243
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Computational approaches for evaluation of isobavachin as potential inhibitor against t877a and w741l mutations in prostate cancer

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 2398-2418 | Received 25 Feb 2021, Accepted 16 Jan 2022, Published online: 04 Feb 2022

References

  • Aamir, M., Singh, V. K., Dubey, M. K., Meena, M., Kashyap, S. P., Katari, S. K., Upadhyay, R. S., Umamaheswari, A., & Singh, S. (2018). In silico prediction, characterization, molecular docking, and dynamic studies on fungal SDRs as novel targets for searching potential fungicides against fusarium wilt in tomato. Frontiers in Pharmacology, 9, 1038-1038. https://doi.org/10.3389/fphar.2018.01038
  • Abdullahi, M., Uzairu, A., Shallangwa, G. A., Mamza, P., Arthur, D. E., & Ibrahim, M. T. (2020). In silico modelling studies on some C14-urea-tetrandrine derivatives as potent anti-cancer agents against prostate (PC3) cell line. Journal of King Saud University Science, 32(1), 770–779. https://doi.org/10.1016/j.jksus.2019.01.008
  • Ahire, E. D., Sonawane, V. N., Surana, K. R., & Talele, G. S. (2021). Drug discovery, drug-likeness screening, and bioavailability: Development of drug-likeness rule for natural products. In Applied pharmaceutical practice and nutraceuticals (pp. 191–208). Apple Academic Press.
  • Alisha, K., & Tripti, S. (2021). Repurposing statins as a potential ligand for estrogen receptor alpha via molecular docking. Interactive Learning Environments, 5, 7–89.
  • Arya, H., & Coumar, M. S. (2021). Lead identification and optimization. In I. The design & development of novel drugs and vaccines (pp. 31–63). Academic Press.
  • Azimova, A. V., & Vinogradova, V. I. (eds). (2013). Isobavachin. Natural compounds (pp. 239–240). New York: Springer. https://link.springer.com/referenceworkentry/10.1007%2F978-1-4614-0535-1_564
  • Basu, A., Sarkar, A., & Maulik, U. (2020). Molecular docking study of potential phytochemicals and their effects on the complex of SARS-CoV2 spike protein and human ACE2. Scientific Reports, 10(1), 17699. https://doi.org/10.1038/s41598-020-74715-4
  • Basu, A., Sarkar, A., & Maulik, U. (2020). Molecular docking study of potential phytochemicals and their effects on the complex of SARS-CoV2 spike protein and human ACE2. Scientific Reports, (1), 10. https://doi.org/10.1038/s41598-020-74715-4
  • Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R. L., Torre, L. A., & Jemal, A. (2018). Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: a Cancer Journal for Clinicians, 68(6), 394–424. https://doi.org/10.3322/caac.21492
  • Buchanan, G., Greenberg, N. M., Scher, H. I., Harris, J. M., Marshall, V. R., & Tilley, W. D. (2001). Collocation of androgen receptor gene mutations in prostate cancer. Clinical Cancer Research : An Official Journal of the American Association for Cancer Research, 7(5), 1273–1281.
  • Chen, D., Oezguen, N., Urvil, P., Ferguson, C., Dann, S. M., & Savidge, T. C. (2016). Regulation of protein-ligand binding energy by hydrogen bond pairing. Science Advances, (2 (3), e1501240.
  • Chen, J. (2016). The cell-cycle arrest and apoptotic functions of p53 in tumor initiation and progression. Cold Spring Harbor Perspectives in Medicine, 6(3), a026104. https://doi.org/10.1101/cshperspect.a026104
  • Davey, R. A., & Grossmann, M. (2016). Androgen receptor structure, function and biology: From bench to bedside. The Clinical Biochemist. Reviews, 37(1), 3–15.
  • Dehelean, C. A., Marcovici, I., Soica, C., Mioc, M., Coricovac, D., Iurciuc, S., Cretu, O. M., & Pinzaru, I. (2021). Plant-derived anticancer compounds as new perspectives in drug discovery and alternative therapy. Molecules, 26(4), 1109. https://doi.org/10.3390/molecules26041109
  • Ebrahimi, K. S., Ansari, M., Moghaddam, M. S. H., Ebrahimi, Z., Shahlaei, M., & Moradi, S. (2021). In silico investigation on the inhibitory effect of fungal secondary metabolites on RNA dependent RNA polymerase of SARS-CoV-II: A docking and molecular dynamic simulation study. Computers in Biology and Medicine, 2021, 104613.
  • Ehsani, M., David, F. O., & Baniahmad, A. (2021). Androgen receptor-dependent mechanisms mediating drug resistance in prostate cancer. Cancers, 13(7), 1534. https://doi.org/10.3390/cancers13071534
  • Eisermann, K., Wang, D., Jing, Y., Pascal, L. E., & Wang, Z. (2013). Androgen receptor gene mutation, rearrangement, polymorphism. Translational Andrology & Urology, 2(3), 137–147. https://doi.org/10.3978/j.issn.2223-4683.2013.09.15
  • Everett, C. M., & Wood, N. W. (2004). Trinucleotide repeats and neurodegenerative disease. Brain : a Journal of Neurology, 127(Pt 11), 2385–2405. https://doi.org/10.1093/brain/awh278
  • Fridlender, M., Kapulnik, Y., & Koltai, H. (2015). Plant derived substances with anti-cancer activity: from folklore to practice. Frontiers in Plant Science, 6, 799. https://doi.org/10.3389/fpls.2015.00799
  • Garg, S., Shishoo, C. J., & Sharma, V. & Sar, (2021). QSAR and drug likeness towards anticancer biological studies of newly synthesised Triazolo (4, 5-d). Pyrimidine Derivatives, 8(2), 944-958.
  • Gelmann, E. (2002). P. Molecular biology of the androgen receptor. Journal of Clinical Oncology : Official Journal of the American Society of Clinical Oncology, 20(13), 3001–3015. https://doi.org/10.1200/JCO.2002.10.018
  • Ghersi, D., & Sanchez, R. (2009). Improving accuracy and efficiency of blind protein-ligand docking by focusing on predicted binding sites. Proteins, 74(2), 417–424. https://doi.org/10.1002/prot.22154
  • Greenwell, M., & Rahman, P. K. S. (2015). M. Medicinal Plants: Their Use in Anticancer Treatment. International Journal of Pharmaceutical Sciences and Research., 6(10), 4103–4112.
  • Hadi, S. (2021, 2). The potential content of karamunting (Rhodomyrtus tomentosa) in binding with HMG-CoA reductase. Journal of Pharmaceutical Care and Sciences, (1), 136–142.
  • Hara, T., Miyazaki, J., Araki, H., Yamaoka, M., Kanzaki, N., Kusaka, M., & Miyamoto, M. (2003). Novel mutations of androgen receptor: a possible mechanism of bicalutamide withdrawal syndrome. Cancer Research, 63(1), 149–153.
  • Hosseini, A., & Ghorbani, A. (2015, 5). Cancer therapy with phytochemicals: Evidence from clinical studies. Avicenna Journal of Phytomedicine, 5(2), 84–97.
  • Jain, S., Saxena, S., & Kumar, A. (2014). Epidemiology of prostate cancer in India. Meta Gene, 2, 596–605. https://doi.org/10.1016/j.mgene.2014.07.007
  • Jayaram, B., Singh, T., Mukherjee, G., Mathur, A., Shekhar, S., & Shekhar, V. (2012). Sanjeevini: a freely accessible web-server for target directed lead molecule discovery. BMC Bioinformatics, 13(S17), S7. http://www.biomedcentral.com/1471-2105/13/S17/S7 https://doi.org/10.1186/1471-2105-13-S17-S7
  • Jonnalagadda, B., Arockiasamy, S., & Vetrivel, U. P. A. (2020). In silico docking of phytocompounds to identify potent inhibitors of signaling pathways involved in prostate cancer. Journal of Biomolecular Structure and Dynamics, 1–27.
  • Joshi, T., Joshi, T., Sharma, P., Mathpal, S., Pundir, H., Bhatt, V., & Chandra, S. (2020). In silico screening of natural compounds against COVID-19 by targeting Mpro and ACE2 using molecular docking. European Review for Medical and Pharmacological Sciences, (24(8), 4529–4536.
  • Kaler, J., Hussain, A., Haque, A., Naveed, H., & Patel, S. (2020). A comprehensive review of pharmaceutical and surgical interventions of prostate cancer. Cureus, 12(11), e11617. https://doi.org/10.7759/cureus.11617
  • Kasapoğlu, K. N., Altin, G., Farooqi, A. A., Salehi, B., Özçelik, B., Setzer, W. N., & Sharifi-Rad, J. (2020). Anti-proliferative, genotoxic and cytotoxic effects of phytochemicals isolated from Anatolian medicinal plants. Cellular and Molecular Biology (Noisy-le-Grand, France), 66(4), 145–159.
  • Katoch, V. M., & Nandkumar, A. (2013). Time trends in cancer incidence rates 1982-2010, ICMR Publication.
  • Khushboo, P. S., Jadhav, V. M., Kadam, V. J., & N. S, S. (2010). Psoralea corylifolia Linn.-"Kushtanashini". Pharmacognosy Reviews, 4(7), 69–76. https://doi.org/10.4103/0973-7847.65331
  • Kim, S., Chen, J., Cheng, T., Gindulyte, A., He, J., He, S., Li, Q., Shoemaker, B. A., Thiessen, P. A., Yu, B., Zaslavsky, L., Zhang, J., & Bolton, E. E. (2021). PubChem in 2021: New data content and improved web interfaces. Nucleic Acids Research, 49(D1), D1388–D1395. https://doi.org/10.1093/nar/gkaa971
  • Kim, S., Chen, J., Cheng, T., Gindulyte, A., He, J., He, S., Li, Q., Shoemaker, B. A., Thiessen, P. A., Yu, B., Zaslavsky, L., Zhang, J., & Bolton, E. E. (2019). PubChem 2019 update: Improved access to chemical data. Nucleic Acids Research, 47(D1), D1102–D1109. https://doi.org/10.1093/nar/gky1033
  • Koochekpour, S. (2010). Androgen receptor signaling and mutations in prostate cancer. Asian Journal of Andrology, 12(5), 639–657. https://doi.org/10.1038/aja.2010.89
  • Kumar, A., Kini, S. G., & Rathi, E. (2021). A recent appraisal of artificial intelligence and in silico ADMET prediction in the early stages of drug discovery. Mini Reviews in Medicinal Chemistry, 21(18), 2788–2800. https://doi.org/10.2174/1389557521666210401091147
  • Kumari, R., Kumar, R., & Lynn, A., Open Source Drug Discovery Consortium (2014). Open source drug discovery consortium; Lynn, A. G_mmpbsa–a GROMACS tool for high-throughput MM-PBSA calculations. Journal of Chemical Information and Modeling, 54(7), 1951–1962. https://doi.org/10.1021/ci500020m
  • Lange, E. M., Chen, H., Brierley, K., Livermore, H., Wojno, K. J., Langefeld, C. D., Lange, K., & Cooney, K. A. (2000). The polymorphic exon 1 androgen receptor CAG repeat in men with a potential inherited predisposition to prostate cancer. Cancer Epidemiology, Biomarkers & Prevention, 9(4), 439–442.
  • Laskowski, R. A., & Swindells, M. B. +: (2011). LigPlot+: Multiple ligand-protein interaction diagrams for drug discovery. Journal of Chemical Information and Modeling, 51(10), 2778–2786. https://doi.org/10.1021/ci200227u
  • Li, W. D., Yan, C. P., Wu, Y., Weng, Z. B., Yin, F. Z., Yang, G. M., Cai, B. C., & Chen, Z. P. (2014). Osteoblasts proliferation and differentiation stimulating activities of the main components of Fructus Psoraleae corylifoliae. Phytomedicine, 21(4), 400–405. https://doi.org/10.1016/j.phymed.2013.09.015
  • Lin, L., Chen, Y., Li, Q., Xu, G., Ding, K., Ren, L., Shi, W., Wang, Yan, Li, Z., Dhai, W., Yang, Y., Li, Z., Dai, W., Yang, Y., & Bai, Z. X. (2021). X. Isoxanthohumol, a component of Sophora flavescens, promotes the activation of the NLRP3 inflammasome and induces idiosyncratic hepatotoxicity. Journal of Ethnopharmacology, 285, 114796-114796. https://doi.org/10.1016/j.jep.2021.114796.
  • Liu, X., Shi, D., Zhou, S., Liu, H., Liu, H., & Yao, X. (2018). Molecular dynamics simulations and novel drug discovery. Expert Opinion on Drug Discovery, 13(1), 23–37. DOI: 10.1080/17460441.2018.14034199.
  • Lonergan, P. E., & Tindall, D. J. (2011). Androgen receptor signaling in prostate cancer development and progression. Journal of Carcinogenesis, 10, 20. https://doi.org/10.4103/1477-3163.83937
  • Mahmoud, A. M., Zhu, T., Parray, A., Siddique, H. R., Yang, W., Saleem, M., & Bosland, M. C. (2013). Differential effects of genistein on prostate cancer cells depend on mutational status of the androgen receptor. PLoS One, 8(10), e78479. https://doi.org/10.1371/journal.pone.0078479
  • Manojkumar, K., Prabhu Charan, K. T., Sivaramakrishna, A., Jha, P. C., Khedkar, V. M., Siva, R., Jayaraman, G., & Vijayakrishna, K. (2015). Biophysical characterization and molecular docking studies of imidazolium based polyelectrolytes-DNA complexes: Role of hydrophobicity. Biomacromolecules, 16(3), 894–903. https://doi.org/10.1021/bm5018029
  • Mao, F., Ni, W., Xu, X., Wang, H., Wang, J., Ji, M., & Li, J. (2016). Chemical structure-related drug-like criteria of global approved drugs. Molecules (Basel, Switzerland), 21(1), 75. https://doi.org/10.3390/molecules21010075
  • Mei, Y.-Q., Pan, Z.-F., Chen, W.-T., Xu, M.-H., Zhu, D.-Y., Yu, Y.-P., & Lou, Y.-J. (2016). A flavonoid compound promotes neuronal differentiation of embryonic stem cells via PPAR-β modulating mitochondrial energy metabolism. PLoS One, 11(6), e0157747. https://doi.org/10.1371/journal.pone.0157747
  • Meng, X. Y., Zhang, H. X., Mezei, M., & Cui, M. (2011). Molecular docking: A powerful approach for structure-based drug discovery. Current Computer-Aided Drug Design, 7(2), 146–157. https://doi.org/10.2174/157340911795677602
  • Mohammed, H. A., Al-Omar, M. S., Mohammed, S. A. A., Alhowail, A. H., Eldeeb, H. M., Sajid, M. S. M., Abd-Elmoniem, E. M., Alghulayqeh, O. A., Kandil, Y. I., & Khan, R. A. (2021). Phytochemical analysis, pharmacological and safety evaluations of halophytic plant, Salsola cyclophylla. Molecules, 26(8), 2384. https://doi.org/10.3390/molecules26082384
  • Mohler, M. L., Sikdar, A., Ponnusamy, S., Hwang, D.-J., He, Y., Miller, D. D., & Narayanan, R. (2021). An overview of next-generation androgen receptor-targeted therapeutics in development for the treatment of prostate cancer. International Journal of Molecular Sciences, 22(4), 2124. https://doi.org/10.3390/ijms22042124
  • Mukhopadhyay, S., & Sarkar, A. (2021). In silico studies on milk derived peptides as potential inhibitors against SARS CoV-2 spike protein receptor binding domain (pp. 1–16). Durham, NC, USA: Research Square. https://doi.org/10.21203/rs.3.rs-618799/v1
  • Mvondo, J. G. M., Matondo, A., Mawete, D. T., Bambi, S. M. N., Mbala, B. M., & P. O. In, L. (2021). Silico ADME/T properties of quinine derivatives using SwissADME and pkCSM webservers. International Journal of Tropical Disease & Health, 42(11), 1–12. 2021; Article no.IJTDH.71544
  • Nadiminty, N., & Gao, A. C. (2012). Mechanisms of persistent activation of the androgen receptor in CRPC: Recent advances and future perspectives. World Journal of Urology, 30(3), 287–295.
  • Nayak, A. (2021). Silico comprehensive study for finding potential anti biofilm inhibiting phyto-chemical by homology modeling, virtual screening, docking and molecular dynamics simulation. International Journal for Research in Applied Sciences and Biotechnology, 8(3), 196–201. https://doi.org/10.31033/ijrasb.8.3.24
  • Otsuka, T., Iguchi, K., Fukami, K., Ishii, K., Usui, S., Sugimura, Y., & Hirano, K. (2011). Androgen receptor W741C and T877A mutations in AIDL cells, an androgen-independent subline of prostate cancer LNCaP cells. Tumour Biology : The Journal of the International Society for Oncodevelopmental Biology and Medicine, 32(6), 1097–1102. https://doi.org/10.1007/s13277-011-0209-y
  • Palanisamy, P., Thusnavis, G. R., & Subramanian, R. (2021). In silico evaluation of chemical toxicity of certain non-steroidal anti-inflammatory drugs. Asian Journal of Advances in Research, 9(1), 9–19. http://mbimph.com/index.php/AJOAIR/article/view/2270
  • Pandey, B., Grover, A., & Sharma, P. (2018). Molecular dynamics simulations revealed structural differences among WRKY domain-DNA interaction in barley (Hordeum vulgare). BMC Genomics, 19(1), 1-16. https://doi.org/10.1186/s12864-018-4506-3
  • Panwar, A., & Kumar, A. (2021). In silico analysis and molecular dynamics simulations of lysozyme by GROMACS 2020.2. Annals of the Romanian Society for. Cell Biology, 25(6), 9679–9685.
  • Parashar, A., Shukla, A., Sharma, A., Behl, T., Goswami, D., & Mehta, V. (2021). Reckoning γ-glutamyl-S-allylcysteine as a potential main protease (Mpro) inhibitor of novel SARS-CoV-2 virus identified using docking and molecular dynamics simulation. Drug Development and Industrial Pharmacy, 45(5), 699-710. https://doi.org/10.1080/03639045.2021.1934857
  • Paulson, H. R. (2018). Expansion diseases. Handbook of Clinical Neurology, 147, 105–123. https://doi.org/10.1016/B978-0-444-63233-3.00009-9
  • Pettersen, E. F., Goddard, T. D., Huang, C. C., Meng, E. C., Couch, G. S., Croll, T. I., Morris, J. H., & Ferrin, T. E. (2021). UCSF ChimeraX: Structure visualization for researchers, educators, and developers. Protein Science : A Publication of the Protein Society, 30(1), 70–82. https://doi.org/10.1002/pro.3943
  • Pires, D. E. V., Blundell, T. L., & Ascher, D. B. (2015). pkCSM: Predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures. Journal of Medicinal Chemistry, 58(9), 4066–4072. https://doi.org/10.1021/acs.jmedchem.5b00104
  • Poli, G., Granchi, C., Rizzolio, F., & Tuccinardi, T. (1971). Application of MM-PBSA methods in virtual screening. Molecules, 25 (8), 2020.
  • Protein Data Bank: The single global archive for 3D macromolecular structure data. Nucleic Acids Research, 47(D1), 520–528.
  • Ramezani, A., Zakeri, A., Mard-Soltani, M., Mohammadian, A., Hashemi, Z. S., Mohammadpour, H., Jahangiri, A., Khalili, S., & Rasaee, M. J. (2020). Structure based screening for inhibitory therapeutics of CTLA-4 unveiled new insights about biology of ACTH. International Journal of Peptide Research and Therapeutics, 26(2), 849-859. https://doi.org/10.1007/s10989-019-09891-7
  • Rathkopf, D. E., Smith, M. R., Ryan, C. J., Berry, W. R., Shore, N. D., Liu, G., Higano, C. S., Alumkal, J. J., Hauke, R., Tutrone, R. F., Saleh, M., Chow Maneval, E., Thomas, S., Ricci, D. S., Yu, M. K., de Boer, C. J., Trinh, A., Kheoh, T., Bandekar, R., Scher, H. I., & Antonarakis, E. S. (2017). Androgen receptor mutations in patients with castration-resistant prostate cancer treated with apalutamide. Annals of Oncology, 28(9), 2264–2271. https://doi.org/10.1093/annonc/mdx283
  • Rawla, P. (2019). Epidemiology of prostate cancer. World Journal of Oncology, 10(2), 63–89. https://doi.org/10.14740/wjon1191
  • RCSB Protein Data Bank. (2021). RCSB PDB: Homepage. https://www.rcsb.org/
  • Rivlin, N., Brosh, R., Oren, M., & Rotter, V. (2011, 2). Mutations in the p53 tumor suppressor gene: important milestones at the various steps of tumorigenesis. Genes Cancer, 2(4), 466–474. https://doi.org/10.1177/1947601911408889
  • Sakkiah, S., Kusko, R., Pan, B., Guo, W., Ge, W., Tong, W., & Hong, H. (2018). Structural changes due to antagonist binding in ligand binding pocket of androgen receptor elucidated through molecular dynamics simulations. Frontiers in Pharmacology, 9, 492-492. https://doi.org/10.3389/fphar.2018.00492
  • Salmaso, V., & Moro, S. (2018). Bridging molecular docking to molecular dynamics in exploring ligand-protein recognition process: An overview. Frontiers in Pharmacology, 9, 923. https://doi.org/10.3389/fphar.2018.00923
  • Salsbury, F. R. Jr. (2010). Molecular dynamics simulations of protein dynamics and their relevance to drug discovery. Current Opinion in Pharmacology., 10(6), 738–744.
  • Seeliger, D., & de Groot, B. L. (2010). Ligand docking and binding site analysis with PyMOL and Autodock/Vina. Journal of Computer-Aided Molecular Design, 24(5), 417–422. https://doi.org/10.1007/s10822-010-9352-6
  • Shao, G., Bao, J., Pan, X., He, X., Qi, Y., & Zhang, J. Z. (2021). Computational analysis of residue-specific binding free energies of androgen receptor to ligands. Frontiers in Molecular Biosciences, 8, 646524-646524. https://doi.org/10.3389/fmolb.2021.646524
  • Sharma, A. (2021). Newton’s generalized form of second law gives F = ma. IOSR Journal Of Applied Physics, 13(2), 61–137.
  • Shi, D. W. & Brenner, (2008). Jetting and detonation initiation in shock induced collapse of nanometer-scale voids. The Journal of Physical Chemistry C, 112(16), 6263–6270. https://doi.org/10.1021/jp7119735
  • Singh, A. N., Baruah, M. M., & Sharma, N. (2017). Structure based docking studies towards exploring potential anti-androgen activity of selected phytochemicals against prostate cancer. Scientific Reports, 7(1), 1955. https://doi.org/10.1038/s41598-017-02023-5
  • Singh, A., & Dhar, R. (2021). A large-scale computational screen identifies strong potential inhibitors for disrupting SARS-CoV-2 S-protein and human ACE2 interaction. Journal of Biomolecular Structure and Dynamics, 1–14.
  • Souza, P. F., Lopes, F. E., Amaral, J. L., Freitas, C. D., & Oliveira, J. T. (2020). A molecular docking study revealed that synthetic peptides induced conformational changes in the structure of SARS-CoV-2 spike glycoprotein, disrupting the interaction with human ACE2 receptor. International Journal of Biological Macromolecules, 164, 66–76. https://doi.org/10.1016/j.ijbiomac.2020.07.174
  • Swargiary, A., Verma, A. K., Singh, S., Roy, M. K., & Daimari, M. (2021, 21). Antioxidant and antiproliferative activity of selected medicinal plants of lower Assam, India: An in vitro and in silico study. Anti-Cancer Agents in Medicinal Chemistry (Formerly Current Medicinal Chemistry-Anti-Cancer Agents), (2), 267–277.
  • Taitt, H. E. (2018). Global trends and prostate cancer: A review of incidence, detection, and mortality as influenced by race, ethnicity, and geographic location. American Journal of Men's Health, 12(6), 1807–1823. https://doi.org/10.1177/1557988318798279
  • Taplin, M. E., & Balk, S. P. (2004). Androgen receptor: A key molecule in the progression of prostate cancer to hormone independence. Journal of Cellular Biochemistry, 91(3), 483–490. https://doi.org/10.1002/jcb.10653
  • Terakawa, T., Miyake, H., Kumano, M., Sakai, I., & Fujisawa, M. (2010). The antiandrogen bicalutamide activates the androgen receptor (AR) with a mutation in codon 741 through the mitogen activated protein kinase (MARK) pathway in human prostate cancer PC3 cells. Oncology Reports, 24(5), 1395–1399. https://doi.org/10.3892/or_00000998
  • Tian, S., Wang, J., Li, Y., Li, D., Xu, L., & Hou, T. (2015). The application of in silico drug-likeness predictions in pharmaceutical research. Advanced Drug Delivery Review, 86, 2–10. https://doi.org/10.1016/j.addr.2015.01.009
  • Tian, X., He, Y., & Zhou, J. (2015). Progress in antiandrogen design targeting hormone binding pocket to circumvent mutation based resistance. Frontiers in Pharmacology, 6, 57. https://doi.org/10.3389/fphar.2015.00057
  • Tripathi, A., & Misra, K. (2017). Molecular docking: A structure-based drug designing approach. JSM Chemistry, 5(2), 1042–1047.
  • Umar, H. I., Saliu, T. P., Josiah, S. S., Ajayi, A., & Danjuma, J. B. (2021). In silico studies of bioactive compounds from selected African plants with inhibitory activity against nitric oxide synthase and arginase implicated in asthma. Egyptian Journal of Medical Human Genetics, 22(1), 1–16. https://doi.org/10.1186/s43042-021-00175-8
  • Upreti, S., Pandey, S. C., Bisht, I., & Samant, M. (2021). Evaluation of the target-specific therapeutic potential of herbal compounds for the treatment of cancer. Molecular Diversity, 1–13.
  • Vijesh, A. M., Isloor, A. M., Telkar, S., Arulmoli, T., & Fun, H.-K. (2013). Molecular docking studies of some new imidazole derivatives for antimicrobial properties. Arabian Journal of Chemistry, 6(2), 197–204. https://doi.org/10.1016/j.arabjc.2011.10.007
  • Vlasiou, M., C., & Pafti, K., S. (2021). Screening possible drug molecules for Covid-19. The example of vanadium (III/IV/V) complex molecules with computational chemistry and molecular docking. Computational Toxicology (Amsterdam, Netherlands), 18, 100157. https://doi.org/10.1016/j.comtox.2021.100157
  • Wang, D-y., Hu, Y-z., Kong, S-s., Yu, Y-p., Zhu, D-y., & Lou, Y-j. (2011). Promoting effects of isobavachin on neurogenesis of mouse embryonic stem cells were associated with protein prenylation. Acta Pharmacologica Sinica, 32(4), 425–432. https://doi.org/10.1038/aps.2011.5
  • Wang, E., Sun, H., Wang, J., Wang, Z., Liu, H., Zhang, J. Z., & Hou, T. (2019). End-point binding free energy calculation with MM/PBSA and MM/GBSA: Strategies and applications in drug design. Chemical Reviews, 119(16), 9478–9508. https://doi.org/10.1021/acs.chemrev.9b00055
  • Wang, R., Deng, X., Gao, Q., Wu, X., Han, L., Gao, X., Zhao, S., Chen, W., Zhou, R., Li, Z., & Bai, C. (2020). Sophora alopecuroides L.: An ethnopharmacological, phytochemical, and pharmacological review. Journal of Ethnopharmacology, 248, 112172. https://doi.org/10.1016/j.jep.2019.112172
  • Xing, H., Yang, J., Ren, K., Qin, Z., Wang, P., Zhang, X., Yao, Z., Gonzalez, F., & Yao, X. (2020). Investigation on the metabolic characteristics of Isobavachin in Psoralea corylifolia L. (Bu-gu-zhi) and its potential inhibition against human cytochrome P450s and UDP-glucuronosyltransferases. The Journal of Pharmacy and Pharmacology, 72(12), 1865–1878. https://doi.org/10.1111/jphp.13337
  • Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., Chen, X., Hou, T., & Cao, D. (2021). ADMETlab 2.0: an integrated online platform for accurate and comprehensive predictions of ADMET properties. Nucleic Acids Research, 49(W1), W5–W14. https://doi.org/10.1093/nar/gkab255
  • Yang, Y. N., Zhu, H., Yuan, X., Zhang, X., Feng, Z. M., Jiang, J. S., & Zhang, P. C. (2021). Seven new prenylated flavanones from the roots of Sophora flavescens and their anti-proliferative activities. Bioorganic Chemistry, 109, 104716. https://doi.org/10.1016/j.bioorg.2021.104716
  • Young, S.-M., Bansal, P., Vella, E. T., Finelli, A., Levitt, C., & Loblaw, A. (2015). Systematic review of clinical features of suspected prostate cancer in primary care. Canadian Family Physician Medecin de Famille Canadien, 61(1), e26-35–e35.
  • Zhang, S., Krumberger, M., Morris, M. A., Parrocha, C. M. T., Kreutzer, A. G., & Nowick, J. S. (2021). Structure-based drug design of an inhibitor of the SARS-CoV-2 (COVID-19) main protease using free software: A tutorial for students and scientists. European Journal of Medicinal Chemistry, 218, 113390. https://doi.org/10.1016/j.ejmech.2021.113390
  • Zhang, X., Yang, X., Cao, Z., Zhao, Z., & Zhang, Y. (2021). Isoxanthohumol exerts anticancer activity against drug-resistant thyroid cancer cells by inhibiting cell migration and invasion, apoptosis induction and targeting PI3K/AKT/m-TOR signaling pathway. Tropical Journal of Pharmaceutical Research, (6), 20.
  • Zhao, H., & Caflisch, A. (2015). Molecular dynamics in drug design. European Journal of Medicinal Chemistry, 91, 4–14. https://doi.org/10.1016/j.ejmech.2014.08.004

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.