266
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

Computational studies on the cholinesterase, beta-secretase 1 (BACE1) and monoamine oxidase (MAO) inhibitory activities of endophytes-derived compounds: towards discovery of novel neurotherapeutics

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon &
Pages 2540-2554 | Received 09 Dec 2021, Accepted 24 Jan 2022, Published online: 04 Feb 2022

References

  • Abraham, M., Murtola, T., Schulz, R., Páll, S., Smith, J., Hess, B., & Lindahl, E. (2015). GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX, 1–2, 19–25. https://doi.org/10.1016/j.softx.2015.06.001
  • Bartuzi, D., Kaczor, A. A., Targowska-Duda, K. M., & Matosiuk, D. (2017). Recent advances and applications of molecular docking to G protein-coupled receptors. Molecules, 22(2), 340. https://doi.org/10.3390/molecules22020340
  • Behl, T., Kaur, D., Sehgal, A., Singh, S., Sharma, N., Zengin, G., Andronie-Cioara, F. L., Toma, M. M., Bungau, S., & Bumbu, A. G. (2021). Role of monoamine oxidase activity in Alzheimer’s disease: An insight into the therapeutic potential of inhibitors. Molecules, 26(12), 3724. https://doi.org/10.3390/molecules26123724
  • Bekker, H., Berendsen, H., Dijkstra, E., Achterop, S., Vondrumen, R., Vanderspoel, D., Sijbers, A., Keegstra, H., & Renardus, M. (1993). Gromacs-a parallel computer for molecular-dynamics simulations. 4th International Conference on Computational Physics (PC 92), World Scientific Publishing, pp. 252–256.
  • Bhalkar, B. N., Bedekar, P. A., Patil, S. M., Patil, S. A., & Govindwar, S. P. (2015). Production of camptothecine using whey by anendophytic fungus: Standardization using response surface methodology. RSC Advances, 5(77), 62828–62835. https://doi.org/10.1039/C5RA12212K
  • Bhalkar, B. N., Patil, S. M., & Govindwar, S. P. (2016). Camptothecine production by mixed fermentation of two endophytic fungi from Nothapodytesnimmoniana. Fungal Biology, 120, 873–883. https://doi.org/10.1016/j.funbio.2016.04.003
  • Bhardwaj, V. K., Singh, R., Sharma, J., Das, P., & Purohit, R. (2020). Structural based study to identify new potential inhibitors for dual specificity tyrosine-phosphorylation-regulated kinase. Computer Methods and Programs in Biomedicine, 194, 105494. https://doi.org/10.1016/j.cmpb.2020.105494
  • Binda, C., Newton-Vinson, P., Hubálek, F., Edmondson, D. E., & Mattevi, A. (2002). Structure of human monoamine oxidase B, a drug target for the treatment of neurological disorders. Nature Structural Biology, 9, 22–26. https://doi.org/10.1038/nsb732
  • Black, K. L. (1995). Biochemical opening of the blood-brain barrier. Advanced Drug Delivery Reviews, 15(1–3), 37–52. https://doi.org/10.1016/0169-409X(95)00004-Q
  • Chen, W.-W., Zhang, X., & Huang, W.-J. (2016). Role of neuroinflammation in neurodegenerative diseases (Review). Molecular Medicine Reports, 13, 3391–3396. https://doi.org/10.3892/mmr.2016.4948
  • Cheng, X., & Ivanov, I. (2012). Molecular dynamics. Methods in Molecular Biology, 929, 243–285. https://doi.org/10.1007/978-1-62703-050-2_11
  • Chomcheon, P., Wiyakrutta, S., Sriubolmas, N., Ngamrojanavanich, N., Kengtong, S., Mahidol, C., Ruchirawat, S., & Kittakoop, P. (2009). Aromatase inhibitory, radical scavenging, and antioxidant activities of depsidones and diaryl ethers from the endophytic fungus Corynesporacassiicola L36. Phytochemistry, 70(3), 407–413. https://doi.org/10.1016/j.phytochem.2009.01.007
  • Daina, A., Michielin, O., & Zoete, V. (2014). ILOGP: A simple, robust, and efficient description of n-octanol/water partition coefficient for drug design using the GB/SA approach. Journal of Chemical Information and Modeling, 54, 3284–3301. https://doi.org/10.1021/ci500467k
  • Daina, A., Michielin, O., & Zoete, V. (2017). SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports, 7, 42717. https://doi.org/10.1038/srep42717
  • Daina, A., & Zoete, V. (2016). A boiled‐egg to predict gastrointestinal absorption and brain penetration of small molecules. ChemMedChem, 11, 1117–1121. https://doi.org/10.1002/cmdc.201600182
  • Das, B., & Yan, R. (2019). A close Look at BACE1 Inhibitors for Alzheimer's disease treatment. CNS drugs, 33(3), 251–263. https://doi.org/10.1007/s40263-019-00613-7
  • Decourt, B., Boumelhem, F., Pope, E. D., Shi, J., Mari, Z., & Sabbagh, M. N. (2021). Critical appraisal of amyloid lowering agents in AD. CurrNeurolNeurosci Rep, 21 (8), 39. https://doi.org/10.1007/s11910-021-01125-y.
  • Dong, Y.-W., Liao, M.-L., Meng, X.-L., & Somero, G. N. (2018). Structural flexibility and protein adaptation to temperature: Molecular dynamics analysis of malate dehydrogenases of marine molluscs. Proceedings of the National Academy of Sciences of the United States of America, 115, 1274–1279. https://doi.org/10.1073/pnas.1718910115
  • Du, F. Y., Li, X. M., Song, J. Y., Li, C. S., & Wang, B. G. (2014). Anthraquinone derivatives and an orsellinic acid ester from the marine alga-derived endophytic fungus Eurotium cristatum EN-220. Helvetica Chimica Acta, 97(7), 973–978. https://doi.org/10.1002/hlca.201300358
  • Dugger, B. N., & Dickson, D. W. (2017). Pathology of neurodegenerative diseases. Cold Spring Harbor Perspectives in Biology, 9(7), a028035. https://doi.org/10.1101/cshperspect.a028035
  • Falade, A. O., Adewole, K. E., & Ekundayo, T. C. (2021). Therapeutic potentials of endophytes for healthcare sustainability. Egyptian Journal of Basic and Applied Sciences, 8 (1), 117–135. https://doi.org/10.1080/2314808X.2021.1913083
  • Finberg, J. P., & Rabey, J. M. (2016). Inhibitors of MAO-A and MAO-B in psychiatry and neurology. Frontiers in Pharmacology, 7, 340. https://doi.org/10.3389/fphar.2016.00340.
  • Gerlits, O., Ho, K. Y., Cheng, X., Blumenthal, D., Taylor, P., Kovalevsky, A., & Radić, Z. (2019). A new crystal form of human acetylcholinesterase for exploratory room-temperature crystallography studies. Chemico-Biological Interactions, 309, 108698. https://doi.org/10.1016/j.cbi.2019.06.011
  • Goodwin, J. (2005). In silico predictions of blood-brain barrier penetration: Considerations to ‘keep in mind’. Journal of Pharmacology and Experimental Therapeutics, 315, 477–483. https://doi.org/10.1124/jpet.104.075705
  • Hampel, H., Mesulam, M.-M., Cuello, A. C., Farlow, M. R., Giacobini, E., Grossberg, G. T., Khachaturian, A. S., Vergallo, A., Cavedo, E., Snyder, P. J., & Khachaturian, Z. S. (2018). The cholinergic system in the pathophysiology and treatment of Alzheimer's disease. Brain, 141(7), 1917–1933. https://doi.org/10.1093/brain/awy132
  • Hanson, L. R., & Frey, I. I W. (2008). Intranasal delivery bypasses the blood-brain barrier to target therapeutic agents to the central nervous system and treat neurodegenerative disease. BMC Neuroscience, 9(S3), S5. https://doi.org/10.1186/1471-2202-9-S3-S5
  • Harms, A. S., Thome, A. D., Yan, Z., Schonhoff, A. M., Williams, G. P., Li, X., Liu, Y., Qin, H., Benveniste, E. N., & Standaert, D. G. (2018). Peripheral monocyte entry is required for alpha-Synuclein induced inflammation and neurodegeneration in a model of Parkinson disease. ExpNeurol, 300, 179–187. https://doi.org/10.1016/j.expneurol.2017.11.010
  • Humphrey, W., Dalke, A., & Schulten, K. (1996). VMD: Visual molecular dynamics. Journal of Molecular Graphics, 14, 33–38. https://doi.org/10.1016/0263-7855(96)00018-5
  • Ishola, A. A., & Adewole, K. E. (2019a). In silico screening of anticholinesterase alkaloids for cyclooxygenase-2 (COX-2) and matrix metalloproteinase 8 (MMP-8) inhibitory potentials as multi-target inhibitors of Alzheimer’s disease. Medicinal Chemistry Research, 28(10), 1704–1717. https://doi.org/10.1007/s00044-019-02407-4
  • Ishola, A. A., & Adewole, K. E. (2019b). Phytosterols and triterpenes from Morinda lucida Benth. exhibit binding tendency against class I HDAC and HDAC7 isoforms. Molecular Biology Reports, 46, 2307–2325. https://doi.org/10.1007/s11033-019-04689-8
  • Ishola, A. A., Oyinloye, B. E., Ajiboye, B. O., & Kappo, A. P. (2021). Molecular docking studies of flavonoids from andrographispaniculataas potential acetylcholinesterase, butyrylcholinesterase and monoamine oxidase inhibitors towards the treatment of neurodegenerative diseases. Biointerface Research in Applied Chemistry, 11, 9871–9879.
  • Jabir, N. R., Rehman, M. T., Alsolami, K., Shakil, S., Zughaibi, T. A., Alserihi, R. F., Khan, M. S., AlAjmi, M. F., & Tabrez, S. (2021a). Concatenation of molecular docking and molecular simulation of BACE-1, γ-secretase targeted ligands: In pursuit of Alzheimer’s treatment. Annals of Medicine, 53 (1), 2332–2344. https://doi.org/10.1080/07853890.2021.2009124
  • Jabir, N. R., Shakil, S., Tabrez, S., Khan, M. S., Rehman, M. T., & Ahmed, B. A. (2021b). In silico screening of glycogen synthase kinase-3β targeted ligands against acetylcholinesterase and its probable relevance to Alzheimer’s disease. Journal of Biomolecular Structure and Dynamics, 39 (14), 5083–5092. https://doi.org/10.1080/07391102.2020.1784796
  • Jellinger, K. A., & Korczyn, A. D. (2018). Are dementia with Lewy bodies and Parkinson's disease dementia the same disease? BMC Medicine, 16(1), 34. https://doi.org/10.1186/s12916-018-1016-8
  • Johansson, P., Kaspersson, K., Gurrell, I. K., Bäck, E., Eketjäll, S., Scott, C. W., Cebers, G., Thorne, P., McKenzie, M. J., Beaton, H., Davey, P., Kolmodin, K., Holenz, J., Duggan, M. E., Budd Haeberlein, S., & Bürli, R. W. (2018). Toward β-Secretase-1 inhibitors with improved isoform selectivity. Journal of Medicinal Chemistry, 61, 3491–3502. https://doi.org/10.1021/acs.jmedchem.7b01716
  • Kaushik, N., & Coloma, A. G. (2020). Therapeuticangents from endophytes. Current Medicinal Chemistry, 27 (11), 1813. https://doi.org/10.2174/092986732711200423115020
  • Legaz, M. E., de Armas, R., & Vicente, C. (2011). Bioproduction of depsidones for pharmaceutical purposes. In Drug development - A case study based insight into modern strategies (pp. 487–508). InTech.
  • Lipinski, C. A. (2000). Drug-like properties and the causes of poor solubility and poor permeability. Journal of Pharmacological and Toxicological Methods, 44, 235–249. https://doi.org/10.1016/s1056-8719(00)00107-6
  • Liu, Z., Qiu, P., Li, J., Chen, G., Chen, Y., Liu, H., & She, Z. (2018). Anti-inflammatory polyketides from the mangrove-derived fungus Ascomycota sp. SK2YWS-L. Tetrahedron, 74 (7), 746–751. https://doi.org/10.1016/j.tet.2017.12.057
  • O’Boyle, N. M., Banck, M., James, C. A., Morley, C., Vandermeersch, T., & Hutchison, G. R. (2011). Open Babel: An open chemical toolbox. Journal of Cheminformatics, 3, 33. https://doi.org/10.1186/1758-2946-3-33
  • Okoye, F. B. C., Lu, S., Nworu, C. S., Esimone, C. O., Proksch, P., Chadli, A., & Debbab, A. (2013a). Depsidone and diaryl ether derivatives from the fungus Corynesporacassiicola, an endophyte of Gongronemalatifolium. Tetrahedron Letters, 54(32), 4210–4214. https://doi.org/10.1016/j.tetlet.2013.05.117
  • Okoye, F. B. C., Nworu, C. S., Akah, P. A., Esimone, C. O., Debbab, A., & Proksch, P. (2013b). Inhibition of inflammatory mediators and reactive oxygen and nitrogen species by some depsidones and diaryl ether derivatives isolated from Corynesporacassiicola, an endophytic fungus of Gongronemalatifolium leaves. Immunopharmacology and Immunotoxicology, 35, 662–668. https://doi.org/10.3109/08923973.2013.834930
  • Oostenbrink, C., Villa, A., Mark, A., & Van Gunsteren, W. (2004). A biomolecular force field based on the free enthalpy of hydration and solvation: The GROMOS force‐field parameter sets 53A5 and 53A6. Journal of Computational Chemistry, 25, 1656–1676. https://doi.org/10.1002/jcc.20090
  • Pardridge, W. (2009). Alzheimer’s disease drug development and the problem of the blood-brain barrier. Alzheimer's & Dementia, 5(5), 427–432. https://doi.org/10.1016/j.jalz.2009.06.003
  • Praptiwi, M. R., Wulansari, D., Fathoni, A., & Agusta, A. (2018). Antibacterial and antioxidant activities of endophytic fungi extract of medicinal plants from central Sulawesi. Journal of Applied Pharmaceutical Science, 8, 69–74.
  • Schüttelkopf, A., & Van Aalten, D. (2004). PRODRG: A tool for high-throughput crystallography of protein–ligand complexes. Acta Crystallographica. Section D, Biological Crystallography, 60, 1355–1363. https://doi.org/10.1107/S0907444904011679
  • Sharma, J., Bhardwaj, V., Das, P., & Purohit, R. (2020). Identification of naturally originated molecules as γ-aminobutyric acid receptor antagonist. Journal of Biomolecular Structure and Dynamics. https://doi.org/10.1080/07391102.2020.1720818
  • Singh, R., Kumar, V., Sharma, J., Das, P., & Purohit, R. (2020). Genomics discovery and in silico evaluation of aminoarylbenzosuberene molecules as novel checkpoint kinase 1 inhibitor determinants. Genomics, 113(1 Pt 2), 707–715. https://doi.org/10.1016/j.ygeno.2020.10.001
  • Sinha, S., & Wang, S. M. (2020). Classification of VUS and unclassified variants in BRCA1 BRCT repeats by molecular dynamics simulation. Computational and Structural Biotechnology Journal, 18, 723–736. https://doi.org/10.1016/j.csbj.2020.03.013
  • Surmeier, D. J. (2018). Determinants of dopaminergic neuron loss in Parkinson's disease. FEBS Journal, 285 (19), 3657–3668. https://doi.org/10.1111/febs.14607
  • Trott, O., & Olson, A. J. (2010). AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31, 455–461. https://doi.org/10.1002/jcc.21334
  • Veber, D. F., Johnson, S. R., Cheng, H., Smith, B. R., Ward, K. W., & Kopple, K. D. (2002). Molecular properties that influence the oral bioavailability of drug candidates. Journal of Medicinal Chemistry, 45, 2615–2623. https://doi.org/10.1021/jm020017n
  • Wandhammer, M., De Koning, M., Van Grol, M., Loiodice, M., Saurel, L., Noort, D., Goeldner, M., & Nachon, F. (2013). A step toward the reactivation of aged cholinesterases-Crystal structure of ligands binding to aged human butyrylcholinesterase. Chemico-Biological Interactions, 203, 19–23. https://doi.org/10.1016/j.cbi.2012.08.005
  • Zhao, D.-L., Shao, C.-L., Wang, C.-Y., Wang, M., Yang, L.-J., & Wang, C.-Y. (2016). Naphthalenones and depsidones from a sponge-derived strain of the fungus Corynesporacassiicola. Molecules, 21, 160. https://doi.org/10.3390/molecules21020160

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.