184
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Artecanin of Laurus nobilis is a novel inhibitor of SARS-CoV-2 main protease with highly desirable druglikeness

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 2355-2367 | Received 12 Oct 2021, Accepted 12 Jan 2022, Published online: 22 Jan 2022

References

  • Abdalla, M. A., & McGaw, L. J. (2018). Bioprospecting of South African plants as a unique resource for bioactive endophytic microbes. Frontiers in Pharmacology, 9, 456.
  • Adem, Ş., Eyupoglu, V., Sarfraz, I., Rasul, A., Zahoor, A. F., Ali, M., Abdalla, M., Ibrahim, I. M., & Elfiky, A. A. (2021). Caffeic acid derivatives (CAFDs) as inhibitors of SARS-CoV-2: CAFDs-based functional foods as a potential alternative approach to combat COVID-19. Phytomedicine : International Journal of Phytotherapy and Phytopharmacology, 85, 153310. https://doi.org/10.1016/j.phymed.2020.153310
  • Ahmed, H. M. (2016). Ethnopharmacobotanical study on the medicinal plants used by herbalists in Sulaymaniyah Province, Kurdistan, Iraq. Journal of Ethnobiology and Ethnomedicine, 12(1), 1–17. https://doi.org/10.1186/s13002-016-0081-3
  • Al-Douri, N. A. (2000). A survey of medicinal plants and their traditional uses in Iraq. Pharmaceutical Biology, 38(1), 74–79. https://doi.org/10.1076/1388-0209(200001)3811-BFT074
  • Atanasov, A. G., Waltenberger, B., Pferschy-Wenzig, E.-M., Linder, T., Wawrosch, C., Uhrin, P., Temml, V., Wang, L., Schwaiger, S., Heiss, E. H., Rollinger, J. M., Schuster, D., Breuss, J. M., Bochkov, V., Mihovilovic, M. D., Kopp, B., Bauer, R., Dirsch, V. M., & Stuppner, H. (2015). Discovery and resupply of pharmacologically active plant-derived natural products: A review. Biotechnology Advances, 33(8), 1582–1614.
  • Bafna, K., Krug, R. M., & Montelione, G. T. (2020). Structural similarity of SARS-CoV2 Mpro and HCV NS3/4A proteases suggests new approaches for identifying existing drugs useful as COVID-19 therapeutics. ChemRxiv,
  • Banerjee, P., Eckert, A. O., Schrey, A. K., & Preissner, R. (2018). ProTox-II: A webserver for the prediction of toxicity of chemicals. Nucleic Acids Research, 46(W1), W257–W263.
  • Cao, Y., Hiyoshi, A., & Montgomery, S. (2020). COVID-19 case-fatality rate and demographic and socioeconomic influencers: Worldwide spatial regression analysis based on country-level data. BMJ Open, 10(11), e043560. https://doi.org/10.1136/bmjopen-2020-043560
  • Chakravarti, R., Singh, R., Ghosh, A., Dey, D., Sharma, P., Velayutham, R., Roy, S., & Ghosh, D. (2021). A review on potential of natural products in the management of COVID-19. RSC Advances, 11(27), 16711–16735. https://doi.org/10.1039/D1RA00644D
  • Cherrak, S. A., Merzouk, H., & Mokhtari-Soulimane, N. (2020). Potential bioactive glycosylated flavonoids as SARS-CoV-2 main protease inhibitors: A molecular docking and simulation studies. PLoS One, 15(10), e0240653. https://doi.org/10.1371/journal.pone.0240653
  • Choudhary, M. I., Shaikh, M., Tul-Wahab, A., & Ur-Rahman, A. (2020). In silico identification of potential inhibitors of key SARS-CoV-2 3CL hydrolase (Mpro) via molecular docking, MMGBSA predictive binding energy calculations, and molecular dynamics simulation. PLoS One, 15(7), e0235030. https://doi.org/10.1371/journal.pone.0235030
  • Czaplewski, C., Karczynska, A., Sieradzan, A. K., & Liwo, A. (2018). UNRES server for physics-based coarse-grained simulations and prediction of protein structure, dynamics and thermodynamics. Nucleic Acids Research, 46(W1), W304–W309.
  • Daina, A., Michielin, O., & Zoete, V. (2017). SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports, 7(1), 42717–42713. https://doi.org/10.1038/srep42717
  • Daina, A., & Zoete, V. (2016). A boiled‐egg to predict gastrointestinal absorption and brain penetration of small molecules. ChemMedChem, 11(11), 1117–1121.
  • Dömling, A., & Gao, L. (2020). Chemistry and Biology of SARS-CoV-2. Chem, 6(6), 1283–1295.
  • Dong, C., Wei, P., Jian, X., Gibbs, R., Boerwinkle, E., Wang, K., & Liu, X. (2015). Comparison and integration of deleteriousness prediction methods for nonsynonymous SNVs in whole exome sequencing studies. Human Molecular Genetics, 24(8), 2125–2137.
  • El Hassab, M. A., Ibrahim, T. M., Shoun, A. A., Al-Rashood, S. T., Alkahtani, H. M., Alharbi, A., Eskandrani, R. O., & Eldehna, W. M. (2021). In silico identification of potential SARS COV-2 2′-O-methyltransferase inhibitor: Fragment-based screening approach and MM-PBSA calculations. RSC Advances, 11(26), 16026–16033. https://doi.org/10.1039/D1RA01809D
  • Eunice, A. A., Samuel, F. O., Alausa, A., Zabdiel, A. A., Adewale, B. T., Sarah, A. T., Banjo, S., & Ifeoluwa, A. P. (2021). Computational prediction of nimbanal as potential antagonist of respiratory syndrome coronavirus. Informatics in Medicine Unlocked, 24, 100617.
  • Fallah, M. S., Bayati, M., Najafi, A., Behmard, E., & Javad, S. (2021). Molecular docking investigation of antiviral herbal compounds as potential inhibitors of SARS-CoV-2 spike receptor. Biointerface Research in Applied Chemistry, 11, 12916–12924.
  • Farooq, S., & Ngaini, Z. (2021). Natural and synthetic drugs as potential treatment for coronavirus disease 2019 (COVID-2019). Chemistry Africa, 4(1), 1–13. https://doi.org/10.1007/s42250-020-00203-x
  • Feunang, Y. D., Eisner, R., Knox, C., Chepelev, L., Hastings, J., Owen, G., Fahy, E., Steinbeck, C., Subramanian, S., & Bolton, E. (2016). ClassyFire: Automated chemical classification with a comprehensive, computable taxonomy. Journal of Cheminformatics, 8(1), 1–20.
  • Fitriani, I. N., Utami, W., Zikri, A. T., & Santoso, P. (2020). In silico approach of potential phytochemical inhibitor from Moringa oleifera, Cocos nucifera, Allium cepa, Psidium guajava, and Eucalyptus globulus for the treatment of COVID-19 by molecular docking. https://doi.org/10.21203/rs.3.rs-42747/v1
  • Friesner, R. A., Banks, J. L., Murphy, R. B., Halgren, T. A., Klicic, J. J., Mainz, D. T., Repasky, M. P., Knoll, E. H., Shelley, M., Perry, J. K., Shaw, D. E., Francis, P., & Shenkin, P. S. (2004). Glide: A new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. Journal of Medicinal Chemistry, 47(7), 1739–1749.
  • Gao, S., Huang, T., Song, L., Xu, S., Cheng, Y., Cherukupalli, S., Kang, D., Zhao, T., Sun, L., Zhang, J., Zhan, P., & Liu, X. (2021). Medicinal chemistry strategies towards the development of effective SARS-CoV-2 inhibitors. Acta Pharmaceutica Sinica B, https://doi.org/10.1016/j.apsb.2021.08.027
  • Gao, M., & Skolnick, J. (2013). A comprehensive survey of small-molecule binding pockets in proteins. PLoS Computational Biology, 9(10), e1003302.
  • Genheden, S., & Ryde, U. (2015). The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. Expert Opinion on Drug Discovery, 10(5), 449–461. https://doi.org/10.1517/17460441.2015.1032936
  • Greener, J. G., & Jones, D. T. (2021). Differentiable molecular simulation can learn all the parameters in a coarse-grained force field for proteins. Plos One, 16(9), e0256990. https://doi.org/10.1371/journal.pone.0256990
  • Hashim, H. O., Mohammed, M. K., Mousa, M. J., Abdulameer, H. H., Alhassnawi, A. T. S., Hassan, S. A., & Al-Shuhaib, M. B. S. (2020). Infection with different strains of SARS-CoV-2 in patients with COVID-19. Archives of Biological Sciences, 72(4), 575–585. https://doi.org/10.2298/ABS201024051H
  • Hayes, J. M., & Archontis, G. (2012). MM-GB (PB) SA calculations of protein-ligand binding free energies. In Molecular dynamics-studies of synthetic and biological macromolecules (pp. 171–190). London, UK: Lichang Wang, IntechOpen.
  • Hegyi, A., & Ziebuhr, J. (2002). Conservation of substrate specificities among coronavirus main proteases. Journal of General Virology, 83(3), 595–599. https://doi.org/10.1099/0022-1317-83-3-595
  • Jain, R., & Mujwar, S. (2020). Repurposing metocurine as main protease inhibitor to develop novel antiviral therapy for COVID-19. Structural Chemistry, 31(6), 2487–2499. https://doi.org/10.1007/s11224-020-01605-w
  • Jang, W. D., Jeon, S., Kim, S., & Lee, S. Y. (2021). Drugs repurposed for COVID-19 by virtual screening of 6,218 drugs and cell-based assay. Proceedings of the National Academy of Sciences, 118(30), e2024302118. https://doi.org/10.1073/pnas.2024302118
  • Jiménez-Avalos, G., Vargas-Ruiz, A. P., Delgado-Pease, N. E., Olivos-Ramirez, G. E., Sheen, P., Fernández-Díaz, M., Quiliano, M., Zimic, M., Agurto-Arteaga, A., Antiparra, R., Ardiles-Reyes, M., Calderon, K., Cauna-Orocollo, Y., de Grecia Cauti-Mendoza, M., Chipana-Flores, N., Choque-Guevara, R., Chunga-Girón, X., Criollo-Orozco, M., De La Cruz, L., … Ygnacio-Aguirre, F. (2021). Comprehensive virtual screening of 4.8 k flavonoids reveals novel insights into allosteric inhibition of SARS-CoV-2 MPRO. Scientific Reports, 11(1), 1–19. https://doi.org/10.1038/s41598-021-94951-6
  • Jin, Z., Du, X., Xu, Y., Deng, Y., Liu, M., Zhao, Y., Zhang, B., Li, X., Zhang, L., Peng, C., Duan, Y., Yu, J., Wang, L., Yang, K., Liu, F., Jiang, R., Yang, X., You, T., Liu, X., … Yang, H. (2020). Structure of M pro from SARS-CoV-2 and discovery of its inhibitors. Nature, 582(7811), 289–293.
  • Joshi, R. S., Jagdale, S. S., Bansode, S. B., Shankar, S. S., Tellis, M. B., Pandya, V. K., Chugh, A., Giri, A. P., & Kulkarni, M. J. (2021). Discovery of potential multi-target-directed ligands by targeting host-specific SARS-CoV-2 structurally conserved main protease. Journal of Biomolecular Structure & Dynamics, 39(9), 3099–3114.
  • Kallingal, A., Thachan Kundil, V., Ayyolath, A., Karlapudi, A. P., Muringayil Joseph, T., & E, J. V. (2020). Molecular modeling study of tectoquinone and acteoside from Tectona grandis linn: A new SARS-CoV-2 main protease inhibitor against COVID-19. Journal of Biomolecular Structure and Dynamics, 1–12. https://doi.org/10.1080/07391102.2020.1832580
  • Kaul, R., Paul, P., Kumar, S., Büsselberg, D., Dwivedi, V. D., & Chaari, A. (2021). Promising Antiviral Activities of Natural Flavonoids against SARS-CoV-2 Targets: Systematic Review. International Journal of Molecular Sciences, 22(20), 11069. https://doi.org/10.3390/ijms222011069
  • Kawarty, A. M. A. M. A., Behçet, L., & Çakilcioğlu, U. (2020). An ethnobotanical survey of medicinal plants in Ballakayati (Erbil, North Iraq). Turkish Journal of Botany, 44(3), 345–357. https://doi.org/10.3906/bot-1910-39
  • Khaerunnisa, S., Kurniawan, H., Awaluddin, R., Suhartati, S., & Soetjipto, S. (2020). Potential inhibitor of COVID-19 main protease (Mpro) from several medicinal plant compounds by molecular docking study. Preprints, 2020, 2020030226.
  • Khan, S. A., Zia, K., Ashraf, S., Uddin, R., & Ul-Haq, Z. (2021). Identification of chymotrypsin-like protease inhibitors of SARS-CoV-2 via integrated computational approach. Journal of Biomolecular Structure & Dynamics, 39(7), 2607–2616.
  • Khater, I., & Nassar, A. (2021). In silico molecular docking analysis for repurposing approved antiviral drugs against SARS-CoV-2 main protease. Biochemistry and Biophysics Reports, 27, 101032. https://doi.org/10.1016/j.bbrep.2021.101032
  • Krupa, P., Karczyńska, A. S., Mozolewska, M. A., Liwo, A., & Czaplewski, C. (2021). UNRES-Dock—protein–protein and peptide–protein docking by coarse-grained replica-exchange MD simulations. Bioinformatics (Oxford, England), 37(11), 1613–1615.
  • Kumar, Y., Singh, H., & Patel, C. N. (2020). In silico prediction of potential inhibitors for the main protease of SARS-CoV-2 using molecular docking and dynamics simulation based drug-repurposing. Journal of Infection and Public Health, 13(9), 1210–1223.
  • Li, Y., Zhang, J., Duan, Z., Wang, N., Sun, X., Zhang, Y., Fu, L., Liu, K., Yang, Y., Pan, S., Shi, Y., Zeng, H., Guo, G., Lai, R., & Zou, Q. (2021). High-throughput screening and evaluation of repurposed drugs targeting the SARS-CoV-2 main protease. Signal Transduction and Targeted Therapy, 6(1), 1–3. https://doi.org/10.1038/s41392-021-00763-5
  • Liwo, A., Czaplewski, C., Sieradzan, A. K., Lipska, A. G., Samsonov, S. A., & Murarka, R. K. (2021). Theory and practice of coarse-grained molecular dynamics of biologically important systems. Biomolecules, 11(9), 1347. https://doi.org/10.3390/biom11091347
  • Loizzo, M. R., Saab, A. M., Tundis, R., Statti, G. A., Menichini, F., Lampronti, I., Gambari, R., Cinatl, J., & Doerr, H. W. (2008). Phytochemical analysis and in vitro antiviral activities of the essential oils of seven Lebanon species. Chemistry & Biodiversity, 5(3), 461–470.
  • Mengist, H. M., Dilnessa, T., & Jin, T. (2021). Structural basis of potential inhibitors targeting SARS-CoV-2 main protease. Frontiers in Chemistry, 9, 1–19. https://doi.org/10.3389/fchem.2021.622898
  • Mohamed, K., Yazdanpanah, N., Saghazadeh, A., & Rezaei, N. (2021). Computational drug discovery and repurposing for the treatment of COVID-19: A systematic review. Bioorganic Chemistry, 106, 104490.
  • Noe, M. C., & Peakman, M.-C. (2017). Drug discovery technologies: Current and future trends. In Chackalamannil, S., Rotella, D., & Ward, S. E. (Eds.), Comprehensive Medicinal Chemistry III. Oxford, UK: Elsevier.
  • Pathania, S., & Singh, P. K. (2021). Analyzing FDA-approved drugs for compliance of pharmacokinetic principles: Should there be a critical screening parameter in drug designing protocols? Taylor & Francis.
  • Patrakar, R., Mansuriya, M., & Patil, P. (2012). Phytochemical and pharmacological review on Laurus nobilis. International Journal of Pharmaceutical and Chemical Sciences, 1(2), 595–602.
  • Pillaiyar, T., Manickam, M., Namasivayam, V., Hayashi, Y., & Jung, S.-H. (2016). An overview of severe acute respiratory syndrome–coronavirus (SARS-CoV) 3CL protease inhibitors: Peptidomimetics and small molecule chemotherapy. Journal of Medicinal Chemistry, 59(14), 6595–6628.
  • Pitsillou, E., Liang, J., Karagiannis, C., Ververis, K., Darmawan, K. K., Ng, K., Hung, A., & Karagiannis, T. C. (2020). Interaction of small molecules with the SARS-CoV-2 main protease in silico and in vitro validation of potential lead compounds using an enzyme-linked immunosorbent assay. Computational Biology and Chemistry, 89, 107408. https://doi.org/10.1016/j.compbiolchem.2020.107408
  • Puttaswamy, H., Gowtham, H. G., Ojha, M. D., Yadav, A., Choudhir, G., Raguraman, V., Kongkham, B., Selvaraju, K., Shareef, S., Gehlot, P., Ahamed, F., & Chauhan, L. (2020). In silico studies evidenced the role of structurally diverse plant secondary metabolites in reducing SARS-CoV-2 pathogenesis. Scientific Reports, 10(1), 1–24. https://doi.org/10.1038/s41598-020-77602-0
  • Qaddir, I., Majeed, A., Hussain, W., Mahmood, S., & Rasool, N. (2020). An in silico investigation of phytochemicals as potential inhibitors against non-structural protein 1 from dengue virus 4. Brazilian Journal of Pharmaceutical Sciences, 56, e17420.
  • Rameshkumar, M. R., Indu, P., Arunagirinathan, N., Venkatadri, B., El-Serehy, H. A., & Ahmad, A. (2021). Computational selection of flavonoid compounds as inhibitors against SARS-CoV-2 main protease, RNA-dependent RNA polymerase and spike proteins: A molecular docking study. Saudi Journal of Biological Sciences, 28(1), 448–458.
  • Ramírez, D., & Caballero, J. (2018). Is it reliable to take the molecular docking top scoring position as the best solution without considering available structural data? Molecules, 23(5), 1038. https://doi.org/10.3390/molecules23051038
  • Rizzuti, B., Grande, F., Conforti, F., Jimenez-Alesanco, A., Ceballos-Laita, L., Ortega-Alarcon, D., Vega, S., Reyburn, H. T., Abian, O., & Velazquez-Campoy, A. (2021). Rutin is a low micromolar inhibitor of SARS-CoV-2 main protease 3CLpro: Implications for drug design of quercetin analogs. Biomedicines, 9(4), 375. https://doi.org/10.3390/biomedicines9040375
  • Russo, M., Moccia, S., Spagnuolo, C., Tedesco, I., & Russo, G. L. (2020). Roles of flavonoids against coronavirus infection. Chemico-Biological Interactions, 328, 109211. https://doi.org/10.1016/j.cbi.2020.109211
  • Sharma, A. D., & Kaur, I. (2020). Molecular docking studies on Jensenone from eucalyptus essential oil as a potential inhibitor of COVID 19 corona virus infection. ArXiv Preprint ArXiv:2004.00217.
  • Stefanova, G., Girova, T., Gochev, V., Stoyanova, M., Petkova, Z., Stoyanova, A., & Zheljazkov, V. D. (2020). Comparative study on the chemical composition of laurel (Laurus nobilis L.) leaves from Greece and Georgia and the antibacterial activity of their essential oil. Heliyon, 6(12), e05491. https://doi.org/10.1016/j.heliyon.2020.e05491
  • V’kovski, P., Kratzel, A., Steiner, S., Stalder, H., & Thiel, V. (2021). Coronavirus biology and replication: Implications for SARS-CoV-2. Nature Reviews Microbiology, 19(3), 155–170. https://doi.org/10.1038/s41579-020-00468-6
  • Verma, S., Patel, C. N., & Chandra, M. (2021). Identification of novel inhibitors of SARS‐CoV‐2 main protease (Mpro) from Withania sp. by molecular docking and molecular dynamics simulation. Journal of Computational Chemistry, 42(26), 1861–1872.
  • Verma, S., Twilley, D., Esmear, T., Oosthuizen, C. B., Reid, A.-M., Nel, M., & Lall, N. (2020). Anti-SARS-CoV natural products with the potential to inhibit SARS-CoV-2 (COVID-19). Frontiers in Pharmacology, 11, 1514. https://doi.org/10.3389/fphar.2020.561334
  • Wu, Y., Pegan, S. D., Crich, D., Desrochers, E., Starling, E. B., Hansen, M. C., Booth, C., Nicole Mullininx, L., Lou, L., Chang, K. Y., & Xie, Z.-R. (2021). Polyphenols as alternative treatments of COVID-19. Computational and Structural Biotechnology Journal, 19, 5371–5380. https://doi.org/10.1016/j.csbj.2021.09.022
  • Yang, H., Yang, M., Ding, Y., Liu, Y., Lou, Z., Zhou, Z., Sun, L., Mo, L., Ye, S., Pang, H., Gao, G. F., Anand, K., Bartlam, M., Hilgenfeld, R., & Rao, Z. (2003). The crystal structures of severe acute respiratory syndrome virus main protease and its complex with an inhibitor. Proceedings of the National Academy of Sciences, 100(23), 13190–13195. https://doi.org/10.1073/pnas.1835675100

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.