304
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

In-silico investigation of some recent natural compounds for their potential use against SARS-CoV-2: a DFT, molecular docking and molecular dynamics study

ORCID Icon
Pages 2448-2465 | Received 25 Sep 2021, Accepted 19 Jan 2022, Published online: 28 Jan 2022

References

  • Ali, J., Camilleri, P., Brown, M. B., Hutt, A. J., & Kirton, S. B. (2012). In silico prediction of aqueous solubility using simple QSPR models: The importance of phenol and phenol-like moieties. Journal of Chemical Information and Modeling, 52(11), 2950–2957. https://doi.org/10.1021/ci300447c
  • Avti, P., Chauhan, A., Shekhar, N., Prajapat, M., Sarma, P., Kaur, H., Bhattacharyya, A., Kumar, S., Prakash, A., Sharma, S., & Medhi, B. (2021). Computational basis of SARS-CoV 2 main protease inhibition: An insight from molecular dynamics simulation based findings. Journal of Biomolecular Structure and Dynamics, 1–11. https://doi.org/10.1080/07391102.2021.1922310
  • Baell, J. B., & Holloway, G. A. (2010). New substructure filters for removal of pan assay interference compounds (PAINS) from screening libraries and for their exclusion in bioassays. Journal of Medicinal Chemistry, 53(7), 2719–2740. https://doi.org/10.1021/jm901137j
  • Baker, N. A., Sept, D., Joseph, S., Holst, M. J., & McCammon, J. A. (2001). Electrostatics of nanosystems: Application to microtubules and the ribosome. Proceedings of the National Academy of Sciences of the United States of America, 98(18), 10037–10041. https://doi.org/10.1073/pnas.181342398
  • Biovia, D. S. (2016). Discovery Studio Visualizer, v20.1.0.19295. Dassault Systèmes.
  • Brenk, R., Schipani, A., James, D., Krasowski, A., Gilbert, I. H., Frearson, J., & Wyatt, P. G. (2008). Lessons learnt from assembling screening libraries for drug discovery for neglected diseases. ChemMedChem, 3(3), 435–444. https://doi.org/10.1002/cmdc.200700139
  • Chang, C.-E., & Gilson, M. K. (2003). Tork: Conformational analysis method for molecules and complexes. Journal of Computational Chemistry, 24(16), 1987–1998. https://doi.org/10.1002/jcc.10325
  • Choudhary, M. I., Shaikh, M., Tul-Wahab, A., & Ur-Rahman, A. (2020). In silico identification of potential inhibitors of key SARS-CoV-2 3CL hydrolase (Mpro) via molecular docking, MMGBSA predictive binding energy calculations, and molecular dynamics simulation. PLoS One, 15(7), e0235030. https://doi.org/10.1371/journal.pone.0235030
  • Daina, A., Michielin, O., & Zoete, V. (2014). ILOGP: A simple, robust, and efficient description of n-octanol/water partition coefficient for drug design using the GB/SA approach. Journal of Chemical Information and Modeling, 54(12), 3284–3301. https://doi.org/10.1021/ci500467k
  • Daina, A., Michielin, O., & Zoete, V. (2017). SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports, 7(1), 42717. https://doi.org/10.1038/srep42717
  • Delaney, J. S. (2004). ESOL: Estimating aqueous solubility directly from molecular structure. Journal of Chemical Information and Computer Sciences, 44(3), 1000–1005. https://doi.org/10.1021/ci034243x
  • Dennington, R., Keith, T., & Millam, J. (2009). GaussView, Version 5. Semichem Inc.
  • Egan, W. J., Merz, K. M., & Baldwin, J. J. (2000). Prediction of drug absorption using multivariate statistics. Journal of Medicinal Chemistry, 43(21), 3867–3877. https://doi.org/10.1021/jm000292e
  • Erdogan, T. (2021). DFT, molecular docking and molecular dynamics simulation studies on some newly introduced natural products for their potential use against SARS-CoV-2. Journal of Molecular Structure, 1242, 130733. https://doi.org/10.1016/j.molstruc.2021.130733
  • Ertl, P., Rohde, B., & Selzer, P. (2000). Fast calculation of molecular polar surface area as a sum of fragment-based contributions and its application to the prediction of drug transport properties. Journal of Medicinal Chemistry, 43(20), 3714–3717. https://doi.org/10.1021/jm000942e
  • FILTER-IT Program Version: 1.0.2. SILICOS-IT. http://silicos-it.be.s3-website-eu-west-1.amazonaws.com/.
  • Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., … Fox, D. J. (2013). Gaussian 09. GaussianInc.
  • Kapusta, K., Kar, S., Collins, J. T., Franklin, L. M., Kolodziejczyk, W., Leszczynski, J., & Hill, G. A. (2021). Protein reliability analysis and virtual screening of natural inhibitors for SARS-CoV-2 main protease (Mpro) through docking, molecular mechanic & dynamic, and ADMET profiling. Journal of Biomolecular Structure & Dynamics, 39(17), 6810–6827. https://doi.org/10.1080/07391102.2020.1806930
  • Kim, S., Chen, J., Cheng, T., Gindulyte, A., He, J., He, S., Li, Q., Shoemaker, B. A., Thiessen, P. A., Yu, B., Zaslavsky, L., Zhang, J., & Bolton, E. E. (2019). PubChem 2019 update: Improved access to chemical data. Nucleic Acids Research, 47(D1), D1102–D1109. https://doi.org/10.1093/nar/gky1033
  • Kumar, B. K., Faheem, Sekhar, K. V. G. C., Ojha, R., Prajapati, V. K., Pai, A., & Murugesan, S. (2020). Pharmacophore based virtual screening, molecular docking, molecular dynamics and MM-GBSA approach for identification of prospective SARS-CoV-2 inhibitor from natural product databases. Journal of Biomolecular Structure and Dynamics. https://doi.org/10.1080/07391102.2020.1824814
  • Kumar, Y., Singh, H., & Patel, C. N. (2020). In silico prediction of potential inhibitors for the main protease of SARS-CoV-2 using molecular docking and dynamics simulation based drug-repurposing. Journal of Infection and Public Health, 13(9), 1210–1223. https://doi.org/10.1016/j.jiph.2020.06.016
  • Kumari, R., Kumar, R., Lynn, A., & Open Source Drug Discovery Consortium. (2014). g_mmpbsa – A GROMACS tool for high-throughput MM-PBSA calculations. Journal of Chemical Information and Modeling, 54(7), 1951–1962. https://doi.org/10.1021/ci500020m
  • Lipinski, C. A., Lombardo, F., Dominy, B. W., & Feeney, P. J. (2001). Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced Drug Delivery Reviews, 46(1-3), 3–26. https://doi.org/10.1016/S0169-409X(00)00129-0
  • Lovering, F., Bikker, J., & Humblet, C. (2009). Escape from flatland: Increasing saturation as an approach to improving clinical success. Journal of Medicinal Chemistry, 52(21), 6752–6756. https://doi.org/10.1021/jm901241e
  • Ma, R. Z., Zheng, C. J., Zhang, B., Yang, J. Y., Zhou, X. M., & Song, X. M. (2021). Two New naphthalene-chroman coupled derivatives from the mangrove-derived fungus Cladosporium sp. JJM22. Phytochemistry Letters, 43, 114–116. https://doi.org/10.1016/j.phytol.2021.03.014
  • Moriguchi, I., Hirono, S., Liu, Q., Nakagome, I., & Matsushita, Y. (1992). Simple method of calculating octanol/water partition coefficient. Chemical and Pharmaceutical Bulletin, 40(1), 127–130. https://doi.org/10.1248/cpb.40.127
  • Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S., & Olson, A. J. (2009). AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. Journal of Computational Chemistry, 30(16), 2785–2791. https://doi.org/10.1002/jcc.21256
  • Muegge, I., Heald, S. L., & Brittelli, D. (2001). Simple selection criteria for drug-like chemical matter. Journal of Medicinal Chemistry, 44(12), 1841–1846. https://doi.org/10.1021/jm015507e
  • Mukaide, K., Honda, S., Vongsak, B., & Kumazawa, S. (2021). Prenylflavonoids from propolis collected in Chiang Mai, Thailand. Phytochemistry Letters, 43, 88–93. https://doi.org/10.1016/j.phytol.2021.03.015
  • Peng, Q., Cai, J., Long, J., Yang, B., Lin, X., Wang, J., Xiao, J., Liu, Y., & Zhou, X. (2021). New azaphthalide and phthalide derivatives from the marine coral-derived fungus Aspergillus sp. SCSIO41405. Phytochemistry Letters, 43, 94–97. https://doi.org/10.1016/j.phytol.2021.03.019
  • Ponder, J. W., & Case, D. A. (2003). Force fields for protein simulations. Advances in Protein Chemistry, 66, 27–85. https://doi.org/10.1016/s0065-3233(03)66002-x
  • Popwo Tameye, S. C., Djamen Mbeunkeu, A. B., Fouokeng, Y., Jouwa Tameye, N. S., Tabekoueng, G. B., Wansi, J. D., Sewald, N., Ndom, J. C., & Azebaze, A. G. B. (2021). Ficusanolide A and ficusanolide B, two new cinnamic acid derivative stereoisomers and other constituents of the stem barks of Ficus exasperata Vahl. (Moraceae). Phytochemistry Letters, 43, 150–153. https://doi.org/10.1016/j.phytol.2021.03.027
  • Potts, R. O., & Guy, R. H. (1992). Predicting skin permeability. Pharmaceutical Research, 9(5), 663–669. https://doi.org/10.1023/A:1015810312465
  • RCSB PDB. https://www.rcsb.org/
  • Sousa Da Silva, A. W., & Vranken, W. F. (2012). ACPYPE – AnteChamber PYthon Parser interfacE. BMC Research Notes, 5(1), 367. https://doi.org/10.1186/1756-0500-5-367
  • Sterling, T., & Irwin, J. J. (2015). ZINC 15 – Ligand discovery for everyone. Journal of Chemical Information and Modeling, 55(11), 2324–2337. https://doi.org/10.1021/acs.jcim.5b00559
  • Teague, S. J., Davis, A. M., Leeson, P. D., & Oprea, T. (1999). The design of leadlike combinatorial libraries. Angewandte Chemie International Edition, 38(24), 3743–3748. https://doi.org/10.1002/(SICI)1521-3773(19991216)38:24<3743::AID-ANIE3743>3.0.CO;2-U
  • Trott, O., & Olson, A. J. (2010). AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31(2), 455–461. https://doi.org/10.1002/jcc.21334
  • Van Der Spoel, D., Lindahl, E., Hess, B., Groenhof, G., Mark, A. E., & Berendsen, H. J. C. (2005). GROMACS: Fast, flexible, and free. Journal of Computational Chemistry, 26(16), 1701–1718. https://doi.org/10.1002/jcc.20291
  • Veber, D. F., Johnson, S. R., Cheng, H. Y., Smith, B. R., Ward, K. W., & Kopple, K. D. (2002). Molecular properties that influence the oral bioavailability of drug candidates. Journal of Medicinal Chemistry, 45(12), 2615–2623. https://doi.org/10.1021/jm020017n
  • Wei, W., Cherukupalli, S., Jing, L., Liu, X., & Zhan, P. (2020). Fsp3: A new parameter for drug-likeness. Drug Discovery Today, 25(10), 1839–1845. https://doi.org/10.1016/j.drudis.2020.07.017
  • Wildman, S. A., & Crippen, G. M. (1999). Prediction of physicochemical parameters by atomic contributions. Journal of Chemical Information and Computer Sciences, 39(5), 868–873. https://doi.org/10.1021/ci990307l
  • Xie, Y. Q., Du, X. Y., Liu, D., Chen, X. Q., Li, R. T., & Zhang, Z. J. (2021). Chemical constituents from Laggera pterodonta and their anti-inflammatory activities in vitro. Phytochemistry Letters, 43, 126–129. https://doi.org/10.1016/j.phytol.2021.04.001
  • XLOGP Program Version: 3.2.2, CCBG, Shanghai Institute of Organic Chemistry.
  • Zhang, L., Lin, D., Sun, X., Curth, U., Drosten, C., Sauerhering, L., Becker, S., Rox, K., & Hilgenfeld, R. (2020). Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved α-ketoamide inhibitors. Science, 368(6489), 409–412. https://doi.org/10.1126/science.abb3405

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.