A., Nahar, L., & Sarker, S. D. (2006). Phenolic compounds and their glycosides from Stachys schtschegleevii (Lamiaceae). Biochemical Systematics and Ecology, 34(9), 721–723. https://doi.org/10.1016/j.bse.2006.05.004
  • Norouzi-Arasi, H., Yavari, I., & Alibabaeii, M. (2004). Chemical constituents of the essential oil of Stachys schtschegleevii Sosn. from Iran. Journal of Essential Oil Research, 16(3), 231–232. https://doi.org/10.1080/10412905.2004.9698706
  • Oberdörster, G., Oberdörster, E., & Oberdörster, J. (2005). Nanotoxicology: An emerging discipline evolving from studies of ultrafine particles. Environmental Health Perspectives, 113(7), 823–839. https://doi.org/10.1289/ehp.7339
  • Ohikhena, F. U., Wintola, O. A., & Afolayan, A. J. (2017). Evaluation of the antibacterial and antifungal properties of Phragmanthera capitata (Sprengel) Balle (Loranthaceae), a mistletoe growing on rubber tree, using the dilution techniques. The Scientific World Journal, 2017, 1–8. https://doi.org/10.1155/2017/9658598
  • Oliveira, R. N., Mancini, M. C., Oliveira, F. C. S. D., Passos, T. M., Quilty, B., Thiré, R. M. D. S. M., & McGuinness, G. B. (2016). FTIR analysis and quantification of phenols and flavonoids of five commercially available plants extracts used in wound healing. Matéria (Rio de Janeiro), 21(3), 767–779. https://doi.org/10.1590/S1517-707620160003.0072
  • Pal, S. L., Jana, U., Manna, P. K., Mohanta, G. P., & Manavalan, R. (2011). Nanoparticle: An overview of preparation and characterization. Journal of Applied Pharmaceutical Science, 1(6), 228–234.
  • Panácek, A., Kolár, M., Vecerová, R., Prucek, R., Soukupová, J., Krystof, V., Hamal, P., Zboril, R., & Kvítek, L. (2009). Antifungal activity of silver nanoparticles against Candida spp. Biomaterials, 30(31), 6333–6340. https://doi.org/10.1016/j.biomaterials.2009.07.065
  • Parthiban, E., Manivannan, N., Ramanibai, R., & Mathivanan, N. (2019). Green synthesis of silver-nanoparticles from Annona reticulata leaves aqueous extract and its mosquito larvicidal and anti-microbial activity on human pathogens. Biotechnology Reports (Amsterdam, Netherlands), 21, e00297. https://doi.org/10.1016/j.btre.2018.e00297
  • Patil, R. S., Kokate, M. R., & Kolekar, S. S. (2012). Bioinspired synthesis of highly stabilized silver nanoparticles using Ocimum tenuiflorum leaf extract and their antibacterial activity. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 91, 234–238. https://doi.org/10.1016/j.saa.2012.02.009
  • Paul, B. K., & Guchhait, N. (2011). Exploring the strength, mode, dynamics, and kinetics of binding interaction of a cationic biological photosensitizer with DNA: Implication on dissociation of thedrug-DNA complex via detergent sequestration. The Journal of Physical Chemistry. B, 115(41), 11938–11949. https://doi.org/10.1021/jp206589e
  • Poinern, G. E. J., Chapman, P., Le, X., & Fawcett, D. (2013). Green biosynthesis of gold nanometre scale plates using the leaf extracts from an indigenous Australian plant Eucalyptus macrocarpa. Gold Bulletin, 46(3), 165–173. https://doi.org/10.1007/s13404-013-0096-7
  • Qais, F. A., & Ahmad, I. (2018). In vitro interaction of cefotaxime with calf thymus DNA: Insights from spectroscopic, calorimetric and molecular modelling studies. Journal of Pharmaceutical and Biomedical Analysis, 149, 193–205. https://doi.org/10.1016/j.jpba.2017.10.016
  • Raju, A., Kulkarni, S., Ray, M., Rajan, M., & Degani, M. S. (2015). E84G mutation in dihydrofolate reductase from drug resistant strains of Mycobacterium tuberculosis (Mumbai, India) leads to increased interaction with Trimethoprim. International Journal of Mycobacteriology, 4(2), 97–103. https://doi.org/10.1016/j.ijmyco.2015.02.001
  • Rauwel, P., Küünal, S., Ferdov, S., & Rauwel, E. (2015). A review on the green synthesis of silver nanoparticles and their morphologies studied via TEM. Advances in Materials Science and Engineering, 2015, 1–9. https://doi.org/10.1155/2015/682749
  • Raveendran, P., Fu, J., & Wallen, S. L. (2003). Completely “green” synthesis and stabilization of metal nanoparticles. Journal of the American Chemical Society, 125(46), 13940–13941. https://doi.org/10.1021/ja029267j
  • Rezazadeh, S., Kebryaeezadeh, A., Pirali-Hamedani, M., Shafiee, A., & Isfahani, S. G. (2005). Anti-inflammatory and analgesic activity of methanolic extracts of aerial parts of stachys schtschegleevii sosn. and stachys balansae boiss. and kotschy ex boiss in rats. DARU Journal of Pharmaceutical Sciences, 13(4), 165–169.
  • Rogers, J. V., Parkinson, C. V., Choi, Y. W., Speshock, J. L., & Hussain, S. M. (2008). A preliminary assessment of silver nanoparticle inhibition of monkeypox virus plaque formation. Nanoscale Research Letters, 3(4), 129–133. https://doi.org/10.1007/s11671-008-9128-2
  • Roucoux, A., Schulz, J., & Patin, H. (2002). Reduced transition metal colloids: a novel family of reusable catalysts? Chemical Reviews, 102(10), 3757–3778. https://doi.org/10.1021/cr010350j
  • Sahoo, B. K., Ghosh, K. S., & Dasgupta, S. (2009). Molecular interactions of isoxazolcurcumin with human serum albumin: spectroscopic and molecular modeling studies. Biopolymers, 91(2), 108–119. https://doi.org/10.1002/bip.21092
  • Sahoo, C. R., Maharana, S., Mandhata, C. P., Bishoyi, A. K., Paidesetty, S. K., & Padhy, R. N. (2020). Biogenic silver nanoparticle synthesis with cyanobacterium Chroococcus minutus isolated from Baliharachandi sea-mouth, Odisha, and in vitro antibacterial activity. Saudi Journal of Biological Sciences, 27(6), 1580–1586. https://doi.org/10.1016/j.sjbs.2020.03.020
  • Sahoo, C. R., Paidesetty, S. K., Dehury, B., & Padhy, R. N. (2020). Molecular dynamics and computational study of Mannich-based coumarin derivatives: potent tyrosine kinase inhibitor. Journal of Biomolecular Structure & Dynamics, 38(18), 5419–5428. https://doi.org/10.1080/07391102.2019.1701554
  • Sahoo, C. R., Sahoo, J., Mahapatra, M., Lenka, D., Sahu, P. K., Dehury, B., Padhy, R. N., & Paidesetty, S. K. (2021). Coumarin derivatives as promising antibacterial agent (s). Arabian Journal of Chemistry, 14(2), 102922. https://doi.org/10.1016/j.arabjc.2020.102922
  • Sathishkumar, R., Sundaramanickam, A., Srinath, R., Ramesh, T., Saranya, K., Meena, M., & Surya, P. (2019). Green synthesis of silver nanoparticles by bloom forming marine microalgae Trichodesmium erythraeum and its applications in antioxidant, drug-resistant bacteria, and cytotoxicity activity. Journal of Saudi Chemical Society, 23(8), 1180–1191. https://doi.org/10.1016/j.jscs.2019.07.008
  • Schneidman‐Duhovny, D., Inbar, Y., Polak, V., Shatsky, M., Halperin, I., Benyamini, H., Barzilai, A., Dror, O., Haspel, N., Nussinov, R., & Wolfson, H. J. (2003). Taking geometry to its edge: fast unbound rigid (and hinge-bent) docking. Proteins, 52(1), 107–112. https://doi.org/10.1002/prot.10397
  • Shahabadi, N., & Hadidi, S. (2014). Molecular modeling and spectroscopic studies on the interaction of the chiral drug venlafaxine hydrochloride with bovine serum albumin. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 122, 100–106. https://doi.org/10.1016/j.saa.2013.11.016
  • Shahabadi, N., Maghsudi, M., & Rouhani, S. (2012). Study on the interaction of food colourant quinoline yellow with bovine serum albumin by spectroscopic techniques. Food Chemistry, 135(3), 1836–1841. https://doi.org/10.1016/j.foodchem.2012.06.095
  • Shahabadi, N., & Moeini, N. (2015). Synthesis, characterization and DNA interaction studies of a new platinum (II) complex containing caffeine and histidine ligands using instrumental and computational methods. Journal of Coordination Chemistry, 68(16), 2871–2885. https://doi.org/10.1080/00958972.2015.1055259
  • Shahabadi, N., & Shiri, F. (2017). Multispectroscopic studies on the interaction of a copper(ii) complex of ibuprofen drug with calf thymus DNA. Nucleosides, Nucleotides & Nucleic Acids, 36(2), 83–106. https://doi.org/10.1080/15257770.2016.1223305
  • Shahabadi, N., & Zendehcheshm, S. (2020). Evaluation of ct-DNA and HSA binding propensity of antibacterial drug chloroxine: multi-spectroscopic analysis, atomic force microscopy and docking simulation. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 230, 118042. https://doi.org/10.1016/j.saa.2020.118042
  • Shahabadi, N., Zendehcheshm, S., & Khademi, F. (2021). Selenium nanoparticles: Synthesis, in-vitro cytotoxicity, antioxidant activity and interaction studies with ct-DNA and HSA, HHb and Cyt c serum proteins. Biotechnology Reports (Amsterdam, Netherlands), 30, e00615. https://doi.org/10.1016/j.btre.2021.e00615
  • Shankar, S. S., Rai, A., Ahmad, A., & Sastry, M. (2004). Rapid synthesis of Au, Ag, and bimetallic Au core-Ag shell nanoparticles using Neem (Azadirachta indica) leaf broth. Journal of Colloid and Interface Science, 275(2), 496–502. https://doi.org/10.1016/j.jcis.2004.03.003
  • Sonboli, A., Salehi, P., & Ebrahimi, S. N. (2005). Essential oil composition and antibacterial activity of the leaves of Stachys schtschegleevii from Iran. Chemistry of Natural Compounds, 41(2), 171–174. https://doi.org/10.1007/s10600-005-0105-z
  • Soylu, E. M., Soylu, S., & Kurt, S. (2006). Antimicrobial activities of the essential oils of various plants against tomato late blight disease agent Phytophthora infestans. Mycopathologia, 161(2), 119–128. https://doi.org/10.1007/s11046-005-0206-z
  • Suman, T., Rajasree, S. R., Kanchana, A., & Elizabeth, S. B. (2013). Biosynthesis, characterization and cytotoxic effect of plant mediated silver nanoparticles using Morinda citrifolia root extract. Colloids and Surfaces B: Biointerfaces, 106, 74–78. https://doi.org/10.1016/j.colsurfb.2013.01.037
  • Thangaraju, N., Venkatalakshmi, R., Chinnasamy, A., & Kannaiyan, P. (2012). Synthesis of silver nanoparticles and the antibacterial and anticancer activities of the crude extract of Sargassum polycystum C. Agardh. Nano Biomedicine and Engineering, 4(2), 89–94. https://doi.org/10.5101/nbe.v3i1.p89-94
  • Vilchis-Nestor, A. R., Sánchez-Mendieta, V., Camacho-López, M. A., Gómez-Espinosa, R. M., Camacho-López, M. A., & Arenas-Alatorre, J. A. (2008). Solventless synthesis and optical properties of Au and Ag nanoparticles using Camellia sinensis extract. Materials Letters, 62(17-18), 3103–3105. https://doi.org/10.1016/j.matlet.2008.01.138
  • Westerlund, F., Nordell, P., Nordén, B., & Lincoln, P. (2007). Kinetic characterization of an extremely slow DNA binding equilibrium. The Journal of Physical Chemistry. B, 111(30), 9132–9137. https://doi.org/10.1021/jp072126p
  • Yusof, K. N., Alias, S. S., Harun, Z., Basri, H., & Azhar, F. H. (2018). Parkia speciosa as reduction agent in green synthesis silver nanoparticles. ChemistrySelect, 3(31), 8881–8885. https://doi.org/10.1002/slct.201801846

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.