171
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Accelerating the discovery of the beyond rule of five compounds that have high affinities toward SARS-CoV-2 spike RBD

ORCID Icon, ORCID Icon & ORCID Icon
Pages 2518-2527 | Received 18 Nov 2021, Accepted 21 Jan 2022, Published online: 08 Feb 2022

References

  • Abu-Saleh, A. A.-A A., Awad, I. E., Yadav, A., & Poirier, R. A. (2020). Discovery of potent inhibitors for SARS-CoV-2's main protease by ligand-based/structure-based virtual screening, MD simulations, and binding energy calculations. Physical Chemistry Chemical Physics, 22(40), 23099–23106. https://doi.org/10.1039/d0cp04326e
  • Anandakrishnan, R., Aguilar, B., & Onufriev, A. V. (2012). H++ 3.0: Automating pK prediction and the preparation of biomolecular structures for atomistic molecular modeling and simulations. Nucleic Acids Research, 40(Web Server issue), W537–W541. https://doi.org/10.1093/nar/gks375
  • Awad, I. E., Abu-Saleh, A. A.-A A., Sharma, S., Yadav, A., & Poirier, R. A. (2020). High-throughput virtual screening of drug databanks for potential inhibitors of SARS-CoV-2 spike glycoprotein. Journal of Biomolecular Structure and Dynamics, 0, 1–14. https://doi.org/10.1080/07391102.2020.1835721
  • Awoonor-Williams, E., & Abu-Saleh, A. A.-A A. (2021). Covalent and non-covalent binding free energy calculations for peptidomimetic inhibitors of SARS-CoV-2 main protease. Physical Chemistry Chemical Physics, 23(11), 6746–6757. https://doi.org/10.1039/d1cp00266j
  • Best, R. B., Zhu, X., Shim, J., Lopes, P. E. M., Mittal, J., Feig, M., & Mackerell, A. D. (2012). Optimization of the additive charmm all-atom protein force field targeting improved sampling of the backbone φ, ψ and side-chain χ(1) and χ(2) dihedral angles. Journal of Chemical Theory and Computation, 8(9), 3257–3273. https://doi.org/10.1021/ct300400x
  • Borkotoky, S., Dey, D., & Banerjee, M. (2021). Computational insight into the mechanism of SARS-CoV-2 membrane fusion. Journal of Chemical Information and Modeling, 61(1), 423–431. https://doi.org/10.1021/acs.jcim.0c01231
  • Cao, L., Goreshnik, I., Coventry, B., Case, J. B., Miller, L., Kozodoy, L., Chen, R. E., Carter, L., Walls, A. C., Park, Y.-J., Strauch, E.-M., Stewart, L., Diamond, M. S., Veesler, D., & Baker, D. (2020). De novo design of picomolar SARS-CoV-2 miniprotein inhibitors. Science, 370(6515), 426–431. https://doi.org/10.1126/science.abd9909
  • Casalino, L., Gaieb, Z., Goldsmith, J. A., Hjorth, C. K., Dommer, A. C., Harbison, A. M., Fogarty, C. A., Barros, E. P., Taylor, B. C., McLellan, J. S., Fadda, E., & Amaro, R. E. (2020). Beyond shielding: The roles of glycans in the SARS-CoV-2 spike protein. ACS Central Science, 6(10), 1722–1734. https://doi.org/10.1021/acscentsci.0c01056
  • Choi, Y. K., Cao, Y., Frank, M., Woo, H., Park, S.-J., Yeom, M. S., Croll, T. I., Seok, C., & Im, W. (2021). Structure, dynamics, receptor binding, and antibody binding of the fully glycosylated full-length SARS-CoV-2 spike protein in a viral membrane. Journal of Chemical Theory and Computation, 17(4), 2479–2487. https://doi.org/10.1021/acs.jctc.0c01144
  • Chowdhury, S. M., Talukder, S. A., Khan, A. M., Afrin, N., Ali, M. A., Islam, R., Parves, R., Al Mamun, A., Sufian, M. A., Hossain, M. N., Hossain, M. A., & Halim, M. A. (2020). Antiviral peptides as promising therapeutics against SARS-CoV-2. The Journal of Physical Chemistry. B, 124(44), 9785–9792. https://doi.org/10.1021/acs.jpcb.0c05621
  • Deganutti, G., Prischi, F., & Reynolds, C. A. (2021). Supervised molecular dynamics for exploring the druggability of the SARS-CoV-2 spike protein. Journal of Computer-Aided Molecular Design, 35(2), 195–207. https://doi.org/10.1007/s10822-020-00356-4
  • Essmann, U., Perera, L., Berkowitz, M. L., Darden, T., Lee, H., & Pedersen, L. G. (1995). A smooth particle mesh ewald method. The Journal of Chemical Physics, 103(19), 8577–8593. https://doi.org/10.1063/1.470117
  • Fiorin, G., Klein, M. L., & Hénin, J. (2013). Using collective variables to drive molecular dynamics simulations. Molecular Physics, 111(22-23), 3345–3362. https://doi.org/10.1080/00268976.2013.813594
  • Freitas, F. C., Ferreira, P. H. B., Favaro, D. C., & Oliveira, R. J. d. (2021). Shedding light on the inhibitory mechanisms of SARS-CoV-1/CoV-2 spike proteins by ACE2-designed peptides. Journal of Chemical Information and Modeling, 61(3), 1226–1243. https://doi.org/10.1021/acs.jcim.0c01320
  • Fu, H., Cai, W., Hénin, J., Roux, B., & Chipot, C. (2017). New coarse variables for the accurate determination of standard binding free energies. Journal of Chemical Theory and Computation, 13(11), 5173–5178. https://doi.org/10.1021/acs.jctc.7b00791
  • Fu, H., Gumbart, J. C., Chen, H., Shao, X., Cai, W., & Chipot, C. (2018). BFEE: A user-friendly graphical interface facilitating absolute binding free-energy calculations. Journal of Chemical Information and Modeling, 58(3), 556–560. https://doi.org/10.1021/acs.jcim.7b00695
  • Fu, H., Shao, X., Chipot, C., & Cai, W. (2016). Extended adaptive biasing force algorithm. An on-the-fly implementation for accurate free-energy calculations. Journal of Chemical Theory and Computation, 12(8), 3506–3513. https://doi.org/10.1021/acs.jctc.6b00447
  • Gangadevi, S., Badavath, V. N., Thakur, A., Yin, N., De Jonghe, S., Acevedo, O., Jochmans, D., Leyssen, P., Wang, K., Neyts, J., Yujie, T., & Blum, G. (2021). Kobophenol a inhibits binding of host ACE2 receptor with spike RBD domain of SARS-CoV-2, a lead compound for blocking covid-19. The Journal of Physical Chemistry Letters, 12(7), 1793–1802. https://doi.org/10.1021/acs.jpclett.0c03119
  • Grest, G. S., & Kremer, K. (1986). Molecular dynamics simulation for polymers in the presence of a heat bath. Physical Review. A, General Physics, 33(5), 3628–3631. https://doi.org/10.1103/physreva.33.3628
  • Gumbart, J. C., Roux, B., & Chipot, C. (2013). Standard binding free energies from computer simulations: What is the best strategy? Journal of Chemical Theory and Computation, 9(1), 794–802. https://doi.org/10.1021/ct3008099
  • Gur, M., Taka, E., Yilmaz, S. Z., Kilinc, C., Aktas, U., & Golcuk, M. (2020). Conformational transition of SARS-CoV-2 spike glycoprotein between its closed and open states. The Journal of Chemical Physics, 153(7), 075101. https://doi.org/10.1063/5.0011141
  • Han, Y., & Král, P. (2020). Computational design of ACE2-based peptide inhibitors of SARS-CoV-2. ACS Nano, 14(4), 5143–5147. https://doi.org/10.1021/acsnano.0c02857
  • Haque, S. M., Ashwaq, O., Sarief, A., & Azad John Mohamed, A. K. (2020). A comprehensive review about SARS-CoV-2. Future Virology, 15(9), 625–648. https://doi.org/10.2217/fvl-2020-0124
  • Hossain, M. G., Akter, S., & Saha, S. (2020). SARS-CoV-2 host diversity: An update of natural infections and experimental evidences. Journal of Microbiology, Immunology and Infection, 54, 175-181.
  • Huo, J., Zhao, Y., Ren, J., Zhou, D., Duyvesteyn, H. M. E., Ginn, H. M., Carrique, L., Malinauskas, T., Ruza, R. R., Shah, P. N. M., Tan, T. K., Rijal, P., Coombes, N., Bewley, K. R., Tree, J. A., Radecke, J., Paterson, N. G., Supasa, P., Mongkolsapaya, J., … Stuart, D. I. (2020). Neutralization of SARS-CoV-2 by destruction of the prefusion spike. Cell Host & Microbe, 28(3), 445–454. https://doi.org/10.1016/j.chom.2020.06.010
  • Izda, V., Jeffries, M. A., & Sawalha, A. H. (2021). Covid-19: A review of therapeutic strategies and vaccine candidates. Clinical Immunology, 222, 108634. https://doi.org/10.1016/j.clim.2020.108634
  • Jiménez, J., Skalic, M., Martinez-Rosell, G., & De Fabritiis, G. (2018). KDEEP: Protein-ligand absolute binding affinity prediction via 3D-convolutional neural networks. Journal of Chemical Information and Modeling, 58(2), 287–296. https://doi.org/10.1021/acs.jcim.7b00650
  • Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W., & Klein, M. L. (1983). Comparison of simple potential functions for simulating liquid water. The Journal of Chemical Physics, 79(2), 926–935. https://doi.org/10.1063/1.445869
  • Laurini, E., Marson, D., Aulic, S., Fermeglia, M., & Pricl, S. (2020). Computational alanine scanning and structural analysis of the SARS-CoV-2 spike protein/angiotensin-converting enzyme 2 complex. ACS Nano, 14(9), 11821–11830. https://doi.org/10.1021/acsnano.0c04674
  • Leach, A. (2021). Implementing a method for engineering multivalency to substantially enhance binding of clinical trial anti-SARS-CoV-2 antibodies to wildtype spike and variants of concern proteins. Scientific Reports, 11, 1–13.
  • Lesage, A., Lelievre, T., Stoltz, G., & Hénin, J. (2017). Smoothed biasing forces yield unbiased free energies with the Extended-System Adaptive Biasing Force Method. The Journal of Physical Chemistry. B, 121(15), 3676–3685. https://doi.org/10.1021/acs.jpcb.6b10055
  • Letko, M., Marzi, A., & Munster, V. (2020). Functional assessment of cell entry and receptor usage for SARS-CoV-2 and other lineage b betacoronaviruses. Nature Microbiology, 5(4), 562–569. https://doi.org/10.1038/s41564-020-0688-y
  • Li, Y.-T., Yang, C., Wu, Y., Lv, J.-J., Feng, X., Tian, X., Zhou, Z., Pan, X., Liu, S., & Tian, L.-W. (2021). Axial chiral binaphthoquinone and perylenequinones from the stromata of hypocrella bambusae are SARS-CoV-2 entry inhibitors. Journal of Natural Products, 84(2), 436–443. https://doi.org/10.1021/acs.jnatprod.0c01136
  • Li, Z., Li, X., Huang, Y.-Y., Wu, Y., Liu, R., Zhou, L., Lin, Y., Wu, D., Zhang, L., Liu, H., Xu, X., Yu, K., Zhang, Y., Cui, J., Zhan, C.-G., Wang, X., & Luo, H.-B. (2020). Identify potent SARS-CoV-2 main protease inhibitors via accelerated free energy perturbation-based virtual screening of existing drugs. Proceedings of the National Academy of Sciences of the United States of America, 117(44), 27381–27387. https://doi.org/10.1073/pnas.2010470117
  • Linsky, T. W., Vergara, R., Codina, N., Nelson, J. W., Walker, M. J., Su, W., Barnes, C. O., Hsiang, T.-Y., Esser-Nobis, K., Yu, K., Reneer, Z. B., Hou, Y. J., Priya, T., Mitsumoto, M., Pong, A., Lau, U. Y., Mason, M. L., Chen, J., Chen, A., … Silva, D.-A. (2020). De novo design of potent and resilient hACE2 decoys to neutralize SARS-CoV-2. Science, 370(6521), 1208–1214. https://doi.org/10.1126/science.abe0075
  • Liu, X.-H., Zhang, X., Lu, Z.-H., Zhu, Y. S., & Wang, T. (2021). Potential molecular targets of nonstructural proteins for the development of antiviral drugs against SARS-CoV-2 infection. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie, 133, 111035. https://doi.org/10.1016/j.biopha.2020.111035
  • Maas, M. N., Hintzen, J. C., Löffler, P. M., & Mecinovic’, J. (2021). Targeting SARS-CoV-2 spike protein by stapled hace2 peptides. Chemical Communications, 57(26), 3283–3286. https://doi.org/10.1039/d0cc08387a
  • Mittal, A., Manjunath, K., Ranjan, R. K., Kaushik, S., Kumar, S., & Verma, V. (2020). Covid-19 pandemic: Insights into structure, function, and hACE2 receptor recognition by SARS-CoV-2. PLoS Pathogens, 16(8), e1008762. https://doi.org/10.1371/journal.ppat.1008762
  • Mulholland, A. J., & Amaro, R. E. (2020). COVID19 – Computational chemists meet the moment. Journal of Chemical Information and Modeling, 60(12), 5724–5726. https://doi.org/10.1021/acs.jcim.0c01395
  • Nguyen, H. L., Lan, P. D., Thai, N. Q., Nissley, D. A., O'Brien, E. P., & Li, M. S. (2020). Does SARS-CoV-2 bind to human ACE2 more strongly than does SARS-CoV? The Journal of Physical Chemistry. B, 124(34), 7336–7347. https://doi.org/10.1021/acs.jpcb.0c04511
  • Nosé, S. (1984). A molecular dynamics method for simulations in the canonical ensemble. Molecular Physics, 52(2), 255–268. https://doi.org/10.1080/00268978400101201
  • Nosé, S., & Klein, M. (1983). Constant pressure molecular dynamics for molecular systems. Molecular Physics, 50(5), 1055–1076. https://doi.org/10.1080/00268978300102851
  • O’Boyle, N. M. (2011). Open babel: An open chemical toolbox. Journal of Cheminformatics, 3, 33.
  • Ou, X. (2020). Characterization of spike glycoprotein of SARS-CoV-2 on virus entry and its immune cross-reactivity with SARS-CoV. Nature Communications, 11, 1–12.
  • Pandey, P. (2020). Targeting SARS-CoV-2 spike protein of covid-19 with naturally occurring phytochemicals: An in silico study for drug development. Journal of Biomolecular Structure and Dynamics, 39, 6306–6316.
  • Peng, C., Zhu, Z., Shi, Y., Wang, X., Mu, K., Yang, Y., Zhang, X., Xu, Z., & Zhu, W. (2020). Computational insights into the conformational accessibility and binding strength of SARS-CoV-2 spike protein to human angiotensin-converting enzyme 2. The Journal of Physical Chemistry Letters, 11(24), 10482–10488. https://doi.org/10.1021/acs.jpclett.0c02958
  • Phillips, J. C., Braun, R., Wang, W., Gumbart, J., Tajkhorshid, E., Villa, E., Chipot, C., Skeel, R. D., Kalé, L., & Schulten, K. (2005). Scalable molecular dynamics with NAMD. Journal of Computational Chemistry, 26(16), 1781–1802. https://doi.org/10.1002/jcc.20289
  • Phillips, J. C., Hardy, D. J., Maia, J. D. C., Stone, J. E., Ribeiro, J. V., Bernardi, R. C., Buch, R., Fiorin, G., Hénin, J., Jiang, W., McGreevy, R., Melo, M. C. R., Radak, B. K., Skeel, R. D., Singharoy, A., Wang, Y., Roux, B., Aksimentiev, A., Luthey-Schulten, Z., … Tajkhorshid, E. (2020). Scalable molecular dynamics on CPU and GPU architectures with NAMD. The Journal of Chemical Physics, 153(4), 044130. https://doi.org/10.1063/5.0014475
  • Piccoli, L., Park, Y.-J., Tortorici, M. A., Czudnochowski, N., Walls, A. C., Beltramello, M., Silacci-Fregni, C., Pinto, D., Rosen, L. E., Bowen, J. E., Acton, O. J., Jaconi, S., Guarino, B., Minola, A., Zatta, F., Sprugasci, N., Bassi, J., Peter, A., De Marco, A., … Veesler, D. (2020). Mapping neutralizing and immunodominant sites on the SARS-CoV-2 spike receptor-binding domain by structure-guided high-resolution serology. Cell, 183(4), 1024–1042. https://doi.org/10.1016/j.cell.2020.09.037
  • Pomplun, S., Jbara, M., Quartararo, A. J., Zhang, G., Brown, J. S., Lee, Y.-C., Ye, X., Hanna, S., & Pentelute, B. L. (2021). De novo discovery of high-affinity peptide binders for the SARS-CoV-2 spike protein. ACS Central Science, 7(1), 156–163. https://doi.org/10.1021/acscentsci.0c01309
  • Puhl, A. C., Fritch, E. J., Lane, T. R., Tse, L. V., Yount, B. L., Sacramento, C. Q., Fintelman-Rodrigues, N., Tavella, T. A., Maranhão Costa, F. T., Weston, S., Logue, J., Frieman, M., Premkumar, L., Pearce, K. H., Hurst, B. L., Andrade, C. H., Levi, J. A., Johnson, N. J., Kisthardt, S. C., … Ekins, S. (2021). Repurposing the Ebola and Marburg virus inhibitors tilorone, quinacrine, and pyronaridine: In vitro activity against SARS-CoV-2 and potential mechanisms. ACS Omega, 6(11), 7454–7468. https://doi.org/10.1021/acsomega.0c05996
  • Ryckaert, J.-P., Ciccotti, G., & Berendsen, H. J. (1977). Numerical integration of the Cartesian equations of motion of a system with constraints: Molecular dynamics of n-alkanes. Journal of Computational Physics, 23(3), 327–341. https://doi.org/10.1016/0021-9991(77)90098-5
  • Schütz, D., Ruiz-Blanco, Y. B., Münch, J., Kirchhoff, F., Sanchez-Garcia, E., & Müller, J. A. (2020). Peptide and peptide-based inhibitors of SARS-CoV-2 entry. Advanced Drug Delivery Reviews, 167, 47–65. https://doi.org/10.1016/j.addr.2020.11.007
  • Shang, J., Wan, Y., Luo, C., Ye, G., Geng, Q., Auerbach, A., & Li, F. (2020). Cell entry mechanisms of SARS-CoV-2. Proceedings of the National Academy of Sciences of the United States of America, 117(21), 11727–11734. https://doi.org/10.1073/pnas.2003138117
  • Shang, J., Ye, G., Shi, K., Wan, Y., Luo, C., Aihara, H., Geng, Q., Auerbach, A., & Li, F. (2020). Structural basis of receptor recognition by SARS-CoV-2. Nature, 581(7807), 221–224. https://doi.org/10.1038/s41586-020-2179-y
  • Sitthiyotha, T., & Chunsrivirot, S. (2020). Computational design of 25-mer peptide binders of SARS-CoV-2. The Journal of Physical Chemistry. B, 124(48), 10930–10942. https://doi.org/10.1021/acs.jpcb.0c07890
  • Siu, Y. L., Teoh, K. T., Lo, J., Chan, C. M., Kien, F., Escriou, N., Tsao, S. W., Nicholls, J. M., Altmeyer, R., Peiris, J. S. M., Bruzzone, R., & Nal, B. (2008). The M, E, and N structural proteins of the severe acute respiratory syndrome coronavirus are required for efficient assembly, trafficking, and release of virus-like particles. Journal of Virology, 82(22), 11318–11330. https://doi.org/10.1128/JVI.01052-08
  • Skalic, M., Martínez-Rosell, G., Jiménez, J., & De Fabritiis, G. (2019). Playmolecule bindscope: Large scale CNN-based virtual screening on the web. Bioinformatics, 35(7), 1237–1238. https://doi.org/10.1093/bioinformatics/bty758
  • Sterling, T., & Irwin, J. J. (2015). Zinc 15-ligand discovery for everyone. Journal of Chemical Information and Modeling, 55(11), 2324–2337. https://doi.org/10.1021/acs.jcim.5b00559
  • Taka, E., Yilmaz, S. Z., Golcuk, M., Kilinc, C., Aktas, U., Yildiz, A., & Gur, M. (2021). Critical interactions between the SARS-CoV-2 spike glycoprotein and the human ACE2 receptor. The Journal of Physical Chemistry. B, 125(21), 5537–5548. https://doi.org/10.1021/acs.jpcb.1c02048
  • Tang, T., Jaimes, J. A., Bidon, M. K., Straus, M. R., Daniel, S., & Whittaker, G. R. (2021). Proteolytic activation of SARS-CoV-2 spike at the S1/S2 boundary: Potential role of proteases beyond furin. ACS Infectious Diseases, 7(2), 264–272. https://doi.org/10.1021/acsinfecdis.0c00701
  • Toelzer, C., Gupta, K., Yadav, S. K. N., Borucu, U., Davidson, A. D., Kavanagh Williamson, M., Shoemark, D. K., Garzoni, F., Staufer, O., Milligan, R., Capin, J., Mulholland, A. J., Spatz, J., Fitzgerald, D., Berger, I., & Schaffitzel, C. (2020). Free fatty acid binding pocket in the locked structure of SARS-CoV-2 spike protein. Science, 370(6517), 725–730. https://doi.org/10.1126/science.abd3255
  • Trezza, A., Iovinelli, D., Santucci, A., Prischi, F., & Spiga, O. (2020). An integrated drug repurposing strategy for the rapid identification of potential SARS-CoV-2 viral inhibitors. Scientific Reports, 10, 1–8.
  • Trott, O., & Olson, A. J. (2010). Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31(2), 455–461.
  • Vuong, Q. V., Nguyen, T. T., & Li, M. S. (2015). A new method for navigating optimal direction for pulling ligand from binding pocket: Application to ranking binding affinity by steered molecular dynamics. Journal of Chemical Information and Modeling, 55(12), 2731–2738. https://doi.org/10.1021/acs.jcim.5b00386
  • Walls, A. C., Park, Y.-J., Tortorici, M. A., Wall, A., McGuire, A. T., & Veesler, D. (2020). Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell, 181(2), 281–292. https://doi.org/10.1016/j.cell.2020.02.058
  • Wang, G., Yang, M.-L., Duan, Z.-L., Liu, F.-L., Jin, L., Long, C.-B., Zhang, M., Tang, X.-P., Xu, L., Li, Y.-C., Kamau, P. M., Yang, L., Liu, H.-Q., Xu, J.-W., Chen, J.-K., Zheng, Y.-T., Peng, X.-Z., & Lai, R. (2021). Dalbavancin binds ACE2 to block its interaction with SARS-CoV-2 spike protein and is effective in inhibiting SARS-CoV-2 infection in animal models. Cell Research, 31(1), 17–24. https://doi.org/10.1038/s41422-020-00450-0
  • Wang, Q., Zhang, Y., Wu, L., Niu, S., Song, C., Zhang, Z., Lu, G., Qiao, C., Hu, Y., Yuen, K.-Y., Wang, Q., Zhou, H., Yan, J., & Qi, J. (2020). Structural and functional basis of SARS-CoV-2 entry by using human ACE2. Cell, 181(4), 894–904. https://doi.org/10.1016/j.cell.2020.03.045
  • Wang, X., Cao, R., Zhang, H., Liu, J., Xu, M., Hu, H., Li, Y., Zhao, L., Li, W., Sun, X., Yang, X., Shi, Z., Deng, F., Hu, Z., Zhong, W., & Wang, M. (2020). The anti-influenza virus drug, arbidol is an efficient inhibitor of SARS-CoV-2 in vitro. Cell Discovery, 6(1), 1–5. https://doi.org/10.1038/s41421-020-0169-8
  • Wang, Y., Liu, M., & Gao, J. (2020). Enhanced receptor binding of SARS-CoV-2 through networks of hydrogen-bonding and hydrophobic interactions. Proceedings of the National Academy of Sciences of the United States of America, 117(25), 13967–13974. https://doi.org/10.1073/pnas.2008209117
  • Wang, Y., Zhang, D., Du, G., Du, R., Zhao, J., Jin, Y., Fu, S., Gao, L., Cheng, Z., Lu, Q., Hu, Y., Luo, G., Wang, K., Lu, Y., Li, H., Wang, S., Ruan, S., Yang, C., Mei, C., … Wang, C. (2020). Remdesivir in adults with severe covid-19: A randomised, double-blind, placebo-controlled, multicentre trial. The Lancet, 395(10236), 1569–1578. https://doi.org/10.1016/S0140-6736(20)31022-9
  • WHO. (2021). Covid-19 weekly epidemiological update, 5 October.
  • Williams-Noonan, B. J., Todorova, N., Kulkarni, K., Aguilar, M.-I., & Yarovsky, I. (2021). An active site inhibitor induces conformational penalties for ACE2 recognition by the spike protein of SARS-CoV-2. The Journal of Physical Chemistry. B, 125(10), 2533–2550. https://doi.org/10.1021/acs.jpcb.0c11321
  • Wrapp, D., Wang, N., Corbett, K. S., Goldsmith, J. A., Hsieh, C.-L., Abiona, O., Graham, B. S., & McLellan, J. S. (2020). Cryo-em structure of the 2019-ncov spike in the prefusion conformation. Science, 367(6483), 1260–1263. https://doi.org/10.1126/science.abb2507
  • Wu, N. C., Yuan, M., Liu, H., Lee, C.-C D., Zhu, X., Bangaru, S., Torres, J. L., Caniels, T. G., Brouwer, P. J. M., van Gils, M. J., Sanders, R. W., Ward, A. B., & Wilson, I. A. (2020). An alternative binding mode of IGHV3-53 antibodies to the SARS-CoV-2 receptor binding domain. Cell Reports, 33(3), 108274. https://doi.org/10.1016/j.celrep.2020.108274
  • Ye, Q., West, A. M., Silletti, S., & Corbett, K. D. (2020). Architecture and self-assembly of the SARS-CoV-2 nucleocapsid protein. Protein Science, 29(9), 1890–1901. https://doi.org/10.1002/pro.3909
  • Young, B., Tan, T. T., & Leo, Y. S. (2021). The place for remdesivir in covid-19 treatment. The Lancet. Infectious Diseases, 21(1), 20–21. https://doi.org/10.1016/S1473-3099(20)30911-7
  • Yu, W., He, X., Vanommeslaeghe, K., & MacKerell, A. D., Jr. (2012). Extension of the charmm general force field to sulfonyl-containing compounds and its utility in biomolecular simulations. Journal of Computational Chemistry, 33(31), 2451–2468. https://doi.org/10.1002/jcc.23067
  • Zhang, H., Yang, Y., Li, J., Wang, M., Saravanan, K. M., Wei, J., Tze-Yang Ng, J., Tofazzal Hossain, M., Liu, M., Zhang, H., Ren, X., Pan, Y., Peng, Y., Shi, Y., Wan, X., Liu, Y., & Wei, Y. (2020). A novel virtual screening procedure identifies pralatrexate as inhibitor of SARS-CoV-2 RDRP and it reduces viral replication in vitro. PLoS Computational Biology, 16(12), e1008489. https://doi.org/10.1371/journal.pcbi.1008489

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.