327
Views
1
CrossRef citations to date
0
Altmetric
Research articles

In silico analysis of comparative affinity of phytosiderophore and bacillibactin for iron uptake by YSL15 and YSL18 receptors of Oryza sativa

, , , , & ORCID Icon
Pages 2733-2746 | Received 07 Dec 2020, Accepted 28 Jan 2022, Published online: 09 Feb 2022

References

  • Abergel, R. J., Zawadzka, A. M., Hoette, T. M., & Raymond, K. N. (2009). Enzymatic hydrolysis of trilactone siderophores: Where chiral recognition occurs in enterobactin and bacillibactin iron transport. Journal of the American Chemical Society, 131(35), 12682–12692. https://doi.org/10.1021/ja903051q
  • Abraham, M. J., Murtola, T., Schulz, R., PáLl, S., Smith, J. C., Hess, B., & Lindahl, E. (2015). GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX, 1–2, 19–25. https://doi.org/10.1016/j.softx.2015.06.001
  • Abraham, M. J., van der Spoel, D., Lindahl, E., & Hess, B. (2018). GROMACS User Manual version 2016, www.gromacs.org.
  • Andrić, S., Meyer, T., & Ongena, M. (2020). Bacillus responses to plant-associated fungal and bacterial communities. Frontiers in Microbiology, 11, 1350. https://doi.org/10.3389/fmicb.2020.01350
  • Aoyama, T., Kobayashi, T., Takahashi, M., Nagasaka, S., Usuda, K., Kakei, Y., Ishimaru, Y., Nakanishi, H., Mori, S., & Nishizawa, N. K. (2009). OsYSL18 is a rice iron(III)-deoxymugineic acid transporter specifically expressed in reproductive organs and phloem of lamina joints. Plant Molecular Biology, 70(6), 681–692. https://doi.org/10.1007/s11103-009-9500-3
  • Asanuma, S., Tanaka, H., & Yatazawa, M. (1979). Rhizoplane microorganisms of rice seedlings as examined by scanning electron microscopy. Soil Science & Plant Nutrition., 25(4), 539–551. https://doi.org/10.1080/00380768.1979.10433195
  • Asch, F., Becker, M., & Kpongor, D. S. (2005). A quick and efficient screen for resistance to iron toxicity in lowland rice. Journal of Plant Nutrition and Soil Science, 168(6), 764–773. https://doi.org/10.1002/jpln.200520540
  • Ashnaei, S. P. (2018). Beneficial effect of plant growth promoting bacteria isolated from rice rhizosphere. International Journal of Applied Microbiology and Biotechnology Research, 6(8), 107–114.
  • Bishwajit, G., Sarker, S., Kpoghomou, M. A., Gao, H., Jun, L., Yin, D., & Ghosh, S. (2013). Self- sufficiency in rice and food security: A South Asian perspective. Agriculture & Food Security., 2, 10.
  • Colovos, C., & Yeates, T. O. (1993). Verification of protein structures: Patterns of nonbonded atomic interactions. Protein Science : a Publication of the Protein Society, 2(9), 1511–1519. https://doi.org/10.1002/pro.5560020916
  • Essmann, U., Perera, L., Berkowitz, M. L., Darden, T., Lee, H., & Pedersen, L. G. (1995). A smooth particle mesh Ewald method. Journal of Chemical Physics., 103(19), 8577–8593. https://doi.org/10.1063/1.470117
  • Furrer, J. L., Sanders, D. N., Hook-Barnard, I. G., & McIntosh, M. A. (2002). Export of the siderophore enterobactin in Escherichia coli: Involvement of a 43 kDa membrane exporter. Molecular Microbiology, 44(5), 1225–1234. https://doi.org/10.1046/j.1365-2958.2002.02885.x
  • Gruber, B. D., Giehl, R. F., Friedel, S., & von Wirén, N. (2013). Plasticity of the Arabidopsis root system under nutrient deficiencies. Plant Physiology, 163(1), 161–179. https://doi.org/10.1104/pp.113.218453
  • Gurung, A. B., Laso, A., & Bhattacharjee, A. (2020). Identification of potential drug-like molecules for inhibition of the inflammatory activity of cyclooxygenase-2. Journal of Biomolecular Structure & Dynamics, 38(18), 5293–5306. https://doi.org/10.1080/07391102.2019.1698465
  • Hess, U., Blairy, S., & Kleck, R. E. (1997). The intensity of emotional facial expressions and decoding accuracy. Journal of Nonverbal Behavior, 21(4), 241–257. https://doi.org/10.1023/A:1024952730333
  • Inoue, H., Kobayashi, T., Nozoye, T., Takahashi, M., Kakei, Y., Suzuki, K., Nakazono, M., Nakanishi, H., Mori, S., & Nishizawa, N. K. (2009). Rice OsYSL15 is an iron-regulated iron(III)-deoxymugineic acid transporter expressed in the roots and is essential for iron uptake in early growth of the seedlings. The Journal of Biological Chemistry, 284(6), 3470–3479. https://doi.org/10.1074/jbc.M806042200
  • Kar, S., & Panda, S. K. (2020). Iron homeostasis in rice: Deficit and excess. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences, 90(2), 227–235. https://doi.org/10.1007/s40011-018-1052-3
  • Khan, A., Gupta, A., Singh, P., Mishra, A. K., Ranjan, R. K., & Srivastava, A. (2020a). Siderophore-assisted cadmium hyperaccumulation in Bacillus subtilis. International Microbiology : The Official Journal of the Spanish Society for Microbiology, 23(2), 277–286. https://doi.org/10.1007/s10123-019-00101-4
  • Khan, A., Singh, P., & Srivastava, A. (2018). Synthesis, nature and utility of universal iron chelator – siderophore: A review. Microbiological Research, 212-213, 103–111. https://doi.org/10.1016/j.micres.2017.10.012
  • Khan, A., Singh, P., & Srivastava, A. (2020b). Iron: Key player in cancer and cell cycle? Journal of Trace Elements in Medicine and Biology: Organ of the Society for Minerals and Trace Elements (GMS), 62, 126582. https://doi.org/10.1016/j.jtemb.2020.126582
  • Kobayashi, T., Itai, R. N., Ogo, Y., Kakei, Y., Nakanishi, H., Takahashi, M., & Nishizawa, N. K. (2009). The rice transcription factor IDEF1 is essential for the early response to iron deficiency, and induces vegetative expression of late embryogenesis abundant genes. The Plant Journal: For Cell and Molecular Biology, 60(6), 948–961. https://doi.org/10.1111/j.1365-313X.2009.04015.x
  • Kobayashi, T., & Nishizawa, N. K. (2012). Iron uptake, translocation, and regulation in higher plants. Annual Review of Plant Biology, 63, 131–152. https://doi.org/10.1146/annurev-arplant-042811-105522
  • Kobayashi, T., & Nishizawa, N. K. (2014). Iron sensors and signals in response to iron deficiency. Plant Science: An International Journal of Experimental Plant Biology, 224, 36–43. https://doi.org/10.1016/j.plantsci.2014.04.002
  • Kumari, R., Kumar, R., & Lynn, A. (2014). g_mmpbsa-a GROMACS tool for high-throughput MM-PBSA calculations . Journal of Chemical Information and Modeling, 54(7), 1951–1962., https://doi.org/10.1021/ci500020m
  • Kumari, S., Khan, A., Singh, P., Dwivedi, S. K., Ojha, K. K., & Srivastava, A. (2019). Mitigation of As toxicity in wheat by exogenous application of hydroxamate siderophore of Aspergillus origin. Acta Physiologiae Plantarum, 41(7), 107. https://doi.org/10.1007/s11738-019-2902-1
  • Liu, K., & Kokubo, H. (2017). Exploring the stability of ligand binding modes to proteins by molecular dynamics simulations: A cross-docking study. Journal of Chemical Information and Modeling, 57(10), 2514–2522. https://doi.org/10.1021/acs.jcim.7b00412
  • Luthy, R., Bowie, J. U., & Eisenberg, D. (1992). Assessment of protein models with three-dimensional profiles. Nature, 356(6364), 83–85. https://doi.org/10.1038/356083a0
  • Miethke, M., Klotz, O., Linne, U., May, J. J., Beckering, C. L., & Marahiel, M. A. (2006). Ferri-bacillibactin uptake and hydrolysis in Bacillus subtilis. Molecular Microbiology, 61(6), 1413–1427. https://doi.org/10.1111/j.1365-2958.2006.05321.x
  • Mori, S., Nishizawa, N., Hayashi, H., Chino, M., Yoshimura, E., & Ishihara, J. (1991). Why are young rice plants highly susceptible to iron deficiency? Plant and Soil, 130(1-2), 143–156. https://doi.org/10.1007/BF00011869
  • Morrissey, J., & Guerinot, M. L. (2009). Iron uptake and transport in plants: The good, the bad, and the ionome. Chemical Reviews, 109(10), 4553–4567. https://doi.org/10.1021/cr900112r
  • Nozoye, T., Nagasaka, S., Kobayashi, T., Takahashi, M., Sato, Y., Sato, Y., Uozumi, N., Nakanishi, H., & Nishizawa, N. K. (2011). Phytosiderophore efflux transporters are crucial for iron acquisition in graminaceous plants. The Journal of Biological Chemistry, 286(7), 5446–5454. https://doi.org/10.1074/jbc.M110.180026
  • Pao, S. S., Paulsen, I. T., & Saier, M. H. Jr(1998). Major facilitator superfamily. Microbiology and Molecular Biology Reviews: MMBR, 62(1), 1–34. https://doi.org/10.1128/MMBR.62.1.1-34.1998
  • Pittol, M., Scully, E., Miller, D., Durso, L., Mariana Fiuza, L., & Valiati, V. H. (2018). Bacterial community of the rice floodwater using cultivation-independent approaches. International Journal of Microbiology, 2018, 6280484. https://doi.org/10.1155/2018/6280484
  • Qiu, S., Azofra, L. M., MacFarlane, D. R., & Sun, C. (2018). Hydrogen bonding effect between active site and protein environment on catalysis performance in H2-producing [NiFe] hydrogenases. Physical Chemistry Chemical Physics: PCCP, 20(9), 6735–6743. https://doi.org/10.1039/c7cp07685a
  • Radhakrishnan, R., Hashem, A., & Abd Allah, E. F. (2017). Bacillus: A biological tool for crop improvement through bio-molecular changes in adverse environments. Frontiers in Physiology, 8, 667. https://doi.org/10.3389/fphys.2017.00667
  • Raman, S., Vernon, R., Thompson, J., Tyka, M., Sadreyev, R., Pei, J., Kim, D., Kellogg, E., DiMaio, F., Lange, O., Kinch, L., Sheffler, W., Kim, B.-H., Das, R., Grishin, N. V., & Baker, D. (2009). Structure prediction for CASP8 with all-atom refinement using Rosetta. Proteins: Structure, Function, and Bioinformatics, 77(S9), 89–99. https://doi.org/10.1002/prot.22540
  • Reichman, S. M., & Parker, D. R. (2002). Revisiting the metal-binding chemistry of nicotianamine and 2'-deoxymugineic acid. Implications for iron nutrition in strategy II plants. Plant Physiology, 129(4), 1435–1438. https://doi.org/10.1104/pp.005009
  • Rout, G. R., & Sahoo, S. (2015). Role of iron in plant growth and metabolism. Reviews in Agricultural Science, 3(0), 1–24. https://doi.org/10.7831/ras.3.1
  • Santos, R. S. D., Araujo, A. T. d., Pegoraro, C., & Oliveira, A. C. d. (2017). Dealing with iron metabolism in rice: From breeding for stress tolerance to biofortification. Genetics and Molecular Biology, 40(1 suppl 1), 312–325. https://doi.org/10.1590/1678-4685-GMB-2016-0036
  • Sen Gupta, P. S., Biswal, S., Panda, S. K., Ray, A. K., & Rana, M. K. (2020). Binding mechanism and structural insights into the identified protein target of COVID-19 and importin-α with in-vitro effective drug ivermectin. Journal of Biomolecular Structure and Dynamics., 28, 1–10. https://doi.org/10.1080/07391102.2020.1839564
  • Shojima, S., Nishizawa, N. K., Fushiya, S., Nozoe, S., Irifune, T., & Mori, S. (1990). Biosynthesis of phytosiderophores : In vitro biosynthesis of 2'-deoxymugineic acid from l-methionine and nicotianamine. Plant Physiology, 93(4), 1497–1503. https://doi.org/10.1104/pp.93.4.1497
  • Sigala, P. A., Tsuchida, M. A., & Herschlag, D. (2009). Hydrogen bond dynamics in the active site of photoactive yellow protein. Proceedings of the National Academy of Sciences of the United States of America, 106(23), 9232–9237. https://doi.org/10.1073/pnas.0900168106
  • Singh, P., Khan, A., Kumar, R., Kumar, R., Singh, V. K., & Srivastava, A. (2020b). Recent developments in siderotyping: Procedure and application. World Journal of Microbiology & Biotechnology, 36(12), 178. https://doi.org/10.1007/s11274-020-02955-7
  • Singh, V. K., Srivastava, R., S., Gupta, P. S., Naaz, F., Chaurasia, H., Mishra, R., Rana, M. K., & Singh, R. K. (2020a). Anti-HIV potential of diarylpyrimidine derivatives as non-nucleoside reverse transcriptase inhibitors: Design, synthesis, docking, TOPKAT analysis and molecular dynamics simulations. Journal of Biomolecular Structure and Dynamics., 11, 1–17.
  • Sippl, M. J. (1995). Knowledge-based potentials for proteins. Current Opinion in Structural Biology, 5(2), 229–235. https://doi.org/10.1016/0959-440x(95)80081-6
  • Suzuki, K., Takemura, M., Miki, T., Nonaka, M., & Harada, N. (2019). Differences in soil bacterial community compositions in paddy fields under organic and conventional farming conditions. Microbes and Environments, 34(1), 108–111. https://doi.org/10.1264/jsme2.ME18101
  • Tian, W., Chen, C., Lei, X., Zhao, J., & Liang, J. (2018). CASTp 3.0: Computed atlas of surface topography of proteins. Nucleic Acids Research, 46(W1), W363–W367. 10.1093/nar/gky473
  • Vansuyt, G., Robin, A., Briat, J. F., Curie, C., & Lemanceau, P. (2007). Iron acquisition from Fe-pyoverdine by Arabidopsis thaliana. Molecular Plant-Microbe Interactions : MPMI, 20(4), 441–447. https://doi.org/10.1094/MPMI-20-4-0441
  • Wiederstein, M., & Sippl, M. J. (2007). ProSA-web: Interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Research, 35(Web Server issue), W407–410. https://doi.org/10.1093/nar/gkm290
  • Wu, J., Wang, C., Zheng, L., Wang, L., Chen, Y., Whelan, J., & Shou, H. (2011). Ethylene is involved in the regulation of iron homeostasis by regulating the expression of iron-acquisition-related genes in Oryza sativa. Journal of Experimental Botany, 62(2), 667–674. https://doi.org/10.1093/jxb/erq301
  • Xie, S., Wu, H., Chen, L., Zang, H., Xie, Y., & Gao, X. (2015). Transcriptome profiling of Bacillus subtilis OKB105 in response to rice seedlings. BMC Microbiology, 15(1), 21. https://doi.org/10.1186/s12866-015-0353-4
  • Yehuda, Z., Shenker, M., Hadar, Y., & Chen, Y. (2000). Remedy of chlorosis induced by iron deficiency in plants with the fungal siderophore rhizoferrin. Journal of Plant Nutrition., 23(11-12), 1991–2006. https://doi.org/10.1080/01904160009382160

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.