172
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

In vitro cytotoxicity, antibacterial activity and HSA and ct-DNA interaction studies of chlorogenic acid loaded on γ-Fe2O3@SiO2 as new nanoparticles

, , , &
Pages 2300-2320 | Received 23 Mar 2021, Accepted 08 Jan 2022, Published online: 04 Feb 2022

References

  • Abdelaziz, M. A., Shaldam, M., El-Domany, R. A., & Belal, F. (2022). Multi-Spectroscopic, thermodynamic and molecular dynamic simulation studies for investigation of interaction of dapagliflozin with bovine serum albumin. Spectrochimica Acta Part A, Molecular and Biomolecular Spectroscopy, 264, 120298. https://doi.org/10.1016/j.saa.2021.120298
  • Argyo, C., Weiss, V., Bräuchle, C., & Bein, T. (2014). Multifunctional mesoporous silica nanoparticles as a universal platform for drug delivery. Chemistry of Materials, 26(1), 435–451. https://doi.org/10.1021/cm402592t
  • Bakheet, A. A. A. A., & Zhu, X. S. (2017). Determination of rhodamine B pigment in food samples by ionic liquid coated magnetic core/shell Fe3O4@ SiO2 nanoparticles coupled with fluorescence spectrophotometry. Science, 5(1), 1–7. https://doi.org/10.11648/j.sjc.20170501.11
  • Barahuie, F., Saifullah, B., Dorniani, D., Fakurazi, S., Karthivashan, G., Hussein, M. Z., & Elfghi, F. M. (2017). Graphene oxide as a nanocarrier for controlled release and targeted delivery of an anticancer active agent, chlorogenic acid. Materials Science & Engineering C, Materials for Biological Applications, 74, 177–185. https://doi.org/10.1016/j.msec.2016.11.114
  • Besenhard, M. O., LaGrow, A. P., Hodzic, A., Kriechbaum, M., Panariello, L., Bais, G., Loizou, K., Damilos, S., Cruz, M. M., Thanh, N. T. K., & Gavriilidis, A. (2020). Co-precipitation synthesis of stable iron oxide nanoparticles with NaOH: New insights and continuous production via flow chemistry. Chemical Engineering Journal, 399, 125740. https://doi.org/10.1016/j.cej.2020.125740
  • Bi, S., Zhao, T., Wang, Y., & Zhou, H. (2016). Study on the interactions of mapenterol with serum albumins using multi-spectroscopy and molecular docking. Luminescence: The Journal of Biological and Chemical Luminescence, 31(2), 372–379. https://doi.org/10.1002/bio.2969
  • Chakraborty, M., Paul, S., Mitra, I., Bardhan, M., Bose, M., Saha, A., & Ganguly, T. (2018). To reveal the nature of interactions of human hemoglobin with gold nanoparticles having two different morphologies (sphere and star-shaped) by using various spectroscopic techniques. Journal of Photochemistry and Photobiology B: Biology, 178, 355–366. https://doi.org/10.1016/j.jphotobiol.2017.11.026
  • Cheung-Ong, K., Giaever, G., & Nislow, C. (2013). DNA-damaging agents in cancer chemotherapy: Serendipity and chemical biology. Chemistry & Biology, 20(5), 648–659. https://doi.org/10.1016/j.chembiol.2013.04.007
  • Ciniglia, C., Pinto, G., Sansone, C., & Pollio, A. (2010). Acridine orange/Ethidium bromide double staining test: A simple In-vitro assay to detect apoptosis induced by phenolic compounds in plant cells. Allelopathy Journal, 26(2), 301–308.
  • Couvreur, P. (2013). Nanoparticles in drug delivery: Past, present and future. Advanced Drug Delivery Reviews, 65(1), 21–23. https://doi.org/10.1016/j.addr.2012.04.010
  • Das, S., Chatterjee, S., Pramanik, S., Devi, P. S., & Kumar, G. S. (2018). A new insight into the interaction of ZnO with calf thymus DNA through surface defects. Journal of Photochemistry and Photobiology B, Biology, 178, 339–347. https://doi.org/10.1016/j.jphotobiol.2017.10.039
  • El Ghandoor, H., Zidan, H., Khalil, M. M., & Ismail, M. (2012). Synthesis and some physical properties of magnetite (Fe 3 O 4) nanoparticles. International Journal of Electrochemical Science., 7, 5734–5745.
  • Ezhuthupurakkal, P. B., Polaki, L. R., Suyavaran, A., Subastri, A., Sujatha, V., & Thirunavukkarasu, C. (2017). Selenium nanoparticles synthesized in aqueous extract of Allium sativum perturbs the structural integrity of Calf thymus DNA through intercalation and groove binding. Materials Science & Engineering C, Materials for Biological Applications, 74, 597–608. https://doi.org/10.1016/j.msec.2017.02.003
  • Farah, A., Monteiro, M., Donangelo, C. M., & Lafay, S. (2008). Chlorogenic acids from green coffee extract are highly bioavailable in humans. The Journal of Nutrition, 138(12), 2309–2315. https://doi.org/10.3945/jn.108.095554
  • Garkoti, C., Shabir, J., & Mozumdar, S. (2017). An imidazolium based ionic liquid supported on Fe 3 O 4@ SiO 2 nanoparticles as an efficient heterogeneous catalyst for N-formylation of amines. New Journal of Chemistry, 41(17), 9291–9298. https://doi.org/10.1039/C6NJ03985E
  • Ghasemzadeh, M. A., & Abdollahi-Basir, M. H. (2016). Fe3O4@SiO2-NH2 nanocomposite as a robust and effective catalyst for the one-pot synthesis of polysubstituted dihydropyridines. Acta Chimica Slovenica, 63(3), 627–637. https://doi.org/10.17344/acsi.2016.2386
  • Gnanavel, V., Palanichamy, V., & Roopan, S. M. (2017). Biosynthesis and characterization of copper oxide nanoparticles and its anticancer activity on human colon cancer cell lines (HCT-116). Journal of Photochemistry and Photobiology B, Biology, 171, 133–138. https://doi.org/10.1016/j.jphotobiol.2017.05.001
  • He, W., Dou, H., Li, Z., Wang, X., Wang, L., Wang, R., & Chang, J. (2014). Investigation of the interaction between five alkaloids and human hemoglobin by fluorescence spectroscopy and molecular modeling. Spectrochimica Acta Part A, Molecular and Biomolecular Spectroscopy, 123, 176–186. https://doi.org/10.1016/j.saa.2013.12.059
  • Hou, N., Liu, N., Han, J., Yan, Y., & Li, J. (2017). Chlorogenic acid induces reactive oxygen species generation and inhibits the viability of human colon cancer cells. Anti-Cancer Drugs, 28(1), 59–65. https://doi.org/10.1097/CAD.0000000000000430
  • Huang, J., Bu, L., Xie, J., Chen, K., Cheng, Z., Li, X., & Chen, X. (2010). Effects of nanoparticle size on cellular uptake and liver MRI with polyvinylpyrrolidone-coated iron oxide nanoparticles. ACS nano, 4(12), 7151–7160.
  • Hurley, L. H. (2002). DNA and its associated processes as targets for cancer therapy. Nature Reviews Cancer, 2(3), 188–200. https://doi.org/10.1038/nrc749
  • Jadhav, G. B., Zalte, A. G., Saudagar, R. B., & Pingale, A. P. (2014). Spectrophotometric Determination of and Validation of Zidovudine Concentration in Bulk and Dosage form. Asian Journal of Pharmaceutical Analysis, 4(2), 51–53.
  • Khatami, M., Alijani, H. Q., Fakheri, B., Mobasseri, M. M., Heydarpour, M., Farahani, Z. K., & Khan, A. U. (2019). Super-paramagnetic iron oxide nanoparticles (SPIONs): Greener synthesis using Stevia plant and evaluation of its antioxidant properties. Journal of Cleaner Production, 208, 1171–1177. https://doi.org/10.1016/j.jclepro.2018.10.182
  • Koegler, P., Clayton, A., Thissen, H., Santos, G. N. C., & Kingshott, P. (2012). The influence of nanostructured materials on biointerfacial interactions. Advanced Drug Delivery Reviews, 64(15), 1820–1839. https://doi.org/10.1016/j.addr.2012.06.001
  • Kou, L., Sun, J., Zhai, Y., & He, Z. (2013). The endocytosis and intracellular fate of nanomedicines: Implication for rational design. Asian Journal of Pharmaceutical Sciences, 8(1), 1–10.
  • Kumar, S., Singh, V., Aggarwal, S., Mandal, U. K., & Kotnala, R. K. (2010). Influence of processing methodology on magnetic behavior of multicomponent ferrite nanocrystals. The Journal of Physical Chemistry C, 114(14), 6272–6280. https://doi.org/10.1021/jp911586d
  • Li, Y., Chen, Z., & Gu, N. (2012). In vitro biological effects of magnetic nanoparticles. Chinese science bulletin, 57(31), 3972–3978.
  • Li, Y.-S., Church, J. S., & Woodhead, A. L. (2012). Infrared and Raman spectroscopic studies on iron oxide magnetic nano-particles and their surface modifications. Journal of Magnetism and Magnetic Materials, 324(8), 1543–1550.
  • Lou, Z., Wang, H., Zhu, S., Ma, C., & Wang, Z. (2011). Antibacterial activity and mechanism of action of chlorogenic acid. Journal of Food Science, 76(6), M398–M403. https://doi.org/10.1111/j.1750-3841.2011.02213.x
  • Maji, A., Beg, M., Das, S., Jana, G. C., Jha, P. K., Islam, M. M., & Hossain, M. (2019). Spectroscopic study on interaction of Nymphaea nouchali leaf extract mediated bactericidal gold nanoparticles with human serum albumin. Journal of Molecular Structure, 1179, 685–693. https://doi.org/10.1016/j.molstruc.2018.11.055
  • Makovec, D., Košak, A., Žnidaršič, A., & Drofenik, M. (2005). The synthesis of spinel–ferrite nanoparticles using precipitation in microemulsions for ferrofluid applications. Journal of Magnetism and Magnetic Materials, 289, 32–35. https://doi.org/10.1016/j.jmmm.2004.11.010
  • Mallakpour, S., Dinari, M., & Hatami, M. (2015). Dispersion of surface-modified nano-Fe3O4 with poly (vinyl alcohol) in chiral poly (amide-imide) bearing pyromellitoyl-bis-l-phenylalanine segments. Journal of Materials Science, 50(7), 2759–2767. https://doi.org/10.1007/s10853-015-8831-5
  • Meng, S., Cao, J., Feng, Q., Peng, J., & Hu, Y. (2013). Roles of chlorogenic acid on regulating glucose and lipids metabolism: A review. Evidence-Based Complementary and Alternative Medicine: eCAM, 2013, 801457. https://doi.org/10.1155/2013/801457
  • Mills, C. E., Tzounis, X., Oruna-Concha, M. J., Mottram, D. S., Gibson, G. R., & Spencer, J. P. (2015). In vitro colonic metabolism of coffee and chlorogenic acid results in selective changes in human faecal microbiota growth. British Journal of Nutrition, 113(8), 1220–1227. https://doi.org/10.1017/S0007114514003948
  • Morales, M. D. P., Veintemillas-Verdaguer, S., Montero, M. I., Serna, C. J., Roig, A., Casas, L., Martinez, B., & Sandiumenge, F. (1999). Surface and internal spin canting in γ-Fe2O3 nanoparticles. Chemistry of Materials, 11(11), 3058–3064. https://doi.org/10.1021/cm991018f
  • Mou, X., Ali, Z., Li, S., & He, N. (2015). Applications of magnetic nanoparticles in targeted drug delivery system. Journal of Nanoscience and Nanotechnology, 15(1), 54–62. https://doi.org/10.1166/jnn.2015.9585
  • Mura, S., Nicolas, J., & Couvreur, P. (2013). Stimuli-responsive nanocarriers for drug delivery. Nature Materials, 12(11), 991–1003. https://doi.org/10.1038/nmat3776
  • Muthuswamy, S., & Rupasinghe, H. V. (2007). Fruit phenolics as natural antimicrobial agents: Selective antimicrobial activity of catechin, chlorogenic acid and phloridzin. Journal of Food Agriculture and Environment, 5(3–4), 81.
  • Nallamuthu, I., Devi, A., & Khanum, F. (2015). Chlorogenic acid loaded chitosan nanoparticles with sustained release property, retained antioxidant activity and enhanced bioavailability. Asian Journal of Pharmaceutical Sciences, 10(3), 203–211. https://doi.org/10.1016/j.ajps.2014.09.005
  • Nichenametla, S. N., Taruscio, T. G., Barney, D. L., & Exon, J. H. (2006). A review of the effects and mechanisms of polyphenolics in cancer. Critical Reviews in Food Science and Nutrition, 46(2), 161–183. https://doi.org/10.1080/10408390591000541
  • Onakpoya, I., Spencer, E., Thompson, M., & Heneghan, C. (2015). The effect of chlorogenic acid on blood pressure: A systematic review and meta-analysis of randomized clinical trials. Journal of Human Hypertension, 29(2), 77–81. https://doi.org/10.1038/jhh.2014.46
  • Ong, K. W., Hsu, A., & Tan, B. K. H. (2013). Anti-diabetic and anti-lipidemic effects of chlorogenic acid are mediated by ampk activation. Biochemical Pharmacology, 85(9), 1341–1351. https://doi.org/10.1016/j.bcp.2013.02.008
  • Osborne, E. A., Atkins, T. M., Gilbert, D. A., Kauzlarich, S. M., Liu, K., & Louie, A. Y. (2012). Rapid microwave-assisted synthesis of dextran-coated iron oxide nanoparticles for magnetic resonance imaging. Nanotechnology, 23(21), 215602. https://doi.org/10.1088/0957-4484/23/21/215602
  • Peepliwal, A., Vyawahare, S. D., & Bonde, C. G. (2010). A quantitative analysis of Zidovudine containing formulation by FT-IR and UV spectroscopy. Analytical Methods, 2(11), 1756–1763. https://doi.org/10.1039/c0ay00341g
  • Pušnik, K., Goršak, T., Drofenik, M., & Makovec, D. (2016). Synthesis of aqueous suspensions of magnetic nanoparticles with the co-precipitation of iron ions in the presence of aspartic acid. Journal of Magnetism and Magnetic Materials, 413, 65–75. https://doi.org/10.1016/j.jmmm.2016.04.032
  • Puupponen‐Pimiä, R., Nohynek, L., Meier, C., Kähkönen, M., Heinonen, M., Hopia, A., & Oksman‐Caldentey, K. M. (2001). Antimicrobial properties of phenolic compounds from berries. Journal of Applied Microbiology, 90(4), 494–507. https://doi.org/10.1046/j.1365-2672.2001.01271.x
  • Reddy, D. R., Theja, D., Ruthu, M., Sai, B., & Reddy, Y. P. (2012). Validated spectrophotometric method for simultaneous estimation of zidovudine and lamivudine in combined pharmaceutical dosage form. International Journal of PharmTech Research, 4(1), 311–314.
  • Roth, H. C., Schwaminger, S. P., Schindler, M., Wagner, F. E., & Berensmeier, S. (2015). Influencing factors in the CO-precipitation process of superparamagnetic iron oxide nano particles: A model based study. Journal of Magnetism and Magnetic Materials, 377, 81–89. https://doi.org/10.1016/j.jmmm.2014.10.074
  • Sahoo, B. K., Ghosh, K. S., & Dasgupta, S. (2009). Molecular interactions of isoxazolcurcumin with human serum albumin: Spectroscopic and molecular modeling studies. Biopolymers, 91(2), 108–119. https://doi.org/10.1002/bip.21092
  • Salamatmanesh, A., Miraki, M. K., Yazdani, E., & Heydari, A. (2018). Copper (I)–caffeine complex immobilized on silica-coated magnetite nanoparticles: A recyclable and eco-friendly catalyst for click chemistry from organic halides and epoxides. Catalysis Letters, 148(10), 3257–3268. https://doi.org/10.1007/s10562-018-2523-0
  • Samrot, A. V., Sahithya, C. S., Selvarani, J., Purayil, S. K., & Ponnaiah, P. (2021). A review on synthesis, characterization and potential biological applications of superparamagnetic iron oxide nanoparticles. Current Research in Green and Sustainable Chemistry, 4, 100042. https://doi.org/10.1016/j.crgsc.2020.100042
  • Sarwar, T., Rehman, S. U., Husain, M. A., Ishqi, H. M., & Tabish, M. (2015). Interaction of coumarin with calf thymus DNA: Deciphering the mode of binding by in vitro studies. International Journal of Biological Macromolecules, 73, 9–16. https://doi.org/10.1016/j.ijbiomac.2014.10.017
  • Sato, Y., Itagaki, S., Kurokawa, T., Ogura, J., Kobayashi, M., Hirano, T., Sugawara, M., & Iseki, K. (2011). In vitro and in vivo antioxidant properties of chlorogenic acid and caffeic acid. International Journal of Pharmaceutics, 403(1–2), 136–138. https://doi.org/10.1016/j.ijpharm.2010.09.035
  • Sekar, G., Haldar, M., Kumar, D. T., Doss, C. G. P., Mukherjee, A., & Chandrasekaran, N. (2017). Exploring the interaction between iron oxide nanoparticles (IONPs) and human serum albumin (HSA): Spectroscopic and docking studies. Journal of Molecular Liquids, 241, 793–800. https://doi.org/10.1016/j.molliq.2017.06.093
  • Shahabadi, N., Abbasi, A. R., Moshtkob, A., & Hadidi, S. (2020). Design, synthesis and DNA interaction studies of new fluorescent platinum complex containing anti-HIV drug didanosine. Journal of Biomolecular Structure & Dynamics, 38(10), 2837–2848. https://doi.org/10.1080/07391102.2019.1658643
  • Shahabadi, N., Falsafi, M., Feizi, F., & Khodarahmi, R. (2016). Functionalization of γ-Fe 2 O 3@ SiO 2 nanoparticles using the antiviral drug zidovudine: Synthesis, characterization, in vitro cytotoxicity and DNA interaction studies. RSC Advances, 6(77), 73605–73616. https://doi.org/10.1039/C6RA16564H
  • Shahabadi, N., Falsafi, M., & Mansouri, K. (2016). Improving antiproliferative effect of the anticancer drug cytarabine on human promyelocytic leukemia cells by coating on Fe3O4@SiO2 nanoparticles. Colloids and Surfaces B, Biointerfaces, 141, 213–222. https://doi.org/10.1016/j.colsurfb.2016.01.054
  • Shahabadi, N., Hadidi, S., & Feizi, F. (2015). Study on the interaction of antiviral drug ‘Tenofovir’ with human serum albumin by spectral and molecular modeling methods. Spectrochimica Acta Part A, Molecular and Biomolecular Spectroscopy, 138, 169–175. https://doi.org/10.1016/j.saa.2014.10.070
  • Shahabadi, N., Akbari, A., Jamshidbeigi, M., & Falsafi, M. (2016). Functionalization of Fe3O4@ SiO2 magnetic nanoparticles with nicotinamide and in vitro DNA interaction. Journal of Molecular Liquids, 224, 227–233. https://doi.org/10.1016/j.molliq.2016.09.103
  • Shahabadi, N., Kashanian, S., & Darabi, F. (2009). In vitro study of DNA interaction with a water-soluble dinitrogen Schiff base. DNA and Cell Biology, 28(11), 589–596. https://doi.org/10.1089/dna.2009.0881
  • Shahabadi, N., Momeni, B. Z., & Zendehcheshm, S. (2019). Studies on the interaction of [SnMe2Cl2(bu2bpy)] complex with ct-DNA using multispectroscopic, atomic force microscopy (AFM) and molecular docking. Nucleosides, Nucleotides & Nucleic Acids, 38(2), 157–182. https://doi.org/10.1080/15257770.2018.1506885
  • Shahabadi, N., & Moshtkoob, A. (2020). In vitro interaction of nucleoside reverse transcriptase inhibitor, didanosine with calf-thymus DNA: Insights from spectroscopic studies. Nucleosides, Nucleotides & Nucleic Acids, 39(8), 1122–1133. https://doi.org/10.1080/15257770.2020.1780435
  • Shahabadi, N., Shadkam, M., & Mansouri, K. (2019). DNA binding and cytotoxicity studies of magnetic nanofluid containing antiviral drug oseltamivir. Journal of Biomolecular Structure & Dynamics, 37(11), 2980–2988. https://doi.org/10.1080/07391102.2018.1502685
  • Shahabadi, N., & Shiri, F. (2017). Multispectroscopic studies on the interaction of a copper(ii) complex of ibuprofen drug with calf thymus DNA. Nucleosides, Nucleotides & Nucleic Acids, 36(2), 83–106. https://doi.org/10.1080/15257770.2016.1223305
  • Shahabadi, N., & Zendehcheshm, S. (2020). Evaluation of ct-DNA and HSA binding propensity of antibacterial drug chloroxine: Multi-spectroscopic analysis, atomic force microscopy and docking simulation. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 230, 118042. https://doi.org/10.1016/j.saa.2020.118042
  • Shahabadi, N., & Zendehcheshm, S. (2021). Interaction of human hemoglobin (HHb) and cytochrome c (Cyt c) with biogenic chloroxine-conjugated silver nanoflowers: Spectroscopic and molecular docking approaches. Journal of Biomolecular Structure and Dynamics, 1–12. https://doi.org/10.1080/07391102.2021.1919555
  • Shahabadi, N., Zendehcheshm, S., & Khademi, F. (2021). Selenium nanoparticles: Synthesis, in-vitro cytotoxicity, antioxidant activity and interaction studies with ct-DNA and HSA, HHb and Cyt c serum proteins. Biotechnology Reports (Amsterdam, Netherlands), 30, e00615. https://doi.org/10.1016/j.btre.2021.e00615
  • Shahabadi, N., Zendehcheshm, S., Momeni, B. Z., & Abbasi, R. (2020). Antiproliferative activity and human serum albumin binding propensity of [SnMe2Cl2 (bu2bpy)]: Multi-spectroscopic analysis, atomic force microscopy, and computational studies. Journal of Coordination Chemistry, 73(8), 1349–1376. https://doi.org/10.1080/00958972.2020.1775821
  • Shann, S.Y., Lau, C.M., Thomas, S.N., Jerome, W.G., Maron, D.J., Dickerson, J.H., Hubbell, J.A., & Giorgio, T.D. (2012). Size-and charge-dependent non-specific uptake of PEGylated nanoparticles by macrophages. International journal of nanomedicine, 7, 799.
  • Soleimani, E., Naderi Namivandi, M., & Sepahvand, H. (2017). ZnCl2 supported on Fe3O4@ SiO2 core–shell nanocatalyst for the synthesis of quinolines via Friedländer synthesis under solvent‐free condition. Applied Organometallic Chemistry, 31(2), e3566. https://doi.org/10.1002/aoc.3566
  • Subastri, A., Arun, V., Sharma, P., Preedia Babu, E., Suyavaran, A., Nithyananthan, S., Alshammari, G. M., Aristatile, B., Dharuman, V., & Thirunavukkarasu, C. (2018). Synthesis and characterisation of arsenic nanoparticles and its interaction with DNA and cytotoxic potential on breast cancer cells. Chemico-Biological Interactions, 295, 73–83. https://doi.org/10.1016/j.cbi.2017.12.025
  • Swain, M. (2012). Chemicalize.org by ChemAxon Ltd. Journal of Chemical Information and Modeling, 52(2), 613–615. https://doi.org/10.1021/ci300046g
  • Taylor, U., Klein, S., Petersen, S., Kues, W., Barcikowski, S., & Rath, D. (2010). Nonendosomal cellular uptake of ligand-free, positively charged gold nanoparticles. Cytometry Part A: The Journal of the International Society for Advancement of Cytometry, 77(5), 439–446.
  • Thanh, N. T. (2012). Magnetic nanoparticles: From fabrication to clinical applications. CRC Press.
  • Ulbrich, K., Holá, K., Šubr, V., Bakandritsos, A., Tuček, J., & Zbořil, R. (2016). Targeted drug delivery with polymers and magnetic nanoparticles: Covalent and noncovalent approaches, release control, and clinical studies. Chemical Reviews, 116(9), 5338–5431. https://doi.org/10.1021/acs.chemrev.5b00589
  • Varlan, A., Ionescu, S., & Hillebrand, M. (2011). Study of the interaction between ofloxacin and human serum albumin by spectroscopic methods. Luminescence: The Journal of Biological and Chemical Luminescence, 26(6), 710–715. https://doi.org/10.1002/bio.1302
  • Wang, J., Sun, J., Sun, Q., & Chen, Q. (2003). One-step hydrothermal process to prepare highly crystalline Fe3O4 nanoparticles with improved magnetic properties. Materials Research Bulletin, 38(7), 1113–1118. https://doi.org/10.1016/S0025-5408(03)00129-6
  • Wang, J., Zheng, S., Shao, Y., Liu, J., Xu, Z., & Zhu, D. (2010). Amino-functionalized Fe(3)O(4)@SiO(2) core-shell magnetic nanomaterial as a novel adsorbent for aqueous heavy metals removal. Journal of Colloid and Interface Science, 349(1), 293–299. https://doi.org/10.1016/j.jcis.2010.05.010
  • Westerlund, F., Nordell, P., Nordén, B., & Lincoln, P. (2007). Kinetic characterization of an extremely slow DNA binding equilibrium. The Journal of Physical Chemistry. B, 111(30), 9132–9137. https://doi.org/10.1021/jp072126p
  • Woo, K., Hong, J., Choi, S., Lee, H. W., Ahn, J. P., Kim, C. S., & Lee, S. W. (2004). Easy synthesis and magnetic properties of iron oxide nanoparticles. Chemistry of Materials, 16(14), 2814–2818. https://doi.org/10.1021/cm049552x
  • Yasrebi, S. A., Takjoo, R., & Riazi, G. H. (2019). HSA-interaction studies of uranyl complexes of alkyl substituted isothiosemicarbazone. Journal of Molecular Structure, 1193, 53–61. https://doi.org/10.1016/j.molstruc.2019.04.126
  • Yi, R., Ye, G., Pan, D., Wu, F., Wen, M., & Chen, J. (2014). Novel core–shell structured superparamagnetic microspheres decorated with macrocyclic host molecules for specific recognition and magnetic removal of Pb (II). Journal of Materials Chemistry A, 2(19), 6840–6846. https://doi.org/10.1039/C3TA15233B
  • Yu, B. Y., & Kwak, S. Y. (2010). Assembly of magnetite nanocrystals into spherical mesoporous aggregates with a 3-D wormhole-like pore structure. Journal of Materials Chemistry, 20(38), 8320–8328. https://doi.org/10.1039/c0jm01274b
  • Yu, S., Wu, G., Gu, X., Wang, J., Wang, Y., Gao, H., & Ma, J. (2013). Magnetic and pH-sensitive nanoparticles for antitumor drug delivery. Colloids and Surfaces B, Biointerfaces, 103, 15–22. https://doi.org/10.1016/j.colsurfb.2012.10.041
  • Zhang, X., Niu, Y., Meng, X., Li, Y., & Zhao, J. (2013). Structural evolution and characteristics of the phase transformations between α-Fe2O3, Fe3O4 and γ-Fe2O3 nanoparticles under reducing and oxidizing atmospheres. CrystEngComm, 15(40), 8166–8172.
  • Zhao, M., Wang, H., Yang, B., & Tao, H. (2010). Identification of cyclodextrin inclusion complex of chlorogenic acid and its antimicrobial activity. Food Chemistry, 120(4), 1138–1142. https://doi.org/10.1016/j.foodchem.2009.11.044
  • Zhao, F., Zhao, Y., Liu, Y., Chang, X., Chen, C., & Zhao, Y. (2011). Cellular uptake, intracellular trafficking, and cytotoxicity of nanomaterials. Small, 7(10), 1322–1337.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.