265
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

Inhibition and disintegration of Bacillus subtilis biofilm with small molecule inhibitors identified through virtual screening for targeting TasA(28-261), the major protein component of ECM

, , , &
Pages 2431-2447 | Received 21 Apr 2021, Accepted 19 Jan 2022, Published online: 31 Jan 2022

Reference

  • Al-Jumaili, A., Kumar, A., Bazaka, K., & Jacob, M. (2018). Plant secondary metabolite-derived polymers: A potential approach to develop antimicrobial films. Polymers, 10(5), 515. https://doi.org/10.3390/polym10050515
  • Arita-Morioka, K. I., Yamanaka, K., Mizunoe, Y., Ogura, T., & Sugimoto, S. (2015). Novel strategy for biofilm inhibition by using small molecules targeting molecular chaperone DnaK. Antimicrobial Agents and Chemotherapy, 59(1), 633–641. https://doi.org/10.1128/AAC.04465-14
  • Balouiri, M., Sadiki, M., & Ibnsouda, S. K. (2016). Methods for in vitro evaluating antimicrobial activity: A review. Journal of Pharmaceutical Analysis, 6(2), 71–79. https://doi.org/10.1016/j.jpha.2015.11.005
  • Bonanno, J. B., Rutter, M., Bain, K. T., Chang, S., Ozyurt, K., Smith, D., Wasserman, S., Sauder, J. M., Burley, S. K., & Almo, S. C. Crystal structure of conserved exported protein from Bacteroides fragilis. (Pdb Id 3clw, ), https://doi.org/10.2210/pdb3CLW/pdb
  • Brackman, G., & Coenye, T. (2015). Quorum sensing inhibitors as anti-biofilm agents. Current Pharmaceutical Design, 21(1), 5–11. https://doi.org/10.2174/1381612820666140905114627
  • Branda, S. S., Chu, F., Kearns, D. B., Losick, R., & Kolter, R. (2006). A major protein component of the Bacillus subtilis biofilm matrix. Molecular Microbiology, 59(4), 1229–1238. https://doi.org/10.1111/j.1365-2958.2005.05020.x
  • Costerton, J. W., Stewart, P. S., & Greenberg, E. P. (1999). Bacterial biofilms: a common cause of persistent infections. Science (New York, N.Y.), 284(5418), 1318–1322. https://doi.org/10.1126/science.284.5418.1318
  • Davey, M. E., & O'toole, G. A. (2000). Microbial biofilms: From ecology to molecular genetics. Microbiology and Molecular Biology Reviews: MMBR, 64(4), 847–867. https://doi.org/10.1128/MMBR.64.4.847-867.2000
  • David, - C. C., & Jacobs, D. J. (2014). Principal component analysis: a method for determining the essential dynamics of proteins. Methods in Molecular Biology (Clifton, N.J.), 1084, 193–226.
  • Diehl, A., Roske, Y., Ball, L., Chowdhury, A., Hiller, M., Molière, N., Kramer, R., Stöppler, D., Worth, C. L., Schlegel, B., Leidert, M., Cremer, N., Erdmann, N., Lopez, D., Stephanowitz, H., Krause, E., van Rossum, B.-J., Schmieder, P., Heinemann, U., … Oschkinat, H. (2018). Structural changes of TasA in biofilm formation of Bacillus subtilis. Proceedings of the National Academy of Sciences of the United States of America, 115(13), 3237–3242. https://doi.org/10.1073/pnas.1718102115
  • Donlan, R. M. (2000). Role of biofilms in antimicrobial resistance. ASAIO Journal (American Society for Artificial Internal Organs: 1992), 46(6), S47–S52.
  • Frauenfelder, H., Sligar, S. G., & Wolynes, P. G. (1991). The energy landscapes and motions of proteins. Science (New York, N.Y.), 254(5038), 1598–1603. https://doi.org/10.1126/science.1749933
  • Genheden, S., & Ryde, U. (2015). The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. Expert Opinion on Drug Discovery, 10(5), 449–461. https://doi.org/10.1517/17460441.2015.1032936
  • Graziano, T. S., Cuzzullin, M. C., Franco, G. C., Schwartz-Filho, H. O., de Andrade, E. D., Groppo, F. C., & Cogo-Müller, K. (2015). Statins and antimicrobial effects: Simvastatin as a potential drug against Staphylococcus aureus biofilm. PLoS One, 10(5), e0128098. https://doi.org/10.1371/journal.pone.0128098
  • Halgren, T. A. (2009). Identifying and characterizing binding sites and assessing druggability. Journal of Chemical Information and Modeling, 49(2), 377–389. https://doi.org/10.1021/ci800324m
  • Hamon, M. A., & Lazazzera, B. A. (2001). The sporulation transcription factor Spo0A is required for biofilm development in Bacillus subtilis. Molecular Microbiology, 42(5), 1199–1209. https://doi.org/10.1046/j.1365-2958.2001.02709.x
  • Holton, S. J., Anandhakrishnan, M., Geerlof, A., & Wilmanns, M. (2013). Structural characterization of a D-isomer specific 2-hydroxyacid dehydrogenase from Lactobacillus delbrueckii ssp. bulgaricusJournal of Structural Biology, 181(2), 179–184. https://doi.org/10.1016/j.jsb.2012.10.009
  • Humphrey, W., Dalke, A., & Schulten, K. (1996). VMD: Visual molecular dynamics. Journal of Molecular Graphics, 14(1), 33–38. https://doi.org/10.1016/0263-7855(96)00018-5
  • Jamal, M., Ahmad, W., Andleeb, S., Jalil, F., Imran, M., Nawaz, M. A., Hussain, T., Ali, M., Rafiq, M., & Kamil, M. A. (2018). Bacterial biofilm and associated infections. Journal of the Chinese Medical Association: JCMA, 81(1), 7–11. https://doi.org/10.1016/j.jcma.2017.07.012
  • Jerwood, S., & Cohen, J. (2008). Unexpected antimicrobial effect of statins. Journal of Antimicrobial Chemotherapy, 61(2), 362–364. https://doi.org/10.1093/jac/dkm496
  • Kayumov, A. R., Khakimullina, E. N., Sharafutdinov, I. S., Trizna, E. Y., Latypova, L. Z., Thi Lien, H., Margulis, A. B., Bogachev, M. I., & Kurbangalieva, A. R. (2015). Inhibition of biofilm formation in Bacillus subtilis by new halogenated furanones. The Journal of Antibiotics, 68(5), 297–301. https://doi.org/10.1038/ja.2014.143
  • Lu, L., Hu, W., Tian, Z., Yuan, D., Yi, G., Zhou, Y., Cheng, Q., Zhu, J., & Li, M. (2019). Developing natural products as potential anti-biofilm agents. Chinese Medicine, 14, 11. https://doi.org/10.1186/s13020-019-0232-2
  • Masadeh, M., Mhaidat, N., Alzoubi, K., Al-Azzam, S., & Alnasser, Z. (2012). Antibacterial activity of statins: a comparative study of atorvastatin, simvastatin, and rosuvastatin. Annals of Clinical Microbiology and Antimicrobials, 11, 13. https://doi.org/10.1186/1476-0711-11-13.
  • Meng, X. Y., Zhang, H. X., Mezei, M., & Cui, M. (2011). Molecular docking: A powerful approach for structure-based drug discovery. Current Computer-Aided Drug Design, 7(2), 146–157. https://doi.org/10.2174/157340911795677602
  • Ommen, P., Zobek, N., & Meyer, R. L. (2017). Quantification of biofilm biomass by staining: Non-toxic safranin can replace the popular crystal violet. Journal of Microbiological Methods, 141, 87–89. https://doi.org/10.1016/j.mimet.2017.08.003
  • Park, K. (2019). A review of computational drug repurposing. Translational and Clinical Pharmacology, 27(2), 59–63. https://doi.org/10.12793/tcp.2019.27.2.59
  • Pronk, S., Páll, S., Schulz, R., Larsson, P., Bjelkmar, P., Apostolov, R., Shirts, M. R., Smith, J. C., Kasson, P. M., van der Spoel, D., Hess, B., & Lindahl, E. (2013). GROMACS 4.5: A high-throughput and highly parallel open source molecular simulation toolkit. Bioinformatics (Oxford, England), 29(7), 845–854. https://doi.org/10.1093/bioinformatics/btt055
  • Pushpakom, S., Iorio, F., Eyers, P. A., Escott, K. J., Hopper, S., Wells, A., Doig, A., Guilliams, T., Latimer, J., McNamee, C., Norris, A., Sanseau, P., Cavalla, D., & Pirmohamed, M. (2019). Drug repurposing: progress, challenges and recommendations. Nature Reviews. Drug Discovery, 18(1), 41–58. https://doi.org/10.1038/nrd.2018.168
  • Qvortrup, K., Hultqvist, L. D., Nilsson, M., Jakobsen, T. H., Jansen, C. U., Uhd, J., Andersen, J. B., Nielsen, T. E., Givskov, M., & Nielsen, T. T. (2019). Small molecule anti-biofilm agents developed on the basis of mechanistic understanding of biofilm formation. Frontiers in Chemistry, 7, 742.https://doi.org/10.3389/fchem.2019.00742. eCollection 2019.
  • Rabin, N., Zheng, Y., Opoku-Temeng, C., Du, Y., Bonsu, E., & Sintim, H. O. (2015). Biofilm formation mechanisms and targets for developing antibiofilm agents. Future Medicinal Chemistry, 7(4), 493–512. https://doi.org/10.4155/fmc.15.6
  • Richard, A. F., Banks, J. L., Murphy, R. B., Halgren, T. A., Klicic, J. J., Mainz, T. T., Repasky, M. P., Knoll, E. H., Shelley, M., Perry, J. K., Shaw, D. E., & Shenkin, P. S. (2004). Glide: A new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. Journal of Medicinal Chemistry, 47(7), 1739–1749. https://doi.org/10.1021/jm0306430
  • Romero, D., Vlamakis, H., Losick, R., & Kolter, R. (2011). An accessory protein required for anchoring and assembly of amyloid fibres in B. subtilis biofilms. Molecular Microbiology, 80(5), 1155–1168. https://doi.org/10.1111/j.1365-2958.2011.07653.x
  • Romero, D., Vlamakis, H., Losick, R., & Kolter, R. (2014). Functional analysis of the accessory protein TapA in Bacillus subtilis amyloid fiber assembly. Journal of Bacteriology, 196(8), 1505–1513. https://doi.org/10.1128/JB.01363-13
  • Römling, U., & Balsalobre, C. (2012). Biofilm infections, their resilience to therapy and innovative treatment strategies. Journal of Internal Medicine, 272(6), 541–561. https://doi.org/10.1111/joim.12004
  • Schüttelkopf, A. W., & Van Aalten, D. M. (2004). PRODRG: A tool for high-throughput crystallography of protein-ligand complexes. Acta Crystallographica. Section D, Biological Crystallography, 60(Pt 8), 1355–1363. https://doi.org/10.1107/S0907444904011679
  • Stewart, P. S., & Costerton, J. W. (2001). Antibiotic resistance of bacteria in biofilms. The Lancet, 358(9276), 135–138. https://doi.org/10.1016/S0140-6736(01)05321-1
  • Stöver, A. G., & Driks, A. (1999). Secretion, localization, and antibacterial activity of TasA, a Bacillus subtilis spore-associated protein. Journal of Bacteriology, 181(5), 1664–1672. https://doi.org/10.1128/JB.181.5.1664-1672.1999
  • Verma, N., Srivastava, S., Malik, R., Yadav, J. K., Goyal, P., & Pandey, J. (2020). Computational investigation for modeling the protein-protein interaction of TasA(28–261)–TapA(33–253): a decisive process in biofilm formation by Bacillus subtilis. Journal of Molecular Modeling, 26(9), 226.
  • Yin, W., Wang, Y., Liu, L., & He, J. (2019). Biofilms: The microbial "Protective Clothing" in extreme environments. International Journal of Molecular Sciences, 20(14), 3423. https://doi.org/10.3390/ijms20143423
  • Yu, C., Li, X., Zhang, N., Wen, D., Liu, C., & Li, Q. (2016). Inhibition of biofilm formation by D-tyrosine: Effect of bacterial type and D-tyrosine concentration. Water Research, 92, 173–179. https://doi.org/10.1016/j.watres.2016.01.037

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.