261
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

Mutations in the receptor-binding domain of human SARS CoV-2 spike protein increases its affinity to bind human ACE-2 receptor

&
Pages 2368-2381 | Received 22 Oct 2021, Accepted 12 Jan 2022, Published online: 03 Feb 2022

References

  • Ahamad, S., Kanipakam, H., & Gupta, D. (2022). Insights into the structural and dynamical changes of spike glycoprotein mutations associated with SARS-CoV-2 host receptor binding. Journal of Biomolecular Structure & Dynamics, 40(1), 263–275. https://doi.org/10.1080/07391102.2020.1811774
  • Anandakrishnan, R., Aguilar, B., & Onufriev, A. V. (2012). H++ 3.0: Automating pK prediction and the preparation of biomolecular structures for atomistic molecular modeling and simulations. Nucleic Acids Research, 40(W1), W537–541. https://doi.org/10.1093/nar/gks375
  • Antony, P., & Vijayan, R. (2021). Molecular dynamics simulation study of the interaction between human angiotensin converting enzyme 2 and spike protein receptor binding domain of the SARS-CoV-2 B.1.617 Variant. Biomolecules, 11(8), 1244. https://doi.org/10.3390/biom11081244
  • Bian, L., Gao, F., Zhang, J., He, Q., Mao, Q., Xu, M., & Liang, Z. (2021). Effects of SARS-CoV-2 variants on vaccine efficacy and response strategies. Expert Review of Vaccines, 20(4), 365–373. https://doi.org/10.1080/14760584.2021.1903879
  • Chen, J., Wang, R., Wang, M., & Wei, G. W. (2020). Mutations Strengthened SARS-CoV-2 Infectivity. Journal of Molecular Biology, 432(19), 5212–5226. https://doi.org/10.1016/j.jmb.2020.07.009
  • Chen, R. E., Zhang, X., Case, J. B., Winkler, E. S., Liu, Y., VanBlargan, L. A., Liu, J., Errico, J. M., Xie, X., Suryadevara, N., Gilchuk, P., Zost, S. J., Tahan, S., Droit, L., Turner, J. S., Kim, W., Schmitz, A. J., Thapa, M., Wang, D., … Diamond, M. S. (2021). Resistance of SARS-CoV-2 variants to neutralization by monoclonal and serum-derived polyclonal antibodies. Nature Medicine, 27(4), 717–726. https://doi.org/10.1038/s41591-021-01294-w
  • Collier, D. A., De Marco, A., Ferreira, I. A. T. M., Meng, B., Datir, R. P., Walls, A. C., Kemp, S. A., Bassi, J., Pinto, D., Silacci-Fregni, C., Bianchi, S., Tortorici, M. A., Bowen, J., Culap, K., Jaconi, S., Cameroni, E., Snell, G., Pizzuto, M. S., Pellanda, A. F., … Gupta, R. K, COVID-19 Genomics UK (COG-UK) Consortium. (2021). Sensitivity of SARS-CoV-2 B.1.1.7 to mRNA vaccine-elicited antibodies. Nature, 593(7857), 136–141. https://doi.org/10.1038/s41586-021-03412-7
  • Cui, Q., Sulea, T., Schrag, J. D., Munger, C., Hung, M.-N., Naïm, M., Cygler, M., & Purisima, E. O. (2008). Molecular dynamics-solvated interaction energy studies of protein-protein interactions: the MP1-p14 scaffolding complex. Journal of Molecular Biology, 379(4), 787–802. https://doi.org/10.1016/j.jmb.2008.04.035
  • Daniloski, Z., Jordan, T. X., Ilmain, J. K., Guo, X., Bhabha, G., tenOever, B. R., & Sanjana, N. E. (2021). The Spike D614G mutation increases SARS-CoV-2 infection of multiple human cell types. eLife, 10, e65365. https://doi.org/10.7554/eLife.65365
  • Darden, T., York, D., & Pedersen, L. (1993). Particle mesh Ewald: AnN⋅log(N) method for Ewald sums in large systems. The Journal of Chemical Physics, 98(12), 10089–10092. https://doi.org/10.1063/1.464397
  • Davies, N. G., Abbott, S., Barnard, R. C., Jarvis, C. I., Kucharski, A. J., Munday, J. D., Pearson, C. A. B., Russell, T. W., Tully, D. C., Washburne, A. D., Wenseleers, T., Gimma, A., Waites, W., Wong, K. L. M., van Zandvoort, K., Silverman, J. D., Diaz-Ordaz, K., Keogh, R., Eggo, R. M., … Edmunds, W. J., CMMID COVID-19 Working Group. (2021). Estimated transmissibility and impact of SARS-CoV-2 lineage B.1.1.7 in England. Science, 372(6538), eabg3055. https://doi.org/10.1126/science.abg3055
  • Dehury, B., Raina, V., Misra, N., & Suar, M. (2021). Effect of mutation on structure, function and dynamics of receptor binding domain of human SARS-CoV-2 with host cell receptor ACE2: a molecular dynamics simulations study. Journal of Biomolecular Structure & Dynamics, 39(18), 7231–7245. https://doi.org/10.1080/07391102.2020.1802348
  • Deng, X., Garcia-Knight, M. A., Khalid, M. M., Servellita, V., Wang, C., Morris, M. K., Sotomayor-González, A., Glasner, D. R., Reyes, K. R., Gliwa, A. S., Reddy, N. P., Sanchez San Martin, C., Federman, S., Cheng, J., Balcerek, J., Taylor, J., Streithorst, J. A., Miller, S., Sreekumar, B., … Chiu, C. Y. (2021). Transmission, infectivity, and neutralization of a spike L452R SARS-CoV-2 variant. Cell, 184(13), 3426–3437 e3428. https://doi.org/10.1016/j.cell.2021.04.025
  • Fleischmann, W. R. (1996). Viral genetics (4th ed.) University of Texas Medical Branch at Galveston.
  • Gomez, C. E., Perdiguero, B., & Esteban, M. (2021). Emerging SARS-CoV-2 variants and impact in global vaccination programs against SARS-CoV-2/COVID-19. Vaccines ( Vaccines), 9(3), 243. https://doi.org/10.3390/vaccines9030243
  • Gordon, J. C., Myers, J. B., Folta, T., Shoja, V., Heath, L. S., & Onufriev, A. (2005). H++: a server for estimating pKas and adding missing hydrogens to macromolecules. Nucleic Acids Research, 33(Web Server issue), W368–371. https://doi.org/10.1093/nar/gki464
  • Gotz, A. W., Williamson, M. J., Xu, D., Poole, D., Le Grand, S., & Walker, R. C. (2012). Routine microsecond molecular dynamics simulations with AMBER on GPUs. 1. Generalized Born. Journal of Chemical Theory and Computation, 8(5), 1542–1555. https://doi.org/10.1021/ct200909j
  • Guruprasad, L. (2020). Evolutionary relationships and sequence-structure determinants in human SARS coronavirus-2 spike proteins for host receptor recognition. Proteins, 88(11), 1387–1393. https://doi.org/10.1002/prot.25967
  • Guruprasad, L. (2021a). Human coronavirus spike protein-host receptor recognition. Progress in Biophysics and Molecular Biology, 161, 39–53. https://doi.org/10.1016/j.pbiomolbio.2020.10.006
  • Guruprasad, L. (2021b). Human SARS CoV-2 spike protein mutations. Proteins, 89(5), 569–576. https://doi.org/10.1002/prot.26042
  • Harvey, W. T., Carabelli, A. M., Jackson, B., Gupta, R. K., Thomson, E. C., Harrison, E. M., Ludden, C., Reeve, R., Rambaut, A., Peacock, S. J., & Robertson, D. L, COVID-19 Genomics UK (COG-UK) Consortium. (2021). SARS-CoV-2 variants, spike mutations and immune escape. Nature Reviews. Microbiology, 19(7), 409–424. https://doi.org/10.1038/s41579-021-00573-0
  • Horby, P. W., Pessoa-Amorim, G., Peto, L., Brightling, C. E., Sarkar, R., Thomas, K., … Landray, M. J. (2021). Tocilizumab in patients admitted to hospital with COVID-19 (RECOVERY): preliminary results of a randomised, controlled, open-label, platform trial. Lancet, 397, 1637–1645. https://doi.org/10.1101/2021.02.11.21249258
  • Hornak, V., Abel, R., Okur, A., Strockbine, B., Roitberg, A., & Simmerling, C. (2006). Comparison of multiple Amber force fields and development of improved protein backbone parameters. Proteins, 65(3), 712–725. https://doi.org/10.1002/prot.21123
  • Istifli, E. S., Netz, P. A., Sihoglu Tepe, A., Sarikurkcu, C., & Tepe, B. (2021). Understanding the molecular interaction of SARS-CoV-2 spike mutants with ACE2 (angiotensin converting enzyme 2). Journal of Biomolecular Structure and Dynamics, 1–12. https://doi.org/10.1080/07391102.2021.1975569
  • Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W., & Klein, M. L. (1983). Comparison of simple potential functions for simulating liquid water. The Journal of Chemical Physics, 79(2), 926–935. https://doi.org/10.1063/1.445869
  • Khan, A., Zia, T., Suleman, M., Khan, T., Ali, S. S., Abbasi, A. A., Mohammad, A., & Wei, D.-Q. (2021). Higher infectivity of the SARS-CoV-2 new variants is associated with K417N/T, E484K, and N501Y mutants: An insight from structural data. Journal of Cellular Physiology, 236(10), 7045–7057. https://doi.org/10.1002/jcp.30367
  • Korber, B., Fischer, W. M., Gnanakaran, S., Yoon, H., Theiler, J., Abfalterer, W., Hengartner, N., Giorgi, E. E., Bhattacharya, T., Foley, B., Hastie, K. M., Parker, M. D., Partridge, D. G., Evans, C. M., Freeman, T. M., de Silva, T. I., McDanal, C., Perez, L. G., Tang, H., … Montefiori, D. C, Sheffield COVID-19 Genomics Group. (2020). Tracking changes in SARS-CoV-2 spike: Evidence that D614G increases infectivity of the COVID-19 virus. Cell, 182(4), 812–827 e819. https://doi.org/10.1016/j.cell.2020.06.043
  • Kyriakidis, N. C., Lopez-Cortes, A., Gonzalez, E. V., Grimaldos, A. B., & Prado, E. O. (2021). SARS-CoV-2 vaccines strategies: A comprehensive review of phase 3 candidates. NPJ Vaccines, 6(1), 28 https://doi.org/10.1038/s41541-021-00292-w
  • Lan, J., Ge, J., Yu, J., Shan, S., Zhou, H., Fan, S., Zhang, Q., Shi, X., Wang, Q., Zhang, L., & Wang, X. (2020). Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature, 581(7807), 215–220. https://doi.org/10.1038/s41586-020-2180-5
  • Laskowski, R. A., Jabłońska, J., Pravda, L., Vařeková, R. S., & Thornton, J. M. (2018). PDBsum: Structural summaries of PDB entries. Protein Sci, 27(1), 129–134. https://doi.org/10.1002/pro.3289
  • Li, W., Moore, M. J., Vasilieva, N., Sui, J., Wong, S. K., Berne, M. A., Somasundaran, M., Sullivan, J. L., Luzuriaga, K., Greenough, T. C., Choe, H., & Farzan, M. (2003). Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature, 426(6965), 450–454. https://doi.org/10.1038/nature02145
  • Lindorff-Larsen, K., Piana, S., Palmo, K., Maragakis, P., Klepeis, J. L., Dror, R. O., & Shaw, D. E. (2010). Improved side-chain torsion potentials for the Amber ff99SB protein force field. Proteins, 78(8), 1950–1958. https://doi.org/10.1002/prot.22711
  • Luan, B., Wang, H., & Huynh, T. (2021). Enhanced binding of the N501Y-mutated SARS-CoV-2 spike protein to the human ACE2 receptor: Insights from molecular dynamics simulations. FEBS Letters, 595(10), 1454–1461. https://doi.org/10.1002/1873-3468.14076
  • Mark, P., & Nilsson, L. (2001). Structure and dynamics of the TIP3P, SPC, and SPC/E Water models at 298 K. The Journal of Physical Chemistry A, 105(43), 9954–9960. https://doi.org/10.1021/jp003020w
  • Mohammadi, E., Shafiee, F., Shahzamani, K., Ranjbar, M. M., Alibakhshi, A., Ahangarzadeh, S., Beikmohammadi, L., Shariati, L., Hooshmandi, S., Ataei, B., & Javanmard, S. H. (2021). Novel and emerging mutations of SARS-CoV-2: Biomedical implications. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie, 139, 111599 https://doi.org/10.1016/j.biopha.2021.111599
  • Naïm, M., Bhat, S., Rankin, K. N., Dennis, S., Chowdhury, S. F., Siddiqi, I., Drabik, P., Sulea, T., Bayly, C. I., Jakalian, A., & Purisima, E. O. (2007). Solvated interaction energy (SIE) for scoring protein-ligand binding affinities. 1. Exploring the parameter space. J Chem Inf Model, 47(1), 122–133. https://doi.org/10.1021/ci600406v
  • Noh, J. Y., Jeong, H. W., & Shin, E. C. (2021). SARS-CoV-2 mutations, vaccines, and immunity: implication of variants of concern. Signal Transduction and Targeted Therapy, 6(1), 203 https://doi.org/10.1038/s41392-021-00623-2
  • Ozono, S., Zhang, Y., Ode, H., Sano, K., Tan, T. S., Imai, K., Miyoshi, K., Kishigami, S., Ueno, T., Iwatani, Y., Suzuki, T., & Tokunaga, K. (2021). SARS-CoV-2 D614G spike mutation increases entry efficiency with enhanced ACE2-binding affinity. Nat Commun, 12(1), 848 https://doi.org/10.1038/s41467-021-21118-2
  • Patone, M., Thomas, K., Hatch, R., Tan, P. S., Coupland, C., Liao, W., … Hippisley-Cox, J. (2021). Mortality and critical care unit admission associated with the SARS-CoV-2 lineage B.1.1.7 in England: An observational cohort study. Lancet Infectious Diseases, 21, 1518–1528. https://doi.org/10.1016/S1473-3099(21)00318-2
  • Rambaut, A., Holmes, E. C., O'Toole, Á., Hill, V., McCrone, J. T., Ruis, C., Du Plessis, L., & Pybus, O. G. (2020). A dynamic nomenclature proposal for SARS-CoV-2 lineages to assist genomic epidemiology. Nat Microbiol, 5(11), 1403–1407. https://doi.org/10.1038/s41564-020-0770-5
  • Rees-Spear, C., Muir, L., Griffith, S. A., Heaney, J., Aldon, Y., Snitselaar, J. L., Thomas, P., Graham, C., Seow, J., Lee, N., Rosa, A., Roustan, C., Houlihan, C. F., Sanders, R. W., Gupta, R. K., Cherepanov, P., Stauss, H. J., Nastouli, E., Doores, K. J., van Gils, M. J., & McCoy, L. E, SAFER Investigators. (2021). The effect of spike mutations on SARS-CoV-2 neutralization. Cell Reports, 34(12), 108890 https://doi.org/10.1016/j.celrep.2021.108890
  • Salomon-Ferrer, R., Case, D. A., & Walker, R. C. (2013). An overview of the Amber biomolecular simulation package. Wiley Interdisciplinary Reviews: Computational Molecular Science, 3(2), 198–210. https://doi.org/10.1002/wcms.1121
  • Shah, M., Ahmad, B., Choi, S., & Woo, H. G. (2020). Mutations in the SARS-CoV-2 spike RBD are responsible for stronger ACE2 binding and poor anti-SARS-CoV mAbs cross-neutralization. Computational and Structural Biotechnology Journal, 18, 3402–3414. https://doi.org/10.1016/j.csbj.2020.11.002
  • Shang, J., Wan, Y., Luo, C., Ye, G., Geng, Q., Auerbach, A., & Li, F. (2020). Cell entry mechanisms of SARS-CoV-2. Proceedings of the National Academy of Sciences of the United States of America, 117(21), 11727–11734. https://doi.org/10.1073/pnas.2003138117
  • Sulea, T., & Purisima, E. O. (2012). The solvated interaction energy method for scoring binding affinities. Methods in Molecular Biology (Clifton, N.J.), 819, 295–303. https://doi.org/10.1007/978-1-61779-465-0_19
  • Taka, E., Yilmaz, S. Z., Golcuk, M., Kilinc, C., Aktas, U., Yildiz, A., & Gur, M. (2021). Critical interactions between the SARS-CoV-2 spike glycoprotein and the human ACE2 receptor. The Journal of Physical Chemistry. B, 125(21), 5537–5548. https://doi.org/10.1021/acs.jpcb.1c02048
  • Tian, F., Tong, B., Sun, L., Shi, S., Zheng, B., Wang, Z., Dong, X., & Zheng, P. (2021). N501Y mutation of spike protein in SARS-CoV-2 strengthens its binding to receptor ACE2. eLife, 10, e69091. https://doi.org/10.7554/eLife.69091
  • Wang, W. B., Liang, Y., Jin, Y. Q., Zhang, J., Su, J. G., & Li, Q. M. (2021). E484K mutation in SARS-CoV-2 RBD enhances binding affinity with hACE2 but reduces interactions with neutralizing antibodies and nanobodies: Binding free energy calculation studies. Journal of Molecular Graphics & Modelling, 109, 108035 https://doi.org/10.1016/j.jmgm.2021.108035
  • Wang, J., Wang, W., Kollman, P. A., & Case, D. A. (2006). Automatic atom type and bond type perception in molecular mechanical calculations. J Mol Graph Model, 25(2), 247–260. https://doi.org/10.1016/j.jmgm.2005.12.005
  • Wang, Q., Zhang, Y., Wu, L., Niu, S., Song, C., Zhang, Z., Lu, G., Qiao, C., Hu, Y., Yuen, K.-Y., Wang, Q., Zhou, H., Yan, J., & Qi, J. (2020). Structural and Functional Basis of SARS-CoV-2 Entry by Using Human ACE2. Cell, 181(4), 894–904 e899. https://doi.org/10.1016/j.cell.2020.03.045
  • Wu, F., Zhao, S., Yu, B., Chen, Y.-M., Wang, W., Song, Z.-G., Hu, Y., Tao, Z.-W., Tian, J.-H., Pei, Y.-Y., Yuan, M.-L., Zhang, Y.-L., Dai, F.-H., Liu, Y., Wang, Q.-M., Zheng, J.-J., Xu, L., Holmes, E. C., & Zhang, Y.-Z. (2020). A new coronavirus associated with human respiratory disease in China. Nature, 579(7798), 265–269. https://doi.org/10.1038/s41586-020-2008-3
  • Xiao, T., Lu, J., Zhang, J., Johnson, R. I., McKay, L. G. A., Storm, N., Lavine, C. L., Peng, H., Cai, Y., Rits-Volloch, S., Lu, S., Quinlan, B. D., Farzan, M., Seaman, M. S., Griffiths, A., & Chen, B. (2021). A trimeric human angiotensin-converting enzyme 2 as an anti-SARS-CoV-2 agent. Nature Structural & Molecular Biology, 28(2), 202–209. https://doi.org/10.1038/s41594-020-00549-3
  • Xu, C., Wang, Y., Liu, C., Zhang, C., Han, W., Hong, X., Wang, Y., Hong, Q., Wang, S., Zhao, Q., Wang, Y., Yang, Y., Chen, K., Zheng, W., Kong, L., Wang, F., Zuo, Q., Huang, Z., & Cong, Y. (2021). Conformational dynamics of SARS-CoV-2 trimeric spike glycoprotein in complex with receptor ACE2 revealed by cryo-EM. Science Advances, 7(1), eabe5575. https://doi.org/10.1126/sciadv.abe5575
  • Yang, T.-J., Yu, P.-Y., Chang, Y.-C., Liang, K.-H., Tso, H.-C., Ho, M.-R., Chen, W.-Y., Lin, H.-T., Wu, H.-C., & Hsu, S.-T D. (2021). Effect of SARS-CoV-2 B.1.1.7 mutations on spike protein structure and function. Nature Structural & Molecular Biology, 28(9), 731–739. https://doi.org/10.1038/s41594-021-00652-z
  • Zhang, L., Jackson, C. B., Mou, H., Ojha, A., Peng, H., Quinlan, B. D., Rangarajan, E. S., Pan, A., Vanderheiden, A., Suthar, M. S., Li, W., Izard, T., Rader, C., Farzan, M., & Choe, H. (2020). SARS-CoV-2 spike-protein D614G mutation increases virion spike density and infectivity. Nature Communications, 11(1), 6013 https://doi.org/10.1038/s41467-020-19808-4
  • Zhang, Y., He, X., Zhai, J., Ji, B., Man, V. H., & Wang, J. (2021). In silico binding profile characterization of SARS-CoV-2 spike protein and its mutants bound to human ACE2 receptor. Briefings in Bioinformatics, 22(6), 1–13. https://doi.org/10.1093/bib/bbab188
  • Zhou, D., Dejnirattisai, W., Supasa, P., Liu, C., Mentzer, A. J., Ginn, H. M., Zhao, Y., Duyvesteyn, H. M. E., Tuekprakhon, A., Nutalai, R., Wang, B., Paesen, G. C., Lopez-Camacho, C., Slon-Campos, J., Hallis, B., Coombes, N., Bewley, K., Charlton, S., Walter, T. S., … Screaton, G. R. (2021). Evidence of escape of SARS-CoV-2 variant B.1.351 from natural and vaccine-induced sera. Cell, 184(9), 2348–2361 e2346. https://doi.org/10.1016/j.cell.2021.02.037
  • Zhu, N., Zhang, D., Wang, W., Li, X., Yang, B., Song, J., Zhao, X., Huang, B., Shi, W., Lu, R., Niu, P., Zhan, F., Ma, X., Wang, D., Xu, W., Wu, G., Gao, G. F., & Tan, W., China Novel Coronavirus Investigating and Research Team. (2020). A Novel Coronavirus from Patients with Pneumonia in China, 2019. The New England Journal of Medicine, 382(8), 727–733. https://doi.org/10.1056/NEJMoa2001017

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.