647
Views
8
CrossRef citations to date
0
Altmetric
Research Articles

In silico screening and in vitro validation of phytocompounds as multidrug efflux pump inhibitor against E. coli

, ORCID Icon & ORCID Icon
Pages 2189-2201 | Received 19 Jun 2021, Accepted 08 Jan 2022, Published online: 22 Jan 2022

References

  • Alav, I., Sutton, J. M., & Rahman, K. M. (2018). Role of bacterial efflux pumps in biofilm formation. The Journal of Antimicrobial Chemotherapy, 73(8), 2003–2020. https://doi.org/10.1093/jac/dky042
  • Anes, J., McCusker, M. P., Fanning, S., & Martins, M. (2015). The ins and outs of RND efflux pumps in Escherichia coli. Frontiers in Microbiology, 6, 587. https://doi.org/10.3389/fmicb.2015.00587
  • Berendsen, H. J. C., van der Spoel, D., & van Drunen, R. (1995). GROMACS: A message-passing parallel molecular dynamics implementation. Computer Physics Communications, 91(1-3), 43–56. https://doi.org/10.1016/0010-4655(95)00042-E
  • Blair, J. M. A., Webber, M. A., Baylay, A. J., Ogbolu, D. O., & Piddock, L. J. V. (2015). Molecular mechanisms of antibiotic resistance. Nature Reviews. Microbiology, 13(1), 42–51. https://doi.org/10.1038/nrmicro3380
  • Brogden, K. A. (2005). Antimicrobial peptides: Pore formers or metabolic inhibitors in bacteria? Nature Reviews. Microbiology, 3(3), 238–250. https://doi.org/10.1038/nrmicro1098
  • Bussi, G., Donadio, D., & Parrinello, M. (2007). Canonical sampling through velocity rescaling. The Journal of Chemical Physics, 126(1), 014101. https://doi.org/10.1063/1.2408420
  • Chai, B., Jiang, W., Hu, M., Wu, Y., & Si, H. (2019). In vitro synergistic interactions of Protocatechuic acid and Chlorogenic acid in combination with antibiotics against animal pathogens. Synergy, 9, 100055. https://doi.org/10.1016/j.synres.2019.100055
  • Chitsaz, M., & Brown, M. H. (2017). The role played by drug efflux pumps in bacterial multidrug resistance. Essays in Biochemistry, 61(1), 127–139. https://doi.org/10.1042/EBC20160064
  • Christaki, E., Marcou, M., & Tofarides, A. (2020). Antimicrobial resistance in bacteria: Mechanisms, evolution, and persistence. Journal of Molecular Evolution, 88(1), 26–40. https://doi.org/10.1007/s00239-019-09914-3
  • Ciulla, M. G., & Kumar, K. (2018). The natural and synthetic indole weaponry against bacteria. Tetrahedron Letters, 59(34), 3223–3233. https://doi.org/10.1016/j.tetlet.2018.07.045
  • Clinical and Laboratory Standards Institute. (2017). Performance standards for antimicrobial susceptibility testing. CLSI supplement M100 (27th ed.). Clinical and Laboratory Standards Institute.
  • Coldham, N. G., Webber, M., Woodward, M. J., & Piddock, L. J. V. (2010). A 96-well plate fluorescence assay for assessment of cellular permeability and active efflux in Salmonella enterica serovar Typhimurium and Escherichia coli. Journal of Antimicrobial Chemotherapy, 65(8), 1655–1663. https://doi.org/10.1093/jac/dkq169
  • Costa, S., Junqueira, E., Palma, C., Viveiros, M., Melo-Cristino, J., Amaral, L., & Couto, I. (2013). Resistance to antimicrobials mediated by efflux pumps in Staphylococcus aureus. Antibiotics, 2(1), 83–99. https://doi.org/10.3390/antibiotics2010083
  • Dreier, J., & Ruggerone, P. (2015). Interaction of antibacterial compounds with RND efflux pumps in Pseudomonas aeruginosa. Frontiers in Microbiology, 6, 660. https://doi.org/10.3389/fmicb.2015.00660
  • Fernández-Cuenca, F., Tomás-Carmona, M., Caballero-Moyano, F., Bou, G., Martínez-Martínez, L., Vila, J., Pachón, J., Cisneros, J. M., Rodríguez-Baño, J., & Pascual, Á. (2013). In vitro activity of 18 antimicrobial agents against clinical isolates of Acinetobacter spp.: Multicenter national study GEIH-REIPI-Ab 2010. Enfermedades Infecciosas y Microbiologia Clinica, 31(1), 4-9. https://doi.org/10.1016/j.eimc.2012.06.010
  • Fiamegos, Y. C., Kastritis, P. L., Exarchou, V., Han, H., Bonvin, A. M. J. J., Vervoort, J., Lewis, K., Hamblin, M. R., & Tegos, G. P. (2011). Antimicrobial and efflux pump inhibitory activity of caffeoylquinic acids from Artemisia absinthium against gram-positive pathogenic bacteria. PLoS One, 6(4), e18127. https://doi.org/10.1371/journal.pone.0018127
  • Fouedjou, R. T., Chtita, S., Bakhouch, M., Belaidi, S., Ouassaf, M., Djoumbissie, L. A., Tapondjou, L. A., & Abul Qais, F. (2021). Cameroonian medicinal plants as potential candidates of SARS-CoV-2 inhibitors. Journal of Biomolecular Structure and Dynamics, 1–15. https://doi.org/10.1080/07391102.2021.1914170
  • Founou, R. C., Founou, L. L., & Essack, S. Y. (2017). Clinical and economic impact of antibiotic resistance in developing countries: A systematic review and meta-analysis. PLoS One, 12(12), e0189621. https://doi.org/10.1371/journal.pone.0189621
  • Garvey, M. I., & Piddock, L. J. V. (2008). The efflux pump inhibitor reserpine selects multidrug-resistant Streptococcus pneumoniae strains that overexpress the ABC transporters PatA and PatB. Antimicrobial Agents and Chemotherapy, 52(5), 1677–1685. https://doi.org/10.1128/AAC.01644-07
  • Hetényi, C., & van der Spoel, D. (2011). Toward prediction of functional protein pockets using blind docking and pocket search algorithms. Protein Science, 20(5), 880–893. https://doi.org/10.1002/pro.618
  • Holmes, A. H., Moore, L. S. P., Sundsfjord, A., Steinbakk, M., Regmi, S., Karkey, A., Guerin, P. J., & Piddock, L. J. V. (2016). Understanding the mechanisms and drivers of antimicrobial resistance. The Lancet, 387(10014), 176–187. https://doi.org/10.1016/S0140-6736(15)00473-0
  • Hsu, J.-Y., Chuang, Y.-C., Wang, J.-T., Chen, Y.-C., & Hsieh, S.-M. (2021). Healthcare-associated carbapenem-resistant Klebsiella pneumoniae bloodstream infections: Risk factors, mortality, and antimicrobial susceptibility, 2017–2019. Journal of the Formosan Medical Association, 120(11), 1994–2002. https://doi.org/10.1016/j.jfma.2021.04.014
  • Jamshidi, S., Sutton, J. M., & Rahman, K. M. (2016). An overview of bacterial efflux pumps and computational approaches to study efflux pump inhibitors. Future Medicinal Chemistry, 8(2), 195–210. https://doi.org/10.4155/fmc.15.173
  • Karunanidhi, A., Thomas, R., van Belkum, A., & Neela, V. (2013). In vitro antibacterial and antibiofilm activities of chlorogenic acid against clinical isolates of Stenotrophomonas maltophilia including the trimethoprim/sulfamethoxazole resistant strain. BioMed Research International, 2013, 1–7. https://doi.org/10.1155/2013/392058
  • Kumari, R., Kumar, R., Lynn, A., & Open Source Drug Discovery Consortium. (2014). g_mmpbsa – A GROMACS tool for high-throughput MM-PBSA calculations . Journal of Chemical Information and Modeling, 54(7), 1951–1962. https://doi.org/10.1021/ci500020m
  • Lamut, A., Peterlin Mašič, L., Kikelj, D., & Tomašič, T. (2019). Efflux pump inhibitors of clinically relevant multidrug resistant bacteria. Medicinal Research Reviews, 39(6), 2460–2504. https://doi.org/10.1002/med.21591
  • Laskowski, R. A., & Swindells, M. B. (2011). LigPlot+: Multiple ligand-protein interaction diagrams for drug discovery. Journal of Chemical Information and Modeling, 51(10), 2778–2786. https://doi.org/10.1021/ci200227u
  • Lipinski, C. A., Lombardo, F., Dominy, B. W., & Feeney, P. J. (2001). Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced Drug Delivery Reviews, 46(1-3), 3–26. https://doi.org/10.1016/S0169-409X(00)00129-0
  • Lou, Z., Wang, H., Zhu, S., Ma, C., & Wang, Z. (2011). Antibacterial activity and mechanism of action of chlorogenic acid. Journal of Food Science, 76(6), M398–M403. https://doi.org/10.1111/j.1750-3841.2011.02213.x
  • Maheshwari, M., Ahmad, I., & Althubiani, A. S. (2016). Multidrug resistance and transferability of blaCTX-M among extended-spectrum β-lactamase-producing enteric bacteria in biofilm. Journal of Global Antimicrobial Resistance, 6, 142–149. https://doi.org/10.1016/j.jgar.2016.04.009
  • Maier, J. A., Martinez, C., Kasavajhala, K., Wickstrom, L., Hauser, K. E., & Simmerling, C. (2015). ff14SB: Improving the accuracy of protein side chain and backbone parameters from ff99SB. Journal of Chemical Theory and Computation, 11(8), 3696–3713. https://doi.org/10.1021/acs.jctc.5b00255
  • Martinez, A. E., Widmer, A., Frei, R., Pargger, H., Tuchscherer, D., Marsch, S., Egli, A., & Tschudin-Sutter, S. (2019). ESBL-colonization at ICU admission: Impact on subsequent infection, carbapenem-consumption, and outcome. Infection Control and Hospital Epidemiology, 40(4), 408–413. https://doi.org/10.1017/ice.2019.5
  • Metzger, R. R., Brown, J. M., Sandoval, V., Rau, K. S., Elwan, M. A., Miller, G. W., Hanson, G. R., & Fleckenstein, A. E. (2002). Inhibitory effect of reserpine on dopamine transporter function. European Journal of Pharmacology, 456(1-3), 39–43. https://doi.org/10.1016/S0014-2999(02)02647-X
  • Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S., & Olson, A. J. (2009). AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. Journal of Computational Chemistry, 30(16), 2785–2791. https://doi.org/10.1002/jcc.21256
  • Musa, M. A., Cooperwood, J. S., Khan, M. O. F., & Rahman, T. (2011). In-vitro antiproliferative activity of benzopyranone derivatives in comparison with standard chemotherapeutic drugs. Archiv Der Pharmazie, 344(2), 102–110. https://doi.org/10.1002/ardp.201000207
  • Nabekura, T., Kamiyama, S., & Kitagawa, S. (2005). Effects of dietary chemopreventive phytochemicals on P-glycoprotein function. Biochemical and Biophysical Research Communications, 327(3), 866–870. https://doi.org/10.1016/j.bbrc.2004.12.081
  • Navia, M., & Chaturvedi, P. (1996). Design principles for orally bioavailable drugs. Drug Discovery Today, 1(5), 179–189. https://doi.org/10.1016/1359-6446(96)10020-9
  • Naylor, N. R., Atun, R., Zhu, N., Kulasabanathan, K., Silva, S., Chatterjee, A., Knight, G. M., & Robotham, J. V. (2018). Estimating the burden of antimicrobial resistance: A systematic literature review. Antimicrobial Resistance and Infection Control, 7(1), 58. https://doi.org/10.1186/s13756-018-0336-y
  • Negi, N. (2014). Possible role of curcumin as ection an efflux pump inhibitor in multi drug resistant clinical isolates of Pseudomonas aeruginosa. Journal of Clinical and Diagnostic Research, 8(10), 04. https://doi.org/10.7860/JCDR/2014/8329.4965
  • Neuberger, A., Du, D., & Luisi, B. F. (2018). Structure and mechanism of bacterial tripartite efflux pumps. Research in Microbiology, 169(7-8), 401–413. https://doi.org/10.1016/j.resmic.2018.05.003
  • Nikaido, H. (1998). Multiple antibiotic resistance and efflux. Current Opinion in Microbiology, 1(5), 516–523. https://doi.org/10.1016/S1369-5274(98)80083-0
  • Ohene-Agyei, T., Lea, J. D., & Venter, H. (2012). Mutations in MexB that affect the efflux of antibiotics with cytoplasmic targets. FEMS Microbiology Letters, 333(1), 20–27. https://doi.org/10.1111/j.1574-6968.2012.02594.x
  • Opperman, T. J., Kwasny, S. M., Kim, H.-S., Nguyen, S. T., Houseweart, C., D'Souza, S., Walker, G. C., Peet, N. P., Nikaido, H., & Bowlin, T. L. (2014). Characterization of a novel pyranopyridine inhibitor of the AcrAB efflux pump of Escherichia coli. Antimicrobial Agents and Chemotherapy, 58(2), 722–733. https://doi.org/10.1128/AAC.01866-13
  • Pal, S., Kumar, V., Kundu, B., Bhattacharya, D., Preethy, N., Reddy, M. P., & Talukdar, A. (2019). Ligand-based pharmacophore modeling, virtual screening and molecular docking studies for discovery of potential topoisomerase I inhibitors. Computational and Structural Biotechnology Journal, 17, 291–310. https://doi.org/10.1016/j.csbj.2019.02.006
  • Parai, D., Banerjee, M., Dey, P., & Mukherjee, S. K. (2020). Reserpine attenuates biofilm formation and virulence of Staphylococcus aureus. Microbial Pathogenesis, 138, 103790. https://doi.org/10.1016/j.micpath.2019.103790
  • Parrinello, M., & Rahman, A. (1981). Polymorphic transitions in single crystals: A new molecular dynamics method. Journal of Applied Physics, 52(12), 7182–7190. https://doi.org/10.1063/1.328693
  • Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., & Ferrin, T. E. (2004). UCSF Chimera – A visualization system for exploratory research and analysis . Journal of Computational Chemistry, 25(13), 1605–1612. https://doi.org/10.1002/jcc.20084
  • Pfeifer, H. J., Greenblatt, D. K., & Koch-Wester, J. (1976). Clinical toxicity of reserpine in hospitalized patients: A report from the Boston Collaborative Drug Surveillance Program. The American Journal of the Medical Sciences, 271(3), 269–276. https://doi.org/10.1097/00000441-197605000-00002
  • Prasch, S., & Bucar, F. (2015). Plant derived inhibitors of bacterial efflux pumps: An update. Phytochemistry Reviews, 14(6), 961–974. https://doi.org/10.1007/s11101-015-9436-y
  • Rath, B., Abul Qais, F., Patro, R., Mohapatra, S., & Sharma, T. (2021). Design, synthesis and molecular modeling studies of novel mesalamine linked coumarin for treatment of inflammatory bowel disease. Bioorganic & Medicinal Chemistry Letters, 41, 128029. https://doi.org/10.1016/j.bmcl.2021.128029
  • Schaduangrat, N., Lampa, S., Simeon, S., Gleeson, M. P., Spjuth, O., & Nantasenamat, C. (2020). Towards reproducible computational drug discovery. Journal of Cheminformatics, 12(1), 9. https://doi.org/10.1186/s13321-020-0408-x
  • Shin, J., Prabhakaran, V.-S., & Kim, K. (2018). The multi-faceted potential of plant-derived metabolites as antimicrobial agents against multidrug-resistant pathogens. Microbial Pathogenesis, 116, 209–214. https://doi.org/10.1016/j.micpath.2018.01.043
  • Shriram, V., Khare, T., Bhagwat, R., Shukla, R., & Kumar, V. (2018). Inhibiting bacterial drug efflux pumps via phyto-therapeutics to combat threatening antimicrobial resistance. Frontiers in Microbiology, 9, 2990. https://doi.org/10.3389/fmicb.2018.02990
  • Siddiqui, S., Ameen, F., Jahan, I., Nayeem, S. M., & Tabish, M. (2019). A comprehensive spectroscopic and computational investigation on the binding of the anti-asthmatic drug triamcinolone with serum albumin. New Journal of Chemistry, 43(10), 4137–4151. https://doi.org/10.1039/C8NJ05486J
  • Siddiqui, S., Ameen, F., Kausar, T., Nayeem, S. M., Ur Rehman, S., & Tabish, M. (2021). Biophysical insight into the binding mechanism of doxofylline to bovine serum albumin: An in vitro and in silico approach. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 249, 119296. https://doi.org/10.1016/j.saa.2020.119296
  • Sousa Da Silva, A. W., & Vranken, W. F. (2012). ACPYPE – AnteChamber PYthon Parser interfacE. BMC Research Notes, 5, 367. https://doi.org/10.1186/1756-0500-5-367
  • Spengler, G., Kincses, A., Gajdács, M., & Amaral, L. (2017). New roads leading to old destinations: Efflux pumps as targets to reverse multidrug resistance in bacteria. Molecules, 22(3), 468. https://doi.org/10.3390/molecules22030468
  • Trott, O., & Olson, A. J. (2009). AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31(2), 455-461. https://doi.org/10.1002/jcc.21334
  • Verma, P., Tiwari, M., & Tiwari, V. (2021). Efflux pumps in multidrug-resistant Acinetobacter baumannii: Current status and challenges in the discovery of efflux pumps inhibitors. Microbial Pathogenesis, 152, 104766. https://doi.org/10.1016/j.micpath.2021.104766
  • Watanabe, T., Arai, Y., Mitsui, Y., Kusaura, T., Okawa, W., Kajihara, Y., & Saito, I. (2006). The blood pressure-lowering effect and safety of chlorogenic acid from green coffee bean extract in essential hypertension. Clinical and Experimental Hypertension, 28(5), 439–449. https://doi.org/10.1080/10641960600798655
  • World Health Organization. (2017). Prioritization of pathogens to guide discovery, research and development of new antibiotics for drug resistant bacterial infections, including tuberculosis. Essential Medicines and Health Products. WHO reference number: WHO/EMP/IAU/2017.12.
  • Zhang, Y., Wei, J., Qiu, Y., Niu, C., Song, Z., Yuan, Y., & Yue, T. (2019). Structure-dependent inhibition of Stenotrophomonas maltophilia by polyphenol and its impact on cell membrane. Frontiers in Microbiology, 10, 2646. https://doi.org/10.3389/fmicb.2019.02646

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.