116
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Brain DNA damage analysis in pesticide exposed wistar albino rats (Rattus norvegicus): a chemometric approach

, &
Pages 2211-2220 | Received 30 Aug 2021, Accepted 08 Jan 2022, Published online: 22 Jan 2022

References

  • Ali, M. H., Al-Saad, K., Popelka, A., van Tilborg, G., & Goormaghtigh, E. (2016). Application of Fourier transform infrared (FTIR) spectroscopy and atomic force microscopy in stroke-affected brain tissue. Swift Journal of Medicine and Medical Sciences, 2, 011–024.
  • Altharawi, A., Rahman, K. M., & Chan, K. L. A. (2019). Towards identifying the mode of action of drugs using live-cell FTIR spectroscopy. The Analyst, 144(8), 2725–2735.
  • Avila, J., Ramos, A. G., & Soriano, E. (2014). Review: Variations in brain DNA. Frontiers in Aging Neuroscience, 6, 323.
  • Balan, I., Beattie, M. C., O’Buckley, T. K., Aurelian, L., & Morrow, A. L. (2019). Endogenous neurosteroid (3α, 5α)3-hydroxypregnan-20-one inhibits Toll-like-4 receptor activation and pro-inflammatory signaling in macrophages and brain. Scientific Reports, 9(1), 1220. https://doi.org/10.1038/s41598-018-37409-6
  • Beli, P., Lukashchuk, N., Wagner, S. A., Weinert, B. T., Olsen, J. V., Baskcomb, L., Mann, M., Jackson, S. P., & Choudhary, C. (2012). Proteomic investigations reveal a role for RNA processing factor THRAP3 in the DNA damage response. Molecular Cell, 46(2), 212–225. https://doi.org/10.1016/j.molcel.2012.01.026
  • Brkić, D. V., Vitorović, S. L., Gašić, S. M., & Nešković, N. K. (2008). Carbofuran in water: Subchronic toxicity to rats. Environmental Toxicology and Pharmacology, 25, 334–341.
  • Bruner, S. D., Norman, D. P. G., & Verdine, G. L. (2000). Structural basis for recognition and repair of the endogenous mutagen 8-oxoguanine in DNA. Nature, 403(6772), 859–866.
  • Chiriboga, L., Yee, H., & Diem, M. (2000). Infrared spectroscopy of human cells and tissues. Part VII. FT-IR microspectroscopy of DNAase- and RNAse- treated normal, cirrhotic and neoplastic liver tissue. Applied Spectroscopy, 54(4), 480–485. https://doi.org/10.1366/0003702001949889
  • Cinar, O., Semiz, O., & Can, A. (2015). Carbofuran alters centrosome and spindle organization, and delays cell division in oocytes and mitotic cells. Toxicological Sciences, 144(2), 298–306. https://doi.org/10.1093/toxsci/kfu317
  • Clemens, G., Hands, J. R., Dorling, K. M., & Baker, M. J. (2014). Vibrational spectroscopic methods for cytology and cellular research. The Analyst, 139(18), 4411–4444. https://doi.org/10.1039/C4AN00636D
  • Draux, F., Jeannesson, P., Gobinet, C., Sule-Suso, J., Pijanka, J., Sandt, C., Dumas, P., Manfait, M., & Sockalingum, G. D. (2009). IR spectroscopy reveals effect of non-cytotoxic doses of anti-tumor drug on cancer cells. Analytical and Bioanalytical Chemistry, 395, 293–301.
  • Fishel, M. L., Vasko, M. R., & Kelley, M. R. (2007). DNA repair in neurons: So if they don’t divide what’s to repair? Mutation Research, 614(1–2), 24–36. https://doi.org/10.1016/j.mrfmmm.2006.06.007
  • Fredericks, J. D., Bennett, P., Williams, A., & Rogers, K. D. (2012). FTIR spectroscopy: A new diagnostic tool to aid DNA analysis from heated bone. Forensic Science International. Genetics, 6(3), 375–380. https://doi.org/10.1016/j.fsigen.2011.07.014
  • Gault, N., & Lefaix, J. L. (2003). Infrared microspectroscopic characteristics of radiation-induced apoptosis in human lymphocytes. Radiation Research, 160(2), 238–250. https://doi.org/10.1667/rr3020.1
  • Giorgini, E., Giocchini, G., Sabbatini, S., Conti, C., Vaccari, L., Borini, A., Carnevali, O., & Tosi, G. (2014). Vibrational characterization of female gametes: A comparative study. The Analyst, 139, 5049.
  • Guo, C., Li, X., Wang, R., Yu, J., Ye, M., Mao, L., Zhang, S., & Zheng, S. (2016). Association between oxidative DNA damage and risk of colorectal cancer: Sensitive determinationof urinary 8-hydroxy-2′-deoxyguanosine by UPLC-MS/MS analysis. Scientific Reports, 6, 32581. https://doi.org/10.1038/srep32581
  • Gupta, R. C., Milatovic, S., Dettbarn, W. D., Aschner, M., & Milatovic, D. (2007). Neuronal oxidative injury and dendritic damage induced by carbofuran: Protection by memantine. Toxicology and Applied Pharmacology, 219(2–3), 97–105. https://doi.org/10.1016/j.taap.2006.10.028
  • Gupta, V. K., Pathak, A., Siddiqi, N. J., & Sharma, B. (2016). Carbofuran modulating functions of acetylcholinesterase from rat brain in vitro. Advances in Biology, 2016, 3760967. https://doi.org/10.1155/2016/3760967
  • Hamad, A. M., Fahmy, H. M., & Elshemey, W. M. (2020). FT-IR spectral features of DNA as markers for the detection of liver preservation using irradiation. Radiation Physics and Chemistry, 166, 108522.
  • Hu, X., De Silva, T. M., Chen, J., & Faraci, F. M. (2017). Cerebral vascular disease and neurovascular injury in ischemic stroke. Circulation Research, 120(3), 449–471. https://doi.org/10.1161/CIRCRESAHA.116.308427
  • Huang, M., Parker, M. J., & Stubbe, J. (2014). Choosing the right metal: Case studies of class I ribonucleotide reductases. The Journal of Biological Chemistry, 289(41), 28104–28111. https://doi.org/10.1074/jbc.R114.596684
  • Jackson, S. P., & Bartek, J. (2009). The DNA-damage response in human biology and disease. Nature, 461(7267), 1071–1078. https://doi.org/10.1038/nature08467
  • Jaiswal, S. K., Siddiqi, N. J., & Sharma, B. (2013). Carbofuran imbalances the redox status in rat brain: Amelioraton by vitamin C. Journal of Biochemistry Research, 1, 36–43.
  • Jaiswal, S. K., Siddiqi, N. J., & Sharma, B. (2014). Carbofuran induced oxidative stress mediated alterations in Na+-K+-ATPase activity in rat brain: Amelioration by vitamin E. Journal of Biochemical and Molecular Toxicology, 28 (7), 321–327.
  • Jaiswal, S. K., Sharma, A., Gupta, V. K., Singh, R. K., & Sharma, B. (2016). Curcumin mediated attenuation of carbofuran induced oxidative stress in rat brain. Biochemistry Research International, 2016, 7637931. https://doi.org/10.1155/2016/7637931
  • Kim, S. J., Kim, J. E., Ko, B. H., & Moon, I. S. (2004). Carbofuran induces apoptosis of rat cortical neurons and down-regulates surface alpha7 subunit of acetylcholine receptors. Molecules and Cells, 17(2), 242–247.
  • Kohler, A., Böcker, U., Shapaval, V., Forsmark, A., Andersson, M., Warringer, J., Martens, H., Omholt, S. W., & Blomberg, A. (2015). High-throughput biochemical fingerprinting of Saccharomyces cerevisiae by Fourier transform infrared spectroscopy. PLoS One, 10(2), e0118052. https://doi.org/10.1371/journal.pone.0118052
  • Krishnakumar, N., Milton Prabu, S., & Sulfikkarali, N. K. (2012). Quercetin protects against cadmium-induced biochemical and structural changes in rat liver revealed by FT-IR spectroscopy. Biomedicine & Preventive Nutrition, 2(3), 179–185. https://doi.org/10.1016/j.bionut.2012.03.010
  • LeBlanc, S. J., Gauer, J. W., Hao, P., Case, B. C., Hingorani, M. M., Weninger, K. R., & Erie, D. A. (2018). Coordinated protein and DNA conformational changes govern mismatch repair initiation by MutS. Nucleic Acids Research, 46(20), 10782–10795. https://doi.org/10.1093/nar/gky865
  • Lever, J., Krzywinski, M., & Altman, N. (2017). Points of significance: Principal component analysis. Nature Methods, 14(7), 641.
  • Lipiec, E., Bambery, K. R., Lekki, J., Tobin, M. J., Vogel, C., Whelan, D. R., Wood, B. R., & Kwiatek, W. M. (2015). SR-FTIR coupled with principal component analysis shows evidence for the cellular bystander effect. Radiation Research, 184(1), 73–82. https://doi.org/10.1667/RR13798.1
  • Lipiec, E., Bambery, K. R., Heraud, P., Kwiatek, W. M., McNaughton, D., Tobin, M. J., Vogel, C., & Wood, B. R. (2014). Monitoring uvr induced damage in single cells and isolated nuclei using SR-FTIR microspectroscopy and 3D confocal Raman imaging. The Analyst, 139(17), 4200–4209. https://doi.org/10.1039/c4an00838c
  • Maiti, A., Noon, M. S., MacKerell, A. D., Pozharski, E., & Drohat, A. C. (2012). Lesion processing by a repair enzyme is severely curtailed by residues needed to prevent aberrant activity on undamaged DNA. Proceedings of the National Academy of Sciences of the United States of America, 109(21), 8091–8096. https://doi.org/10.1073/pnas.1201010109
  • Meeker, J. D., Singh, N. P., Ryan, L., Duty, S. M., Barr, D. B., Herrick, R. F., Bennett, D. H., & Hauser, R. (2004). Urinary levels of insecticide metabolites and DNA damage in human sperm. Human Reproduction (Oxford, England), 19(11), 2573–2580. https://doi.org/10.1093/humrep/deh444
  • Moser, V. C., Katherine, M., Phillips, P. M., & Lowit, A. B. (2010). Time-course, dose-response, and age comparative sensitivity of N-methyl carbamates in rats. Toxicological Sciences, 114(1), 113–123. https://doi.org/10.1093/toxsci/kfp286
  • Neidhart, M. (2016). DNA methylation and complex human diseases (1st ed.). Academic Press.
  • Nouspikel, T., & Hanawalt, P. C. (2003). When parsimony backfires: Neglecting DNA repair may doom neurons in Alzheimer’s disease. BioEssays: News and Reviews in Molecular, Cellular and Developmental Biology, 25(2), 168–173. https://doi.org/10.1002/bies.10227
  • Otieno, P. O., Lalah, J. O., Virani, M., Jondiko, I. O., & Schramm, K. W. (2010). Soil and water contamination with carbofuran residues in agricultural farmlands in Kenya following the application of the technical formulation Furadan. Journal of Environmental Science and Health, Part B, 45(2), 137–144. https://doi.org/10.1080/03601230903472058
  • Ozek, N. S., Burak Bal, I., Sara, Y., Onur, R., & Severcan, F. (2014). Structural and functional characterization of simvastatin-induced myotoxicity in different skeletal muscles. Biochimica et Biophysica Acta, 1840(1), 406–415. https://doi.org/10.1016/j.bbagen.2013.09.010
  • Ozek, N. S., Sara, Y., Onur, R., & Severcan, F. (2010). Low dose simvastatin induces compositional, structural and dynamic changes in rat skeletal extensor digitorum longus muscle tissue. Bioscience Reports, 30, 41–50.
  • Park, A., Baek, S.-J., Shen, A., & Hu, J. (2013). Detection of Alzheimer’s disease by Raman spectra of rat’s platelets with a simple feature selection. Short communication. Chemometrics and Intelligent Laboratory Systems, 121, 52–56. https://doi.org/10.1016/j.chemolab.2012.11.011
  • Paston, S. V., Polyanichko, A. M., Shulenina, O. V., & Osinnikova, D. N. (2020). A study of the DNA structure in films using FTIR spectroscopy. Molecular Biophysics, 65(6), 900–906.
  • Rai, D. K., Rai, P. K., Watal, G., & Sharma, B. (2010). The Cynodondactylon extract help improve anticholinesterase effects and oxidative stress caused by carbofuran in rat brain. Toxicologic Pathology, 38 (1), E1–E6.
  • Rai, D. K., Sharma, R. K., Rai, P. K., Watal, G., & Sharma, B. (2011). Role of aqueous extract of Cynodondactylon in prevention of carbofuran induced oxidative stress and acetylcholinesterase inhibition in rat brain. Cellular and Molecular Biology, 57, 135–142.
  • Rai, D. K., & Sharma, B. (2007). Carbofuran-induced oxidative stress in mammalian brain. Molecular Biotechnology, 37(1), 66–71. https://doi.org/10.1007/s12033-007-0046-9
  • Sailer, E. R., Hoernlein, R. F., Ammon, H. P., & Safayhi, H. (1996). Structure-activity relationships of the nonredox-type non-competitive leukotriene biosynthesis inhibitor acetyl-11-keto-β-boswellic acid. Phytomedicine: International Journal of Phytotherapy and Phytopharmacology, 3(1), 73–74. https://doi.org/10.1016/S0944-7113(96)80014-6
  • Saquib, Q., Siddiqui, M. A., Ansari, S. M., Alwathnani, H. A., & Al-Khedhairy, A. A. (2021). Carbofuran cytotoxicity, DNA damage, oxidative stress, and cell death in human umbilical vein endothelial cells: Evidence of vascular toxicity. Journal of Applied Toxicology: JAT, 41(5), 847–860. https://doi.org/10.1002/jat.4150
  • Savitzky, A., & Golay, M. J. E. (1964). Smoothing and differentiation of data by simplified least squares procedures. Analytical Chemistry, 36(8), 1627–1639. https://doi.org/10.1021/ac60214a047
  • Saxena, P. N., Gupta, S. K., & Murthy, R. C. (2010). Carbofuran induced cytogenetic effects in root meristem cells of Allium cepa and Allium sativum: A spectroscopic approach for chromosome damage. Pesticide Biochemistry and Physiology, 96(2), 93–100. https://doi.org/10.1016/j.pestbp.2009.09.006
  • Serec, K., Šegedin, N., Krajačić, M., & Dolanski Babić, S. (2021). Conformational transitions of double-stranded DNA in thin films. Applied Sciences, 11(5), 2360. https://doi.org/10.3390/app11052360
  • Shiloh, Y., Shema, E., Moyal, L., & Oren, M. (2011). RNF20-RNF40: A ubiquitin-driven link between gene expression and the DNA damage response. FEBS Letters, 585(18), 2795–2802. https://doi.org/10.1016/j.febslet.2011.07.034
  • Sharma, R. K., Rai, D. K., & Sharma, B. (2012a). In-vitro carbofuran induced micronucleus formation in human blood lymphocytes. Cellular and Molecular Biology, 58 (1), 128–133.
  • Sharma, R. K., Rai, D. K., & Sharma, B. (2012b). In-vitro carbofuran induced genotoxicity in human lymphocytes and its mitigation by vitamins C and E. Disease Markers, 32(3), 153–163. 10.1155/2012/194502
  • Sofińska, K., Wilkosz, N., Szymoński, M., & Lipiec, E. (2020). Review: Molecular spectroscopic markers of DNA damage. Molecules. MDPI, 25(3), 561. https://doi.org/10.3390/molecules25030561
  • Soloneski, S., Reigosa, M. A., Molinari, G., González, N. V., & Larramendy, M. L. (2008). Genotoxic and cytotoxic effects of carbofuran and furadan on Chinese hamster ovary (CHOK1) cells. Mutation Research, 656(1–2), 68–73. https://doi.org/10.1016/j.mrgentox.2008.07.007
  • Tang, H. L., Tang, H. M., Mak, K. H., Hu, S., Wang, S. S., Wong, K. M., Wong, C. S. T., Wu, H. Y., Law, H. T., Liu, K., Talbot, C. C., Lau, W. K., Montell, D. J., & Fung, M. C. (2012). Cell survival, DNA damage, and oncogenic transformation after a transient and reversible apoptotic response. Molecular Biology of the Cell, 23(12), 2240–2252. https://doi.org/10.1091/mbc.E11-11-0926
  • Terry, R. D., Masliah, E., Salmon, D. P., Butters, N., DeTeresa, R., Hill, R., Hansen, L. A., & Katzman, R. (1991). Physical basis of cognitive alterations in Alzheimer’s disease: synapse loss is the major correlate of cognitive impairment. Annals of Neurology, 30(4), 572–580. https://doi.org/10.1002/ana.410300410
  • Treffer, R., Lin, X., Bailo, E., Deckert-Gaudig, T., & Deckert, V. (2011). Distinction of nucleobases—A tip-enhanced Raman approach. Beilstein Journal of Nanotechnology, 2(1), 628–637. https://doi.org/10.3762/bjnano.2.66
  • Tymchenko, E., Glova, V., Soldatov, A., Chikhirzhina, E., & Polyanichko, A. (2019). FTIR study of the secondary structure of DNA in complexes with platinum coordination compounds. Journal of Physics: Conference Series, 1400(3), 033004. https://doi.org/10.1088/1742-6596/1400/3/033004
  • Wang, J., Chi, C., & Lin Chern, S. Y. (1997). Conformational changes in gastric carcinoma cell membrane protein correlated to cell viability after treatment with adamantly maleimide. Anticancer Research, 17, 3473–3478.
  • Wong, P. T. T., Papavassiliou, E. D., & Rigas, B. (1991). Phosphodiester stretching bands in the infrared spectra of human tissues and cultured cells. Applied Spectroscopy, 45(9), 1563–1567. https://doi.org/10.1366/0003702914335580
  • Wood, B. R. (2016). The importance of hydration and DNA conformation in interpreting infrared spectra of cells and tissues. Chemical Society Reviews, 45(7), 1980–1998. https://doi.org/10.1039/c5cs00511f
  • Yu, M. C., Rich, P., Foreman, L., Smith, J., Yu, M. S., Tanna Dibbur, V., Unwin, R., & Tam, F. W. K. (2017). Label free detection of sensitive mid-infrared biomarkers of glomerulonephritis in urine using Fourier transform infrared spectroscopy. Nature. Scientific Report, 7, 4601.
  • Zeljezic, D., Vrdoljak, A. L., Kopjar, N., Radic, B., & Milkovic Kraus, S. (2008). Cholinesterase-inhibiting and genotoxic effects of acute carbofuran intoxication in man: A case report. Basic & Clinical Pharmacology & Toxicology, 103(4), 329–335. https://doi.org/10.1111/j.1742-7843.2008.00294.x
  • Zhang, L. J., Min, S. G., Li, G. X., Xiong, Y. M., & Sun, Y. (2005). The mechanism of carbofuran interacts with calf thymus DNA. Guang pu xue yu guang pu fen xi = Guang pu, 25(5), 739–742.
  • Zhou, P., Liu, B., & Lu, Y. (2005). DNA damaging effects of carbofuran and its main metabolites on mice by micronucleus test and single cell gel electrophoresis. Science in China Series C: Life Sciences, 48(S1), 40–47. https://doi.org/10.1007/BF02889800

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.