327
Views
4
CrossRef citations to date
0
Altmetric
Research articles

Molecular interactions of esculin with bovine serum albumin and recognition of binding sites with spectroscopy and molecular docking

, , &
Pages 2630-2644 | Received 17 May 2021, Accepted 26 Jan 2022, Published online: 09 Feb 2022

References

  • Amir, M., Qureshi, M. A., & Javed, S. (2021). Biomolecular interactions and binding dynamics of tyrosine kinase inhibitor erdafitinib, with human serum albumin. Journal of Biomolecular Structure & Dynamics, 39(11), 3934–3947. https://doi.org/10.1080/07391102.2020.1772880
  • Aneja, B., Kumari, M., Azam, A., Kumar, A., Abid, M., & Patel, R. (2018). Effect of triazole-tryptophan hybrid on the conformation stability of bovine serum albumin. Luminescence : The Journal of Biological and Chemical Luminescence, 33(3), 464–474. https://doi.org/10.1002/bio.3435
  • Bhogale, A., Patel, N., Mariam, J., Dongre, P. M., Miotello, A., & Kothari, D. C. (2014). Comprehensive studies on the interaction of copper nanoparticles with bovine serum albumin using various spectroscopies. Colloids and Surfaces. B, Biointerfaces, 113, 276–284. https://doi.org/10.1016/j.colsurfb.2013.09.021
  • Burstein, E. A., Vedenkina, N. S., & Ivkova, M. N. (1973). Fluorescence and the location of tryptophan residues in protein molecules. Photochemistry and Photobiology, 18(4), 263–279. http://www.ncbi.nlm.nih.gov/pubmed/4583619 https://doi.org/10.1111/j.1751-1097.1973.tb06422.x
  • Cao, H., & Liu, Q. (2009). Effects of temperature and common ions on binding of puerarin to BSA. Journal of Solution Chemistry, 38(8), 1071–1077. https://doi.org/10.1007/s10953-009-9430-3
  • Cao, X., Yang, Z., He, Y., Xia, Y., He, Y., & Liu, J. (2019). Multispectroscopic exploration and molecular docking analysis on interaction of eriocitrin with bovine serum albumin. Journal of Molecular Recognition, 32(7), e2779 https://doi.org/10.1002/jmr.2779
  • Chaturvedi, S. K., Ahmad, E., Khan, J. M., Alam, P., Ishtikhar, M., & Khan, R. H. (2015). Elucidating the interaction of limonene with bovine serum albumin: a multi-technique approach. Molecular bioSystems, 11(1), 307–316. https://doi.org/10.1039/c4mb00548a
  • Cheng, Z. (2012). Studies on the interaction between scopoletin and two serum albumins by spectroscopic methods. Journal of Luminescence, 132(10), 2719–2729. https://doi.org/10.1016/j.jlumin.2012.05.032
  • Dale, R. E., Eisinger, J., & Blumberg, W. E. (1979). The orientational freedom of molecular probes. The orientation factor in intramolecular energy transfer. Biophysical Journal, 26(2), 161–193. https://doi.org/10.1016/S0006-3495(79)85243-1
  • Dill, K. A. (1990). Dominant forces in protein folding. Biochemistry, 29(31), 7133–7155. https://doi.org/10.1021/bi00483a001
  • Gadallah, M. I., Ali, H. R. H., Askal, H. F., & Saleh, G. A. (2021). Towards understanding of the interaction of certain carbapenems with protein via combined experimental and theoretical approach. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 246, 119005 https://doi.org/10.1016/j.saa.2020.119005
  • Gao, Y., Shao, C., Ji, W., Xiao, M., Yi, F., Zhou, T., & Zi, Y. (2013). Studies on the Binding Mechanism of VB 1 and VB 9 with Trypsin. American Journal of Analytical Chemistry, 4(12), 771–775. https://doi.org/10.4236/ajac.2013.412094
  • Hirsch, A. M., Longeon, A., & Guyot, M. (2002). Fraxin and esculin: Two coumarins specific to Actinidia chinensis and A. deliciosa (kiwifruit). Biochemical Systematics and Ecology, 30(1), 55–60. https://doi.org/10.1016/S0305-1978(01)00064-3
  • Hsieh, S., Reddy, P., Chang, C., Kumar, A., Wu, W., & Lin, H. (2016). Exploring the behavior of bovine serum albumin in response to changes in the chemical composition of responsive polymers: Experimental and simulation studies. Polymers, 8(6), 238. https://doi.org/10.3390/polym8060238
  • Hu, Y. J., Wang, Y., Ou-Yang, Y., Zhou, J., & Liu, Y. (2010). Characterize the interaction between naringenin and bovine serum albumin using spectroscopic approach. Journal of Luminescence, 130(8), 1394–1399. https://doi.org/10.1016/j.jlumin.2010.02.053
  • Jiang, X. Y., Li, W. X., & Cao, H. (2008). Study of the interaction between trans-resveratrol and BSA by the multi-spectroscopic method. Journal of Solution Chemistry, 37(11), 1609–1623. https://doi.org/10.1007/s10953-008-9323-x
  • Kaneko, T., Tahara, S., & Takabayashi, F. (2007). Inhibitory effect of natural coumarin compounds, esculetin and esculin, on oxidative DNA damage and formation of aberrant crypt foci and tumors induced by 1,2-dimethylhydrazine in rat colons. Biological and Pharmaceutical Bulletin, 30(11), 2052–2057. https://doi.org/10.1248/bpb.30.2052
  • Kaneko, T., Tahara, S., Takabayashi, F., & Harada, N. (2004). Suppression of 8-oxo-2'-deoxyguanosine formation and carcinogenesis induced by N-nitrosobis (2-oxopropyl)amine in hamsters by esculetin and esculin. Free Radical Research, 38(8), 839–846. https://doi.org/10.1080/10715760410001715167
  • Kang, K. S., Lee, W., Jung, Y., Lee, J. H., Lee, S., Eom, D. W., Jeon, Y., Yoo, H. H., Jin, M. J., Song, K. I., Kim, W. J., Ham, J., Kim, H. J., & Kim, S. N. (2014). Protective effect of esculin on streptozotocin-induced diabetic renal damage in mice. Journal of Agricultural and Food Chemistry, 62(9), 2069–2076. https://doi.org/10.1021/jf403840c
  • Kathiravan, A., Paramaguru, G., & Renganathan, R. (2009). Study on the binding of colloidal zinc oxide nanoparticles with bovine serum albumin. Journal of Molecular Structure, 934(1–3), 129–137. https://doi.org/10.1016/j.molstruc.2009.06.032
  • Kou, S. B., Lin, Z. Y., Wang, B. L., Shi, J. H., & Liu, Y. X. (2021). Evaluation of the binding behavior of olmutinib (HM61713) with model transport protein: Insights from spectroscopic and molecular docking studies. Journal of Molecular Structure, 1224, 129024. https://doi.org/10.1016/j.molstruc.2020.129024
  • Kumari, B. D., Ranjitha, Velayutham, P., & Amitha, S. (2007). A Comparitive Study on Inulin and Esculin Content of In vitro and In vivo Plants of Chicory (Cichorium intybus L. Cv. Lucknow Local). Advances in Biological Research, 1(2007), 22–25.
  • Lakowicz, J. R., & Masters, B. R. (2008). Principles of Fluorescence Spectroscopy, Third Edition. Journal of Biomedical Optics, 13(2), 029901. https://doi.org/10.1117/1.2904580
  • Li, C., Chen, A., Chen, X., Chen, X., & Hu, Z. (2005). Separation and simultaneous determination of rutin, puerarin, daidzein, esculin and esculetin in medicinal preparations by non-aqueous capillary. Journal of Pharmaceutical and Biomedical Analysis, 39(1/2), 125–131. https://doi.org/10.1016/j.jpba.2005.03.018
  • Li, D., Zhu, M., Xu, C., & Ji, B. (2011). Characterization of the baicalein-bovine serum albumin complex without or with Cu2+ or Fe3+ by spectroscopic approaches. European Journal of Medicinal Chemistry, 46(2), 588–599. https://doi.org/10.1016/j.ejmech.2010.11.038
  • Li, J., Song, S., Liu, X., Wang, L., Pan, D., Huang, Q., Zhao, Y., & Fan, C. (2008). Enzyme-based multi-component optical nanoprobes for sequence-specific detection of DNA hybridization. Advanced Materials, 20(3), 497–500. https://doi.org/10.1002/adma.200701918
  • Li, S., Tang, L., & Bi, H. (2016). Study on the interaction between pelargonidin-3-O-glucoside and bovine serum albumin using spectroscopic, transmission electron microscopy and molecular modeling techniques. Luminescence: The Journal of Biological and Chemical Luminescence, 31(2), 442–452. https://doi.org/10.1002/bio.2980
  • Li, W., Wang, Y., Wang, X., He, Z., Liu, F., Zhi, W., Zhang, H., & Niu, X. (2016). Esculin attenuates endotoxin shock induced by lipopolysaccharide in mouse and NO production in vitro through inhibition of NF-κB activation. European Journal of Pharmacology, 791, 726–734. https://doi.org/10.1016/j.ejphar.2016.10.013
  • Li, W., Wang, Y., Wang, X., Zhang, H., He, Z., Zhi, W., Liu, F., & Niu, X. (2017). Gastroprotective effect of esculin on ethanol-induced gastric lesion in mice. Fundamental & Clinical Pharmacology, 31(2), 174–184. https://doi.org/10.1111/fcp.12255
  • Li, W. X., & Jiang, X. Y. (2009). Interaction between isoquercitrin and bovine serum albumin by a multispectroscopic method. Spectroscopy Letters, 42(4), 210–216. https://doi.org/10.1080/00387010902918012
  • Liu, A., Shen, Y., Du, Y., Chen, J., Pei, F., Fu, W., & Qiao, J. (2018). Esculin prevents Lipopolysaccharide/D-Galactosamine-induced acute liver injury in mice. Microbial Pathogenesis, 125, 418–422. https://doi.org/10.1016/j.micpath.2018.10.003
  • Lou, Y. Y., Zhou, K. L., Pan, D. Q., Shen, J., Le., & Shi, J. H. (2017). Spectroscopic and molecular docking approaches for investigating conformation and binding characteristics of clonazepam with bovine serum albumin (BSA). Journal of Photochemistry and Photobiology B: Biology, 167, 158–167. https://doi.org/10.1016/j.jphotobiol.2016.12.029
  • Mansouri, A., Mousavi, M., Attar, F., Akbar, A., & Falahati, M. (2018). Interaction of manganese nanoparticle with cytochrome c: A multi-spectroscopic study. International Journal of Biological Macromolecules, 106, 78–86. https://doi.org/10.1016/j.ijbiomac.2017.07.175
  • Matysik, G., Glowniak, K., Soczewiński, E., & Garbacka, M. (1994). Chromatography of esculin from stems and bark of Aesculus hippocastanum L. for consecutive vegetative periods. Chromatographia, 38(11/12), 766–770. https://doi.org/10.1007/BF02269634
  • Mir, M. U. H., Maurya, J. K., Ali, S., Ubaid-Ullah, S., Khan, A. B., & Patel, R. (2014). Molecular interaction of cationic gemini surfactant with bovine serum albumin: A spectroscopic and molecular docking study. Process Biochemistry, 49(4), 623–630. https://doi.org/10.1016/j.procbio.2014.01.020
  • Mokdad-Bzeouich, I., Mustapha, N., Chaabane, F., Ghedira, Z., Ghedira, K., Ghoul, M., Chebil, L., & Chekir-Ghedira, L. (2015). Oligomerization of esculin improves its antibacterial activity and modulates antibiotic resistance. The Journal of Antibiotics, 68(3), 148–152. https://doi.org/10.1038/ja.2014.127
  • Mokdad Bzeouich, I., Mustapha, N., Maatouk, M., Ghedira, K., Ghoul, M., & Chekir-Ghedira, L. (2016). Genotoxic and anti-genotoxic effects of esculin and its oligomer fractions against mitomycin C-induced DNA damages in mice. Regulatory Toxicology and Pharmacology : RTP, 82, 48–52. https://doi.org/10.1016/j.yrtph.2016.11.002
  • Naaz, F., Abdin, M. Z., & Javed, S. (2014). Protective effect of esculin against prooxidant aflatoxin B1-induced nephrotoxicity in mice . Mycotoxin Research, 30(1), 25–32. https://doi.org/10.1007/s12550-013-0185-8
  • Niu, X., Wang, Y., Li, W., Zhang, H., Wang, X., Mu, Q., He, Z., & Yao, H. (2015). Esculin exhibited anti-inflammatory activities in vivo and regulated TNF-α and IL-6 production in LPS-stimulated mouse peritoneal macrophages in vitro through MAPK pathway. International Immunopharmacology, 29(2), 779–786. https://doi.org/10.1016/j.intimp.2015.08.041
  • Pal, S., & Saha, C. (2014). A review on structure-affinity relationship of dietary flavonoids with serum albumins. Journal of Biomolecular Structure & Dynamics, 32(7), 1132–1147. https://doi.org/10.1080/07391102.2013.811700
  • Papadopoulou, A., Green, R. J., & Frazier, R. A. (2005). Interaction of flavonoids with bovine serum albumin: A fluorescence quenching study. Journal of Agricultural and Food Chemistry, 53(1), 158–163. https://doi.org/10.1021/jf048693g
  • Parray, M. u., Din, AlOmar, S. Y., Alkhuriji, A., Wani, F. A., Parray, Z. A., & Patel, R. (2021). Refolding of guanidinium hydrochloride denatured bovine serum albumin using pyridinium based ionic liquids as artificial chaperons. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 610, 125737. https://doi.org/10.1016/j.colsurfa.2020.125737
  • Parray, M. u., Din, Mir, M. U. H., Dohare, N., Maurya, N., Khan, A. B., Borse, M. S., & Patel, R. (2018). Effect of cationic gemini surfactant and its monomeric counterpart on the conformational stability and esterase activity of human serum albumin. Journal of Molecular Liquids, 260, 65–77. https://doi.org/10.1016/j.molliq.2018.03.070
  • Patel, R., Maurya, N., Parray, M., Ud Din, Farooq, N., Siddique, A., Verma, K. L., & Dohare, N. (2018). Esterase activity and conformational changes of bovine serum albumin toward interaction with mephedrone: Spectroscopic and computational studies. Journal of Molecular Recognition : JMR, 31(11), e2734 https://doi.org/10.1002/jmr.2734
  • Pawar, S. K., & Jaldappagari, S. (2019). Interaction of repaglinide with bovine serum albumin: Spectroscopic and molecular docking approaches. Journal of Pharmaceutical Analysis, 9(4), 274–283. https://doi.org/10.1016/j.jpha.2019.03.007
  • Ravishankar, G. A. (1999). Production of esculin by hairy root cultures of chicory (Cichorium intybus L.cv. Lucknow local) Jacob. Indian Journal of Experimental Biology, 37(March), 269–273.
  • Ross, P. D., & Subramanian, S. (1981). Thermodynamics of Protein Association Reactions: Forces Contributing to Stability. Biochemistry, 20(11), 3096–3102. https://doi.org/10.1021/bi00514a017
  • Sharma, K., Yadav, P., Sharma, B., Pandey, M., & Awasthi, S. K. (2020). Interaction of coumarin triazole analogs to serum albumins: Spectroscopic analysis and molecular docking studies. Journal of Molecular Recognition, 33(6), e2834. https://doi.org/10.1002/jmr.2834
  • Shi, J. H., Lou, Y. Y., Zhou, K. L., & Pan, D. Q. (2018). Elucidation of intermolecular interaction of bovine serum albumin with Fenhexamid: A biophysical prospect. Journal of Photochemistry and Photobiology. B, Biology, 180, 125–133. https://doi.org/10.1016/j.jphotobiol.2018.01.025
  • Shi, J. H., Pan, D. q., Wang, X., Xiou, Liu, T. T., Jiang, M., & Wang, Q. (2016). Characterizing the binding interaction between antimalarial artemether (AMT) and bovine serum albumin (BSA): Spectroscopic and molecular docking methods. Journal of Photochemistry and Photobiology. B, Biology, 162, 14–23. https://doi.org/10.1016/j.jphotobiol.2016.06.025
  • Shi, X., Li, X., Gui, M., Zhou, H., Yang, R., Zhang, H., & Jin, Y. (2010). Studies on interaction between flavonoids and bovine serum albumin by spectral methods. Journal of Luminescence, 130(4), 637–644. https://doi.org/10.1016/j.jlumin.2009.11.008
  • Singha Roy, A., Pandey, N. K., & Dasgupta, S. (2013). Preferential binding of fisetin to the native state of bovine serum albumin: Spectroscopic and docking studies. Molecular Biology Reports, 40(4), 3239–3253. https://doi.org/10.1007/s11033-012-2399-9
  • Song, Y., Wang, X., Qin, S., Zhou, S., Li, J., & Gao, Y. (2018). Esculin ameliorates cognitive impairment in experimental diabetic nephropathy and induces anti-oxidative stress and anti-inflammatory effects via the MAPK pathway. Molecular Medicine Reports, 17(5), 7395–7402. https://doi.org/10.3892/mmr.2018.8727
  • Stanić, G., Jurišić, B., & Brkić, D. (1999). HPLC analysis of esculin and fraxin in horse-chestnut bark (Aesculus hippocastanum L.). Croatica Chemica Acta, 72(4), 827–834.
  • Tang, H., Shi, Z. H., Li, N. G., Tang, Y. P., Shi, Q. P., Dong, Z. X., Zhang, P. X., & Duan, J. A. (2015). Investigation on the interactions of scutellarin and scutellarein with bovine serum albumin using spectroscopic and molecular docking techniques. Archives of Pharmacal Research, 38(10), 1789–1801. https://doi.org/10.1007/s12272-014-0541-z
  • Tang, L., Zhang, D., Xu, S., Zuo, H., Zuo, C., & Li, Y. (2014). Different spectroscopic and molecular modeling studies on the interaction between cyanidin-3-O-glucoside and bovine serum albumin. Luminescence : The Journal of Biological and Chemical Luminescence, 29(2), 168–175. https://doi.org/10.1002/bio.2524
  • Tattini, M., Di Ferdinando, M., Brunetti, C., Goti, A., Pollastri, S., Bellasio, C., Giordano, C., Fini, A., & Agati, G. (2014). Esculetin and esculin (esculetin 6-O-glucoside) occur as inclusions and are differentially distributed in the vacuole of palisade cells in Fraxinus ornus leaves: A fluorescence microscopy analysis. Journal of Photochemistry and Photobiology. B, Biology, 140, 28–35. https://doi.org/10.1016/j.jphotobiol.2014.06.012
  • Tayeh, N., Rungassamy, T., & Albani, J. R. (2009). Fluorescence spectral resolution of tryptophan residues in bovine and human serum albumins. Journal of Pharmaceutical and Biomedical Analysis, 50(2), 107–116. https://doi.org/10.1016/j.jpba.2009.03.015
  • Tian, J., Liu, J., Zhang, J., Hu, Z., & Chen, X. (2003). Fluorescence studies on the interactions of barbaloin with bovine serum albumin. Chemical & Pharmaceutical Bulletin, 51(5), 579–582. https://doi.org/10.1248/cpb.51.579
  • Wang, B. L., Pan, D. Q., Zhou, K. L., Lou, Y. Y., & Shi, J. H. (2019). Multi-spectroscopic approaches and molecular simulation research of the intermolecular interaction between the angiotensin-converting enzyme inhibitor (ACE inhibitor) benazepril and bovine serum albumin (BSA). Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 212, 15–24. https://doi.org/10.1016/j.saa.2018.12.040
  • Wang, Q., Huang, C. R., Jiang, M., Zhu, Y. Y., Wang, J., Chen, J., & Shi, J. H. (2016). Binding interaction of atorvastatin with bovine serum albumin: Spectroscopic methods and molecular docking. Spectrochimica Acta. Part A: Molecular and Biomolecular Spectroscopy, 156, 155–163. https://doi.org/10.1016/j.saa.2015.12.003
  • Wang, R., Chai, Y., Wang, R., Zhang, L., Wu, J., & Chang, J. (2012). Study of the interaction between bovine serum albumin and analogs of Biphenyldicarboxylate by spectrofluorimetry. Spectrochimica Acta. Part A: Molecular and Biomolecular Spectroscopy, 96, 324–331. https://doi.org/10.1016/j.saa.2012.05.030
  • Xiao, J., Wei, X., Wang, Y., & Liu, C. (2009). Fluorescence resonance energy-transfer affects the determination of the affinity between ligand and proteins obtained by fluorescence quenching method. Spectrochimica Acta. Part A: Molecular and Biomolecular Spectroscopy, 74(4), 977–982. https://doi.org/10.1016/j.saa.2009.09.003
  • Yang, J. Y., & Yang, W. Y. (2009). Site-specific two-color protein labeling for FRET studies using split inteins. Journal of the American Chemical Society, 131(33), 11644–11645. https://doi.org/10.1021/ja9030215
  • Zhang, Y.-F., Zhou, K.-L., Lou, Y.-Y., Pan, D., & Shi, J.-H. (2017). Investigation of the binding interaction between estazolam and bovine serum albumin: multi-spectroscopic methods and molecular docking technique. Journal of Biomolecular Structure & Dynamics, 35(16), 3605–3614. https://doi.org/10.1080/07391102.2016.1264889

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.