483
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Designing of nanobodies against Dengue virus Capsid: a computational affinity maturation approach

, , & ORCID Icon
Pages 2289-2299 | Received 20 Jan 2021, Accepted 08 Jan 2022, Published online: 22 Jan 2022

References

  • Bakan, A., Meireles, L. M., & Bahar, I. (2011). ProDy: Protein dynamics inferred from theory and experiments. Bioinformatics (Oxford, England), 27(11), 1575–1577. https://doi.org/10.1093/bioinformatics/btr168
  • Bannas, P., Hambach, J., & Koch-Nolte, F. (2017). Nanobodies and nanobody-based human heavy chain antibodies as antitumor therapeutics. Frontiers in Immunology, 8, 1603. https://doi.org/10.3389/fimmu.2017.01603
  • Dehouck, Y., Kwasigroch, J. M., Rooman, M., & Gilis, D. (2013). BeAtMuSiC: Prediction of changes in protein-protein binding affinity on mutations. Nucleic Acids Research, 41(Web Server issue), W333–W339. https://doi.org/10.1093/nar/gkt450
  • Essmann, U., Perera, L., Berkowitz, M. L., Darden, T., Lee, H., & Pedersen, L. G. (1995). A smooth particle mesh Ewald method. Journal of Chemical Physics., 103(19), 8577–8593. https://doi.org/10.1063/1.470117
  • Hassanzadeh-Ghassabeh, G., Devoogdt, N., Pauw, P. D., Vincke, C., & Muyldermans, S. (2013). Nanobodies and their potential applications. Nanomedicine (London, England), 8(6), 1013–1026. https://doi.org/10.2217/nnm.13.86
  • Heo, L., Lee, H., & Seok, C. (2016). GalaxyRefineComplex: Refinement of protein-protein complex model structures driven by interface repacking. Scientific Reports, 6, 32153. https://doi.org/10.1038/srep32153
  • Jemimah, S., Sekijima, M., & Gromiha, M. M. (2020). ProAffiMuSeq: Sequence-based method to predict the binding free energy change of protein-protein complexes upon mutation using functional classification. Bioinformatics (Oxford, England), 36(6), 1725–1730. https://doi.org/10.1093/bioinformatics/btz829
  • Jovčevska, I., & Muyldermans, S. (2020). The therapeutic potential of nanobodies. BioDrugs: Clinical Immunotherapeutics, Biopharmaceuticals and Gene Therapy, 34(1), 11–26. https://doi.org/10.1007/s40259-019-00392-z
  • Kelley, L. A., Mezulis, S., Yates, C. M., Wass, M. N., & Sternberg, M. J. E. (2015). The Phyre2 web portal for protein modeling, prediction and analysis. Nature Protocols, 10(6), 845–858. https://doi.org/10.1038/nprot.2015.053
  • Kozakov, D., Hall, D. R., Xia, B., Porter, K. A., Padhorny, D., Yueh, C., Beglov, D., & Vajda, S. (2017). The ClusPro web server for protein-protein docking. Nature Protocols, 12(2), 255–278. https://doi.org/10.1038/nprot.2016.169
  • Kumari, R., Kumar, R., Open Source Drug Discovery Consortium, & Lynn, A. (2014). g_mmpbsa-A GROMACS tool for high-throughput MM-PBSA calculations. Journal of Chemical Information and Modeling, 54(7), 1951–1962. https://doi.org/10.1021/ci500020m
  • Kunz, P., Zinner, K., Mücke, N., Bartoschik, T., Muyldermans, S., & Hoheisel, J. D. (2018). The structural basis of nanobody unfolding reversibility and thermoresistance. Scientific Reports, 8(1), 7934. https://doi.org/10.1038/s41598-018-26338-z
  • Li, L., Li, C., Zhang, Z., & Alexov, E. (2013). On the dielectric "constant" of proteins: Smooth dielectric function for macromolecular modeling and its implementation in DelPhi. Journal of Chemical Theory and Computation, 9(4), 2126–2136. https://doi.org/10.1021/ct400065j
  • Lindahl, A. & Hess, (2020). Gromacs 2020.4 source code. Zenodo.
  • Myung, Y., Rodrigues, C. H. M., Ascher, D. B., & Pires, D. E. V. (2020). mCSM-AB2: Guiding rational antibody design using graph-based signatures. Bioinformatics (Oxford, England), 36(5), 1453–1459. https://doi.org/10.1093/bioinformatics/btz779
  • Negi, S. S., Schein, C. H., Oezguen, N., Power, T. D., & Braun, W. (2007). InterProSurf: A web server for predicting interacting sites on protein surfaces. Bioinformatics (Oxford, England), 23(24), 3397–3399. https://doi.org/10.1093/bioinformatics/btm474
  • Pires, D. E. V., & Ascher, D. B. (2016). mCSM-AB: A web server for predicting antibody-antigen affinity changes upon mutation with graph-based signatures. Nucleic Acids Research, 44(W1), W469–W473. https://doi.org/10.1093/nar/gkw458
  • Reddy, M. R., & Berkowitz, M. (1989). The dielectric constant of SPC/E water. Chemical Physics Letters, 155(2), 173–176. https://doi.org/10.1016/0009-2614(89)85344-8
  • Robertson, M. J., Tirado-Rives, J., & Jorgensen, W. L. (2015). Improved peptide and protein torsional energetics with the OPLSAA force field. Journal of Chemical Theory and Computation, 11(7), 3499–3509. https://doi.org/10.1021/acs.jctc.5b00356
  • Salles, T. S., da Encarnação Sá-Guimarães, T., de Alvarenga, E. S. L., Guimarães-Ribeiro, V., de Meneses, M. D. F., de Castro-Salles, P. F., Dos Santos, C. R., do Amaral Melo, A. C., Soares, M. R., Ferreira, D. F., & Moreira, M. F. (2018). History, epidemiology and diagnostics of dengue in the American and Brazilian contexts: A review. Parasites & Vectors, 11(1), 264. https://doi.org/10.1186/s13071-018-2830-8
  • Sparrow, E., Friede, M., Sheikh, M., & Torvaldsen, S. (2017). Therapeutic antibodies for infectious diseases. Bulletin of the World Health Organization, 95(3), 235–237. https://doi.org/10.2471/BLT.16.178061
  • Sukhwal, A., & Sowdhamini, R. (2015). PPCheck: A webserver for the quantitative analysis of protein-protein interfaces and prediction of residue hotspots. Bioinformatics and Biology Insights, 9, BBI.S25928.
  • Vangone, A., Spinelli, R., Scarano, V., Cavallo, L., & Oliva, R. (2011). COCOMAPS: A web application to analyze and visualize contacts at the interface of biomolecular complexes. Bioinformatics (Oxford, England), 27(20), 2915–2916. https://doi.org/10.1093/bioinformatics/btr484
  • Vorontsov, I. I., & Miyashita, O. (2011). Crystal molecular dynamics simulations to speed up MM/PB(GB)SA evaluation of binding free energies of di-mannose deoxy analogs with P51G-m4-Cyanovirin-N. Journal of Computational Chemistry, 32(6), 1043–1053. https://doi.org/10.1002/jcc.21683
  • Weng, G., Wang, E., Wang, Z., Liu, H., Zhu, F., Li, D., & Hou, T. (2019). HawkDock: A web server to predict and analyze the protein-protein complex based on computational docking and MM/GBSA. Nucleic Acids Research, 47(W1), W322–W330. https://doi.org/10.1093/nar/gkz397
  • Wilton, E. E., Opyr, M. P., Kailasam, S., Kothe, R. F., & Wieden, H.-J. (2018). sdAb-DB: The single domain antibody database. ACS Synthetic Biology, 2018, 7(11), 2480–2484. https://doi.org/10.1021/acssynbio.8b00407
  • Xue, L. C., Rodrigues, J. M., Kastritis, P. L., Bonvin, A. M., & Vangone, A. (2016). PRODIGY: A web server for predicting the binding affinity of protein-protein complexes. Bioinformatics (Oxford, England), 32(23), 3676–3678. https://doi.org/10.1093/bioinformatics/btw514

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.