3,099
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Bioinformatic characterization of a triacylglycerol lipase produced by Aspergillus flavus isolated from the decaying seed of Cucumeropsis mannii

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 2587-2601 | Received 02 Jul 2021, Accepted 25 Jan 2022, Published online: 11 Feb 2022

References

  • Aebi, M. (2013,). N-linked protein glycosylation in the ER. Biochimica et Biophysica Acta – Molecular Cell Research, 1833(11), 2430-2437. https://doi.org/10.1016/j.bbamcr.2013.04.001 
  • Albayati, S. H., Masomian, M., Ishak, S. N. H., Mohamad Ali, M. S. b., Thean, A. L., Mohd Shariff, F. b., Muhd Noor, N. D. B., & Raja Abd Rahman, R. N. Z. (2020). Main structural targets for engineering lipase substrate specificity. Catalysts, 10(7), 747. https://doi.org/10.3390/catal10070747
  • Almagro Armenteros, J. J., Tsirigos, K. D., Sønderby, C. K., Petersen, T. N., Winther, O., Brunak, S., von Heijne, G., & Nielsen, H. (2019). SignalP 5.0 improves signal peptide predictions using deep neural networks. Nature Biotechnology, 37(4), 420–423. https://doi.org/10.1038/s41587-019-0036-z
  • Baillargeon, M. W., Bistline, R. G., & Sonnet, P. E. (1989). Evaluation of strains of Geotrichum candidum for lipase production and fatty acid specificity. Applied Microbiology and Biotechnology, 30(1), 92–96. https://doi.org/10.1007/BF00256003
  • Bassegoda, A., Cesarini, S., & Diaz, P. (2012). Lipase improvement: Goals and strategies. Computational and Structural Biotechnology Journal, 2(3), e201209005. https://doi.org/10.5936/csbj.201209005
  • Batumalaie, K., Edbeib, M. F., Mahat, N. A., Huyop, F., & Wahab, R. A. (2018). In silico and empirical approaches toward understanding the structural adaptation of the alkaline-stable lipase KV1 from acinetobacter haemolyticus. Journal of Biomolecular Structure & Dynamics, 36(12), 3077–3093. https://doi.org/10.1080/07391102.2017.1377635
  • Biasini, M., Bienert, S., Waterhouse, A., Arnold, K., Studer, G., Schmidt, T., Kiefer, F., Cassarino, T. G., Bertoni, M., Bordoli, L., & Schwede, T. (2014). SWISS-MODEL: Modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Research, 42(W1), W252–W258. https://doi.org/10.1093/nar/gku340
  • Chakravorty, D., Parameswaran, S., Dubey, V. K., & Patra, S. (2011). In silico characterization of thermostable lipases. Extremophiles, 15(1), 89–103. https://doi.org/10.1007/s00792-010-0337-0
  • Clark, D. P., & Pazdernik, N. J. (2013). Protein synthesis. Molecular Biology. https://doi.org/10.1016/b978-0-12-378594-7.00047-0.
  • Colla, L. M., Ficanha, A. M. M., Rizzardi, J., Bertolin, T. E., Reinehr, C. O., & Costa, J. A. V. (2015). Production and characterization of lipases by two new isolates of Aspergillus through solid-state and submerged fermentation. BioMed Research International, 2015, 1–9. https://doi.org/10.1155/2015/725959
  • Contesini, F. J., Calzado, F., Valdo, J., Jr., M., Rubio, M. V., & Zubieta, M. P. (2017). Fungal Metabolites. In J.-M., Merillo and K.G. Ramawat (Eds.), Reference series in phytochemistry (pp. 639–666). https://doi.org/10.1007/978-3-319-25001-4
  • Cristoni, S., & Mazzuc, S. (2011). Bioinformatics Applied to Proteomics. In N.-S., Yang (Ed.), Systems and Computational Biology (pp. 25-50). https://doi.org/10.5772/23680.
  • Dalal, A., & Atri, A. (2014). An Introduction to Sequence and Series. International Journal of Research, 1(10), 1286–1292. https://doi.org/10.1002/0471250953.bi0301s42.An
  • Dell, A., Galadari, A., Sastre, F., & Hitchen, P. (2010). Similarities and differences in the glycosylation mechanisms in prokaryotes and eukaryotes. International Journal of Microbiology, 2010, 1–14. https://doi.org/10.1155/2010/148178
  • Edwards, Y. J. K., & Cottage, A. (2003). Bioinformatics methods to predict protein structure and function: A practical approach. Molecular Biotechnology, 23(2), 139–166. https://doi.org/10.1385/MB:23:2:139
  • Elemuo, N. G., Ikiensikimama, S. S., Ubani, C. E., Egwim, E. C., & Osuoha, J. O. (2019). Production and Characterization of Lipase Enzyme Expressed by Crude Oil Contaminated Soil Isolates. Universal Journal of Microbiology Research, 7(1), 1–6. https://doi.org/10.13189/ujmr.2019.070101
  • Etschmaier, K., Becker, T., Eichmann, T. O., Schweinzer, C., Scholler, M., Tam-Amersdorfer, C., Poeckl, M., Schuligoi, R., Kober, A., Chirackal Manavalan, A. P., Rechberger, G. N., Streith, I. E., Zechner, R., Zimmermann, R., & Panzenboeck, U. (2011). Adipose triglyceride lipase affects triacylglycerol metabolism at brain barriers. Journal of Neurochemistry, 119(5), 1016–1028. https://doi.org/10.1111/j.1471-4159.2011.07498.x
  • Fischer, M., Thai, Q. K., Grieb, M., & Pleiss, J. (2006). DWARF – A data warehouse system for analyzing protein families. BMC Bioinformatics, 7(1), 10. https://doi.org/10.1186/1471-2105-7-495
  • Fojan, P., Jonson, P. H., Petersen, M. T. N., & Petersen, S. B. (2000). What distinguishes an esterase from a lipase: A novel structural approach. Biochimie, 82(11), 1033–1041. https://doi.org/10.1016/S0300-9084(00)01188-3
  • Freudl, R. (2018). Signal peptides for recombinant protein secretion in bacterial expression systems. Microbial Cell Factories, 17(1), 1–10. https://doi.org/10.1186/s12934-018-0901-3
  • Gasteiger, E., Gattiker, A., Hoogland, C., Ivanyi, I., Appel, R. D., & Bairoch, A. (2003). ExPASy: The proteomics server for in-depth protein knowledge and analysis. Nucleic Acids Research, 31(13), 3784–3788. https://doi.org/10.1093/nar/gkg563
  • Geoffry, K., & Achur, R. N. (2018). Screening and production of lipase from fungal organisms. Biocatalysis and Agricultural Biotechnology, 14, 241–253. https://doi.org/10.1016/j.bcab.2018.03.009
  • Goto, M. (2007). Protein O-glycosylation in fungi: Diverse structures and multiple functions. Bioscience, Biotechnology and Biochemistry, 71(6), 1415–1427. https://doi.org/10.1271/bbb.70080
  • Gupta, R., Jung, E., & Brunak, S. (2004). NetNGlyc: Prediction of N-glycosylation sites in human proteins. in preparation.
  • Gupta, R., Kumari, A., Syal, P., & Singh, Y. (2015). Molecular and functional diversity of yeast and fungal lipases: Their role in biotechnology and cellular physiology. Progress in Lipid Research, 57(January), 40–54. https://doi.org/10.1016/j.plipres.2014.12.001
  • Huang, J., Xia, J., Yang, Z., Guan, F., Cui, D., Guan, G., Jiang, W., & Li, Y. (2014). Improved production of a recombinant Rhizomucor miehei lipase expressed in Pichia pastoris and its application for conversion of microalgae oil to biodiesel. Biotechnology for Biofuels, 7(1), 1–11. https://doi.org/10.1186/1754-6834-7-111
  • Jaiswal, A., Preet, M., & Tripti, B. (2017). Production and optimization of lipase enzyme from mesophiles and thermophiles. Journal of Microbial & Biochemical Technology, 09(03), 126–131. https://doi.org/10.4172/1948-5948.1000355
  • Jensen, R. G., DeJong, F. A., & Clark, R. M. (1983). Determination of lipase specificity. Lipids, 18(3), 239–252. https://doi.org/10.1007/BF02534556
  • Jones, P., Binns, D., Chang, H.-Y., Fraser, M., Li, W., McAnulla, C., McWilliam, H., Maslen, J., Mitchell, A., Nuka, G., Pesseat, S., Quinn, A. F., Sangrador-Vegas, A., Scheremetjew, M., Yong, S.-Y., Lopez, R., & Hunter, S. (2014). InterProScan 5: Genome-scale protein function classification. Bioinformatics (Bioinformatics), 30(9), 1236–1240. https://doi.org/10.1093/bioinformatics/btu031
  • Joshi, R., & Kuila, A. (2018). Lipase and their different industrial applications: A review. Brazilian Journal of Biological Sciences, 5(10), 237–247. https://doi.org/10.21472/bjbs.051004
  • Kareem, S. O., Adebayo, O. S., Balogun, S. A., Adeogun, A. I., & Akinde, S. (2017). Purification and Characterization of Lipase from Aspergillus flavus PW2961 using Magnetic Nanoparticles. Nigerian Journal of Biotechnology, 32(1), 77. https://doi.org/10.4314/njb.v32i1.11
  • Khan, F. I., Lan, D., Durrani, R., Huan, W., Zhao, Z., & Wang, Y. (2017). The lid domain in lipases: Structural and functional determinant of enzymatic properties. Frontiers in Bioengineering and Biotechnology, 5(MAR), 1–13. https://doi.org/10.3389/fbioe.2017.00016
  • Kunze, M., & Berger, J. (2015). The similarity between N-terminal targeting signals for protein import into different organelles and its evolutionary relevance. Frontiers in Physiology, 6(SEP), 1–27. https://doi.org/10.3389/fphys.2015.00259
  • Larkin, M. A., Blackshields, G., Brown, N. P., Chenna, R., McGettigan, P. A., McWilliam, H., Valentin, F., Wallace, I. M., Wilm, A., Lopez, R., Thompson, J. D., Gibson, T. J., & Higgins, D. G. (2007). Clustal W and Clustal X version 2.0. Bioinformatics (Bioinformatics), 23(21), 2947–2948. https://doi.org/10.1093/bioinformatics/btm404
  • Laskowski, R. A., MacArthur, M. W., Moss, D. S., & Thornton, J. M. (1993). PROCHECK: A program to check the stereochemical quality of protein structures. Journal of Applied Crystallography, 26(2), 283–291. https://doi.org/10.1107/S0021889892009944
  • Loli, H., Narwal, S., Saun, N., & Gupta, R. (2015). Lipases in Medicine: An Overview. Mini-Reviews in Medicinal Chemistry, 15(14), 1209–1216. https://doi.org/10.2174/1389557515666150709122722
  • Lu, S., Wang, J., Chitsaz, F., Derbyshire, M. K., Geer, R. C., Gonzales, N. R., Gwadz, M., Hurwitz, D. I., Marchler, G. H., Song, J. S., Thanki, N., Yamashita, R. A., Yang, M., Zhang, D., Zheng, C., Lanczycki, C. J., & Marchler-Bauer, A. (2020). CDD/SPARCLE: The conserved domain database in 2020. Nucleic Acids Research, 48(D1), D265–D268. https://doi.org/10.1093/nar/gkz991
  • Mala, J. G. S., & Takeuchi, S. (2008). Understanding structural features of microbial lipases - An overview. Analytical Chemistry Insights, 3(3), ACI.S551–19. https://doi.org/10.4137/ACI.S551
  • Martínez-Corona, R., Vázquez Marrufo, G., Cortés Penagos, C., Madrigal-Pérez, L. A., & González-Hernández, J. C. (2020). Bioinformatic characterization of the extracellular lipases from Kluyveromyces marxianus. Yeast, 37(1), 149–162. https://doi.org/10.1002/yea.3449
  • Mehta, A., Bodh, U., & Gupta, R. (2017). Fungal lipases: A review. Journal of Biotech Research, 8(1), 58–77.
  • Menichelli, C., Gascuel, O., & Bréhélin, L. (2018). Improving pairwise comparison of protein sequences with domain co-occurrence. PLOS Computational Biology, 14(1), e1005889–23. https://doi.org/10.1371/journal.pcbi.1005889
  • Mitchell, A. L., Attwood, T. K., Babbitt, P. C., Blum, M., Bork, P., Bridge, A., Brown, S. D., Chang, H.-Y., El-Gebali, S., Fraser, M. I., Gough, J., Haft, D. R., Huang, H., Letunic, I., Lopez, R., Luciani, A., Madeira, F., Marchler-Bauer, A., Mi, H., … Finn, R. D. (2019). InterPro in 2019: Improving coverage, classification and access to protein sequence annotations. Nucleic Acids Research, 47(D1), D351–D360. https://doi.org/10.1093/nar/gky1100
  • Panda, A. K., Bisht, S. P. S., Panigrahi, A. K., De Mandal, S., & Senthil Kumar, N. (2016). Cloning and In Silico Analysis of a High-Temperature Inducible Lipase from Brevibacillus. Arabian Journal for Science and Engineering, 41(6), 2159–2170. https://doi.org/10.1007/s13369-015-1975-4
  • Pleiss, J., Fischer, M., Peiker, M., Thiele, C., & Schmid, R. D. (2000). Lipase engineering database: Understanding and exploiting sequence-structure-function relationships. Journal of Molecular Catalysis - B Enzymatic, 10(5), 491-508. https://doi.org/10.1016/S1381-1177(00)00092-8
  • Rajeswari, T., Palaniswamy, M., Venil, C. K., Nathiya, K., & Joyruth, P. (2010). Production, partial purification and characterization of lipase from Aspergillus flavus KUF108. Pakistan Journal of Scientific and Industrial Research, 53(5), 258–264.
  • Raveendran, S., Parameswaran, B., Ummalyma, S. B., Abraham, A., Mathew, A. K., Madhavan, A., Rebello, S., & Pandey, A. (2018). Applications of microbial enzymes in food industry. Food Technology and Biotechnology, 56(1), 16–30. https://doi.org/10.17113/ftb.56.01.18.5491
  • Rosano, G. L., & Ceccarelli, E. A. (2014). Recombinant protein expression in Escherichia coli: Advances and challenges. Frontiers in Microbiology, 5, 1-17. https://doi.org/10.3389/fmicb.2014.00172
  • Rubio, M. V., Terrasan, C. R. F., Contesini, F. J., Zubieta, M. P., Gerhardt, J. A., Oliveira, L. C., de Souza Schmidt Gonçalves, A. E., Almeida, F., Smith, B. J., de Souza, G. H. M. F., Dias, A. H. S., Skaf, M., & Damasio, A. (2019). Redesigning N-glycosylation sites in a GH3 β-xylosidase improves the enzymatic efficiency. Biotechnology for Biofuels, 12(1), 1–14. https://doi.org/10.1186/s13068-019-1609-2
  • S., Kumar, D. (2015). Fungal lipase production by solid state fermentation – An overview. Journal of Analytical & Bioanalytical Techniques, 06(01), 1-6. https://doi.org/10.4172/2155-9872.1000230
  • Sanchez, S., & Demain, A. (2012). Special issue on the production of recombinant proteins. Biotechnology Advances, 30(5), 1100–1101. https://doi.org/10.1016/j.biotechadv.2011.12.004
  • Sandi, J., Mata-Araya, I., & Aguilar, F. (2020). Diversity of Lipase-Producing Microorganisms from Tropical Oilseeds Elaeis guineensis, Ricinus communis, and Jatropha curcas L. from Costa Rica. Current Microbiology, 77(6), 943–952. https://doi.org/10.1007/s00284-020-01886-8
  • Santhoshkumar, R., & Yusuf, A. (2020). In silico structural modeling and analysis of physicochemical properties of curcumin synthase (CURS1, CURS2, and CURS3) proteins of Curcuma longa. Journal of Genetic Engineering and Biotechnology, 18(1), 1-9. https://doi.org/10.1186/s43141-020-00041-x
  • Schmid, R. D. (1998). Lipases: Interfacial enzymes with attractive applications. Angewandte Chemie International.
  • Schrödinger, L. (2010). The PyMOL molecular graphics system, version 1.3r1. Schrödinger LLC, 37, 362–387. https://doi.org/10.1038/hr.2014.17
  • Sharma, S., & Kanwar, S. S. (2014). Organic solvent tolerant lipases and applications. The Scientific World Journal, 2014, 1–15. https://doi.org/10.1155/2014/625258
  • Sharma, A., Meena, K. R., & Kanwar, S. S. (2018). Molecular characterization and bioinformatics studies of a lipase from Bacillus thermoamylovorans BHK67. International Journal of Biological Macromolecules, 107(Pt B), 2131–2140. https://doi.org/10.1016/j.ijbiomac.2017.10.092
  • Sharma, A. K., Sharma, V., & Saxena, J (2016). A review on applications of microbial lipases. International Journal of Biotech Trends and Technology, 19(1), 1–5. https://doi.org/10.14445/22490183/IJBTT-V19P601
  • Shreya, Sharma, A. K., Sharma, V., & Saxena, J. (2018). Optimization of culture conditions for extracellular fungal lipase production by submerged fermentation process. Plant Science Today, 5(3), 135–141. https://doi.org/10.14719/pst.2018.5.3.399
  • Singh, R., Gupta, N., Goswami, V. K., & Gupta, R. (2006). A simple activity staining protocol for lipases and esterases. Applied Microbiology and Biotechnology, 70(6), 679–682. https://doi.org/10.1007/s00253-005-0138-z
  • Singh, R., Kumar, M., Mittal, A., & Mehta, P. K. (2016). Microbial enzymes: Industrial progress in 21st century. 3 Biotech, 6(2), 1–15. https://doi.org/10.1007/s13205-016-0485-8
  • Steentoft, C., Vakhrushev, S. Y., Joshi, H. J., Kong, Y., Vester-Christensen, M. B., Schjoldager, K. T.-B G., Lavrsen, K., Dabelsteen, S., Pedersen, N. B., Marcos-Silva, L., Gupta, R., Bennett, E. P., Mandel, U., Brunak, S., Wandall, H. H., Levery, S. B., & Clausen, H. (2013). Precision mapping of the human O-GalNAc glycoproteome through SimpleCell technology. The EMBO Journal, 32(10), 1478–1488. https://doi.org/10.1038/emboj.2013.79
  • Suplatov, D., Voevodin, V., & Švedas, V. (2015). Robust enzyme design: Bioinformatic tools for improved protein stability. Biotechnology Journal, 10(3), 344–355. https://doi.org/10.1002/biot.201400150
  • Tan, Y., & Miller, K. J. (1992). Cloning, expression, and nucleotide sequence of a lipase gene from Pseudomonas fluorescens B52. Applied and Environmental Microbiology, 58(4), 1402–1407. https://doi.org/10.1128/aem.58.4.1402-1407.1992
  • Tang, L., Su, M., Yan, J., Xie, S., & Zhang, W. (2015). Lid hinge region of Penicillium expansum lipase affects enzyme activity and interfacial activation. Process Biochemistry, 50(8), 1218–1223. https://doi.org/10.1016/j.procbio.2015.04.022
  • Toida, J., Fukuzawa, M., Kobayashi, G., Ito, K., & Sekiguchi, J. (2000). Cloning and sequencing of the triacylglycerol lipase gene of Aspergillus oryzae and its expression in Escherichia coli. FEMS Microbiology Letters, 189(2), 159–164. https://doi.org/10.1016/S0378-1097(00)00271-8
  • Toscano, L., Montero, G., Stoytcheva, M., Gochev, V., Cervantes, L., Campbell, H., Zlatev, R., Valdez, B., Pérez, C., & Gil-Samaniego, M. (2013). Lipase production through solid-state fermentation using agro-industrial residues as substrates and newly isolated fungal strains. Biotechnology & Biotechnological Equipment, 27(5), 4074–4077. https://doi.org/10.5504/BBEQ.2012.0145
  • Tran, D. T., & Ten Hagen, K. G. (2013). Mucin-type o-glycosylation during development. Journal of Biological Chemistry, 288(10), 6921–6929. https://doi.org/10.1074/jbc.R112.418558
  • Umesha, S., Manukumar, H. M., & Raghava, S. (2016). A rapid method for isolation of genomic DNA from food-borne fungal pathogens. 3 Biotech, 6(2), 1–9. https://doi.org/10.1007/s13205-016-0436-4
  • Waterhouse, A., Bertoni, M., Bienert, S., Studer, G., Tauriello, G., Gumienny, R., Heer, F. T., de Beer, T. A. P., Rempfer, C., Bordoli, L., Lepore, R., & Schwede, T. (2018). SWISS-MODEL: Homology modelling of protein structures and complexes. Nucleic Acids Research, 46(W1), W296–W303. https://doi.org/10.1093/nar/gky427
  • Weerapana, E., & Imperiali, B. (2006). Asparagine-linked protein glycosylation: From eukaryotic to prokaryotic systems. Glycobiology, 16(6), 91R–101. https://doi.org/10.1093/glycob/cwj099
  • Wohlfarth, S., Hoesche, C., Strunk, C., & Winkler, U. K. (1992). Molecular genetics of the extracellular lipase of pseudomonas aeruginosa PAO1. Journal of General Microbiology, 138(7), 1325–1335. https://doi.org/10.1099/00221287-138-7-1325
  • Yang, M., Yu, X. W., Zheng, H., Sha, C., Zhao, C., Qian, M., & Xu, Y. (2015). Role of N-linked glycosylation in the secretion and enzymatic properties of Rhizopus chinensis lipase expressed in Pichia pastoris. Microbial Cell Factories, 14(1), 1–14. https://doi.org/10.1186/s12934-015-0225-5
  • Yuan, B. H., Cai, Y. J., Liao, X. R., Yun, L. H., Zhang, F., & Zhang, D. B. (2010). Isolation and identification of a cold-adapted lipase producing strain from decayed seeds of Ginkgo biloba L. and characterization of the lipase. African Journal of Biotechnology, 9(18), 2661–2667. https://doi.org/10.5897/AJB2010.000-3085
  • Yu, X. W., Tan, N. J., Xiao, R., & Xu, Y. (2012). Engineering a disulfide bond in the lid hinge region of Rhizopus chinensis lipase: Increased thermostability and altered acyl chain length specificity. PLoS One, 7(10), e46388–7. https://doi.org/10.1371/journal.pone.0046388
  • Yu, X. W., Zhu, S. S., Xiao, R., & Xu, Y. (2014). Conversion of a Rhizopus chinensis lipase into an esterase by lid swapping. Journal of Lipid Research, 55(6), 1044–1051. https://doi.org/10.1194/jlr.M043950
  • Zhan, N., & An, Z. (2010). Manual of Industrial Microbiology and Biotechnology. Heterologous Protein Expression in Yeasts and Filamentous Fungi, 3(11), 145–156.
  • Zhang, B., Li, J., & Lü, Q. (2018). Prediction of 8-state protein secondary structures by a novel deep learning architecture. BMC Bioinformatics, 19(1), 1–13. https://doi.org/10.1186/s12859-018-2280-5
  • Zou, X., Pham, T. K., Wright, P. C., & Noirel, J. (2012). Bioinformatic study of the relationship between protein regulation and sequence properties. Genomics, 100(4), 240–244. https://doi.org/10.1016/j.ygeno.2012.07.003