732
Views
10
CrossRef citations to date
0
Altmetric
Research articles

High throughput virtual screening and molecular dynamics simulation analysis of phytomolecules against BfmR of Acinetobacter baumannii: anti-virulent drug development campaign

, ORCID Icon, , , &
Pages 2698-2712 | Received 26 Oct 2021, Accepted 26 Jan 2022, Published online: 14 Feb 2022

References

  • Ahmad, S., Shaker, B., Ahmad, F., Raza, S., & Azam, S. S. (2019). Moleculer dynamics simulaiton revealed reciever domain of Acinetobacter baumannii BfmR enzyme as the hot spot for future antibiotics designing. Journal of Biomolecular Structure & Dynamics, 37(11), 2897–2912. https://doi.org/10.1080/07391102.2018.1498805
  • Ahmad, S. S., Sinha, M., Ahmad, K., Khalid, M., & Choi, I. (2020). Study of caspase 8 inhibition for the management of Alzheimer's disease: A molecular docking and dynamics simulation. Molecules (Basel, Switzerland), 25(9), 2071. https://doi.org/10.3390/molecules25092071
  • Aleksic Sabo, V., Nikolic, I., Mimica-Dukic, N., & Knezevic, P. (2021). Anti-Acinetobacter baumannii activity of selected phytochemicals alone, in binary combinations and in combinations with conventional antibiotics. Natural Product Research, 35(24), 5964–5967. https://doi.org/10.1080/14786419.2020.1808635
  • Ambrose, P. G., VanScoy, B. D., Adams, J., Fikes, S., Bader, J. C., Bhavnani, S. M., & Rubino, C. M. (2018). Norepinephrine in combination with antibiotic therapy increases both the bacterial replication rate and bactericidal activity. Antimicrobial Agents and Chemotherapy, 62(4), 1–7. https://doi.org/10.1128/AAC.02257-17
  • Amera, G. M., Khan, R. J., Pathak, A., Kumar, A., & Singh, A. K. (2019). Structure based in-silico study on UDP-N-acetylmuramoyl-L-alanyl-D-glutamate-2,6-diaminopimelate ligase (MurE) from Acinetobacter baumannii as a drug target against nosocomial infections. Informatics in Medicine Unlocked, 16, 100216. https://doi.org/10.1016/j.imu.2019.100216
  • Banks, J. L., Beard, H. S., Cao, Y., Cho, A. E., Damm, W., Farid, R., Felts, A. K., Halgren, T. A., Mainz, D. T., Maple, J. R., Murphy, R., Philipp, D. M., Repasky, M. P., Zhang, L. Y., Berne, B. J., Friesner, R. A., Gallicchio, E., & Levy, R. M. (2005). Integrated modeling program, Applied Chemical Theory (IMPACT). Journal of Computational Chemistry, 26(16), 1752–1780. https://doi.org/10.1002/jcc.20292
  • Betts, J. W., Hornsey, M., Wareham, D. W., & La Ragione, R. M. (2017). In vitro and in vivo activity of theaflavin-epicatechin combinations versus multidrug-resistant Acinetobacter baumannii. Infectious Diseases and Therapy, 6(3), 435–442. https://doi.org/10.1007/s40121-017-0161-2
  • Bourebaba, L., Saci, S., Touguit, D., Gali, L., Terkmane, S., Oukil, N., & Bedjou, F. (2016). Evaluation of antidiabetic effect of total calystegines extracted from Hyoscyamus albus. Biomedicine & Pharmacotherapy = Pharmacotherapy , 82, 337–344. https://doi.org/10.1016/j.biopha.2016.05.011
  • Bowers, K. J., Chow, E., Xu, H., Dror, R. O., Eastwood, M. P., Gregersen, B. A., Klepeis, J. L., Kolossvary, I., Moraes, M. A., Sacerdoti, F. D., Salmon, J. K., Shan, Y., & Shaw, D. E. (2006). Scalable algorithms for molecular dynamics simulations on commodity clusters. Proceedings of the ACM/IEEE Conference on Supercomputing (SC06), Tampa, Florida;New York City, IEEE; 2006:11–17.
  • Celik, C., Ildiz, N., & Ocsoy, I. (2020). Building block and rapid synthesis of catecholamines-inorganic nanoflowers with their peroxidase-mimicking and antimicrobial activities. Scientific Reports, 10(1), 2903. https://doi.org/10.1038/s41598-020-59699-5
  • Chen, Y., Zheng, Y., Fong, P., Mao, S., & Wang, Q. (2020). The application of the MM/GBSA method in the binding pose prediction of FGFR inhibitors. Physical Chemistry Chemical Physics: PCCP, 22(17), 9656–9663. https://doi.org/10.1039/d0cp00831a
  • Colquhoun, J. M., & Rather, P. N. (2020). Insights into mechanisms of biofilm formation in Acinetobacter baumannii and implications for uropathogenesis. Frontiers in Cellular and Infection Microbiology, 10, 253. https://doi.org/10.3389/fcimb.2020.00253
  • De Silva, P. M., & Kumar, A. (2019). Signal transduction proteins in Acinetobacter baumannii: Role in antibiotic resistance, virulence, and potential as drug targets. Frontiers in Microbiology, 10, 49. https://doi.org/10.3389/fmicb.2019.00049
  • Draughn, G. L., Milton, M. E., Feldmann, E. A., Bobay, B. G., Roth, B. M., Olson, A. L., Thompson, R. J., Actis, L. A., Davies, C., & Cavanagh, J. (2018). The structure of the biofilm-controlling response regulator BfmR from Acinetobacter baumannii reveals details of its DNA-binding mechanism. Journal of Molecular Biology, 430(6), 806–821. https://doi.org/10.1016/j.jmb.2018.02.002
  • Durrant, J. D., & McCammon, J. A. (2011). Molecular dynamics simulations and drug discovery. BMC Biology, 9, 71. https://doi.org/10.1186/1741-7007-9-71
  • Farrow, J. M., Wells, G., & Pesci, E. C. (2018). Desiccation tolerance in Acinetobacter baumannii is mediated by the two-component response regulator BfmR. PLoS One, 13(10), e0205638–25. https://doi.org/10.1371/journal.pone.0205638
  • Feng, P. C., Haynes, L. J., & Magnus, K. E. (1961). High concentration of (-)-noradrenaline in Portulaca oleracea L. Nature, 191, 1108. https://doi.org/10.1038/1911108a0
  • Furner-Pardoe, J., Anonye, B. O., Cain, R., Moat, J., Ortori, C. A., Lee, C., Barrett, D. A., Corre, C., & Harrison, F. (2020). Anti-biofilm efficacy of a medieval treatment for bacterial infection requires the combination of multiple ingredients. Scientific Reports, 10(1), 1–14. https://doi.org/10.1038/s41598-020-69273-8
  • Gandhi, S. P., Lokhande, K. B., Swamy, V. K., Nanda, R. K., & Chitlange, S. S. (2019). Computational data of phytoconstituents from Hibiscus rosa-sinensis on various anti-obesity targets. Data in Brief, 24, 103994. https://doi.org/10.1016/j.dib.2019.103994
  • Geisinger, E., & Isberg, R. R. (2015). Antibiotic modulation of capsular exopolysaccharide and virulence in Acinetobacter baumannii. PLoS Pathogens, 11(2), e1004691. https://doi.org/10.1371/journal.ppat.1004691
  • Geisinger, E., Mortman, N. J., Vargas-Cuebas, G., Tai, A. K., & Isberg, R. R. (2018). A global regulatory system links virulence and antibiotic resistance to envelope homeostasis in Acinetobacter baumannii. PLoS Pathogens, 14(5), e1007030. https://doi.org/10.1371/journal.ppat.1007030
  • Halgren, T. A., Murphy, R. B., Friesner, R. A., Beard, H. S., Frye, L. L., Pollard, W. T., & Banks, J. L. (2004). Glide: a new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening. Journal of Medicinal Chemistry, 47(7), 1750–1759. https://doi.org/10.1021/jm030644s
  • Hollingsworth, S. A., & Dror, R. O. (2018). Molecular dynamics simulation for all. Neuron, 99(6), 1129–1143. https://doi.org/10.1016/j.neuron.2018.08.011
  • Iranshahy, M., Javadi, B., Iranshahi, M., Jahanbakhsh, S. P., Mahyari, S., Hassani, F. V., & Karimi, G. (2017). A review of traditional uses, phytochemistry and pharmacology of Portulaca oleracea L. J Journal of Ethnopharmacology, 205, 158–172. https://doi.org/10.1016/j.jep.2017.05.004
  • Jaafari, A., Baradaran Rahimi, V., Vahdati-Mashhadian, N., Yahyazadeh, R., Ebrahimzadeh-Bideskan, A., Hasanpour, M., Iranshahi, M., Ehtiati, S., Rajabi, H., Mahdinezhad, M., Rakhshandeh, H., & Askari, V. R. (2021). Evaluation of the therapeutic effects of the hydroethanolic extract of Portulaca oleracea on surgical-induced peritoneal adhesion. Mediators of Inflammation, 2021, 8437753. https://doi.org/10.1155/2021/8437753
  • Jacobson, M. P., Pincus, D. L., Rapp, C. S., Day, T. J., Honig, B., Shaw, D. E., & Friesner, R. A. (2004). A hierarchical approach to all-atom protein loop prediction. Proteins, 55(2), 351–367. https://doi.org/10.1002/prot.10613
  • Kannappan, A., Srinivasan, R., Nivetha, A., Annapoorani, A., Pandian, S. K., & Ravi, A. V. (2019). Anti-virulence potential of 2-hydroxy-4-methoxybenzaldehyde against methicillin-resistant Staphylococcus aureus and its clinical isolates. Applied Microbiology and Biotechnology, 103(16), 6747–6758. https://doi.org/10.1007/s00253-019-09941-6
  • Kar, S., & Leszczynski, J. (2020). Open access in silico tools to predict the ADMET profiling of drug candidates. Expert Opinion on Drug Discovery, 15(12), 1473–1487. https://doi.org/10.1080/17460441.2020.1798926
  • Kato, A., Kano, E., Adachi, I., Molyneux, R. J., Watson, A. A., Nash, R. J., Fleet, G. W. J., Wormald, M. R., Kizu, H., Ikeda, K., & Asano, N. (2003). Australine and related alkaloids: easy structural confirmation by 13C NMR spectral data and biological activities. Tetrahedron: Asymmetry, 14(3), 325–331. https://doi.org/10.1016/S0957-4166(02)00799-1
  • Kato, A., Wang, L., Ishii, K., Seino, J., Asano, N., & Suzuki, T. (2011). Calystegine B3 as a specific inhibitor for cytoplasmic alpha-mannosidase, Man2C1. Journal of Biochemistry, 149(4), 415–422. https://doi.org/10.1093/jb/mvq153
  • Kollar, J., & Frecer, V. (2017). How accurate is the description of ligand- protein interactions by a hybrid QM/MM approach? Journal of Molecular Modeling, 24(1), 11. https://doi.org/10.1007/s00894-017- 3537-z
  • Krasauskas, R., Skerniškytė, J., Armalytė, J., & Sužiedėlienė, E. (2019). The role of Acinetobacter baumannii response regulator BfmR in pellicle formation and competitiveness via contact-dependent inhibition system. BMC Microbiology, 19(1), 241. https://doi.org/10.1186/s12866-019-1621-5
  • Kulma, A., & Szopa, J. (2007). Catecholamines are active compounds in plants. Plant Science, 172(3), 433–440. https://doi.org/10.1016/j.plantsci.2006.10.013
  • Laskowski, R. A. (2009). PDBsum new things. Nucleic Acids Research, 37(Database issue), D355–D359. https://doi.org/10.1093/nar/gkn860
  • Lee, C. R., Lee, J. H., Park, M., Park, K. S., Bae, I. K., Kim, Y. B., Cha, C. J., Jeong, B. C., & Lee, S. H. (2017). Biology of Acinetobacter baumannii: Pathogenesis, antibiotic resistance mechanisms, and prospective treatment options. Frontiers in Cellular and Infection Microbiology, 7, 55. https://doi.org/10.3389/fcimb.2017.00055
  • Lenhard, J. R., Bulitta, J. B., Connell, T. D., King-Lyons, N., Landersdorfer, C. B., Cheah, S. E., Thamlikitkul, V., Shin, B. S., Rao, G., Holden, P. N., Walsh, T. J., Forrest, A., Nation, R. L., Li, J., & Tsuji, B. T. (2017). High-intensity meropenem combinations with polymyxin B: new strategies to overcome carbapenem resistance in Acinetobacter baumannii. The Journal of Antimicrobial Chemotherapy, 72(1), 153–165. https://doi.org/10.1093/jac/dkw355
  • Li, Y. X., Shimada, Y., Sato, K., Kato, A., Zhang, W., Jia, Y. M., Fleet, G. W., Xiao, M., & Yu, C. Y. (2015). Synthesis and glycosidase inhibition of australine and its fluorinated derivatives. Organic Letters, 17(3), 716–719. https://doi.org/10.1021/ol503728e
  • Liu, X., Shi, D., Zhou, S., Liu, H., Liu, H., & Yao, X. (2018). Molecular dynamics simulations and novel drug discovery. Expert Opinion on Drug Discovery, 13(1), 23–37. https://doi.org/10.1080/17460441.2018.1403419
  • Lokhande, K. B., Doiphode, S., Vyas, R., & Swamy, K. V. (2020a). Molecular docking and simulation studies on SARS-CoV-2 Mpro reveals Mitoxantrone, Leucovorin, Birinapant, and Dynasore as potent drugs against COVID-19. Journal of Biomolecular Structure & Dynamics, 39(18), 7294–7212. https://doi.org/10.1080/07391102.2020.1805019
  • Lokhande, K. B., Ghosh, P., Nagar, S., & Venkateswara Swamy, K. (2021). Novel B, C-ring truncated deguelin derivatives reveals as potential inhibitors of cyclin D1 and cyclin E using molecular docking and molecular dynamic simulation. Molecular diversity, 10.1007/s11030-021-10334-z. Advance online publication. https://doi.org/10.1007/s11030-021-10334-z
  • Lokhande, K., Nawani, N., K Venkateswara, S., & Pawar, S. (2020b). Biflavonoids from Rhus succedanea as probable natural inhibitors against SARS-CoV-2: a molecular docking and molecular dynamics approach. Journal of biomolecular structure & dynamics, 1–13. Advance online publication. https://doi.org/10.1080/07391102.2020.1858165
  • Lu, M., Dai, T., Murray, C. K., & Wu, M. X. (2018). Bactericidal property of oregano oil against multidrug-resistant clinical isolates. Frontiers in Microbiology, 9(OCT), 2329. https://doi.org/10.3389/fmicb.2018.02329
  • Mani, J. S., Johnson, J. B., Steel, J. C., Broszczak, D. A., Neilsen, P. M., Walsh, K. B., & Naiker, M. (2020). Natural product-derived phytochemicals as potential agents against coronaviruses: A review. Virus Research, 284(April), 197989. https://doi.org/10.1016/j.virusres.2020.197989
  • Marr, C. M., MacDonald, U., Trivedi, G., Chakravorty, S., & Russo, T. A. (2020). An Evaluation of BfmR-Regulated Antimicrobial Resistance in the Extensively Drug Resistant (XDR) Acinetobacter baumannii Strain HUMC1. Frontiers in Microbiology, 11, 595798. https://doi.org/10.3389/fmicb.2020.595798
  • Mohanraj, K., Karthikeyan, B. S., Vivek-Ananth, R. P., Chand, R. P. B., Aparna, S. R., Mangalapandi, P., & Samal, A. (2018). IMPPAT: A curated database of Indian medicinal plants, phytochemistry and therapeutics. Scientific Reports, 8(1), 1–17. https://doi.org/10.1038/s41598-018-22631-z
  • Molyneux, R. J., Benson, M., Wong, R. Y., Tropea, J. E., & Elbein, A. D. (1988). Australine, a novel pyrrolizidine alkaloid glucosidase inhibitor from Castanospermum austral. Journal of Natural Products, 51 (6), 1198–1206. https://doi.org/10.1021/np50060a024
  • Moreira, R., Pereira, D. M., Valentão, P., & Andrade, P. B. (2018). Pyrrolizidine alkaloids: Chemistry, pharmacology, toxicology and food safety. International Journal of Molecular Sciences, 19(6), 1668. https://doi.org/10.3390/ijms19061668
  • Peng, J., Zheng, T. T., Li, X., Liang, Y., Wang, L. J., Huang, Y. C., & Xiao, H. T. (2019). Plant-derived alkaloids: The promising disease-modifying agents for inflammatory bowel disease. Frontiers in Pharmacology, 10, 351. https://doi.org/10.3389/fphar.2019.00351
  • Pires, D. E., Blundell, T. L., & Ascher, D. B. (2015). pkCSM: Predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures. Journal of Medicinal Chemistry, 58(9), 4066–4072. https://doi.org/10.1021/acs.jmedchem.5b00104
  • Prajapati, J., Patel, R., Goswami, D., Saraf, M., & Rawal, R. M. (2021). Sterenin M as a potential inhibitor of SARS-CoV-2 main protease identified from MeFSAT database using molecular docking, molecular dynamics simulation and binding free energy calculation. Computers in Biology and Medicine, 135, 104568. https://doi.org/10.1016/j.compbiomed.2021.104568
  • Raorane, C. J., Lee, J. H., Kim, Y. G., Rajasekharan, S. K., García-Contreras, R., & Lee, J. (2019). Antibiofilm and antivirulence efficacies of flavonoids and curcumin against Acinetobacter baumannii. Frontiers in Microbiology, 10, 990. https://doi.org/10.3389/fmicb.2019.00990
  • Ravishankar, B., & Shukla, V. J. (2007). Indian systems of medicine: a brief profile. African Journal of Traditional, Complementary, and Alternative Medicines: AJTCAM, 4(3), 319–337. https://doi.org/10.4314/ajtcam.v4i3.31226.
  • Russo, T. A., Manohar, A., Beanan, J. M., Olson, R., MacDonald, U., Graham, J., & Umland, T. C. (2016). The response regulator BfmR is a potential drug target for Acinetobacter baumannii. mSphere, 1(3), 1–19. https://doi.org/10.1128/mSphere.00082-16
  • Schrödinger Release 2021-2: Desmond Molecular Dynamics System, D. E. Shaw Research, New York, NY. (2021). Maestro-desmond interoperability tools. Schrödinger.
  • Schrödinger. (2020). Schrödinger Release 2020-1. Schrödinger LLC.
  • Selvaraj, A., Valliammai, A., Sivasankar, C., Suba, M., Sakthivel, G., & Pandian, S. K. (2020). Antibiofilm and antivirulence efficacy of myrtenol enhances the antibiotic susceptibility of Acinetobacter baumannii. Scientific Reports, 10(1), 21975. https://doi.org/10.1038/s41598-020-79128-x
  • Shah, S., Gaikwad, S., Nagar, S., Kulshrestha, S., Vaidya, V., Nawani, N., & Pawar, S. (2019). Biofilm inhibition and anti-quorum sensing activity of phytosynthesized silver nanoparticles against the nosocomial pathogen Pseudomonas aeruginosa. Biofouling, 35(1), 34–49. https://doi.org/10.1080/08927014.2018.1563686
  • Shahryari, S., Mohammadnejad, P., & Noghabi, K. A. (2021). Screening of anti-Acinetobacter baumannii phytochemicals, based on the potential inhibitory effect on OmpA and OmpW functions. Royal Society Open Science, 8(8), 201652. https://doi.org/10.1098/rsos.201652
  • Singh, R., Bhardwaj, V. K., Sharma, J., Das, P., & Purohit, R. (2021). Discovery and in silico evaluation of aminoarylbenzosuberene molecules as novel checkpoint kinase 1 inhibitor determinants. Genomics, 113(1 Pt 2), 707–715. https://doi.org/10.1016/j.ygeno.2020.10.001
  • Skariyachan, S., Sridhar, V. S., Packirisamy, S., Kumargowda, S. T., & Challapilli, S. B. (2018). Recent perspectives on the molecular basis of biofilm formation by Pseudomonas aeruginosa and approaches for treatment and biofilm dispersal. Folia Microbiologica, 63(4), 413–432. https://doi.org/10.1007/s12223-018-0585-4
  • Skariyachan, S., Taskeen, N., Ganta, M., & Venkata Krishna, B. (2019). Recent perspectives on the virulent factors and treatment options for multidrug-resistant Acinetobacter baumannii. Critical Reviews in Microbiology, 45(3), 315–333. https://doi.org/10.1080/1040841X.2019.1600472
  • Spicer, S. K., Moore, R. E., Lu, J., Guevara, M. A., Marshall, D. R., Manning, S. D., Damo, S. M., Townsend, S. D., & Gaddy, J. A. (2021). Antibiofilm activity of human milk oligosaccharides against multidrug resistant and susceptible isolates of Acinetobacter baumannii. ACS Infectious Diseases, 7(12), 3254–3263. https://doi.org/10.1021/acsinfecdis.1c00420
  • Tacconelli, E., Carrara, E., Savoldi, A., Harbarth, S., Mendelson, M., Monnet, D. L., Pulcini, C., Kahlmeter, G., Kluytmans, J., Carmeli, Y., Ouellette, M., Outterson, K., Patel, J., Cavaleri, M., Cox, E. M., Houchens, C. R., Grayson, M. L., Hansen, P., Singh, N., … Zorzet, A., WHO Pathogens Priority List Working Group. (2018). Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis. The Lancet Infectious Diseases, 18(3), 318–327. https://doi.org/10.1016/S1473-3099(17)30753-3
  • Taylor, D., Nash, R., Fellows, L., Kang, M., & Tyms, A. (1992). Naturally occurring pyrrolizidines: Inhibition of α-glucosidase 1 and anti-HIV activity of one stereoisomer. Antiviral Chemistry and Chemotherapy, 3(5), 273–277. https://doi.org/10.1177/095632029200300504
  • Thawabteh, A., Juma, S., Bader, M., Karaman, D., Scrano, L., Bufo, S. A., & Karaman, R. (2019). The biological activity of natural alkaloids against herbivores, cancerous cells and pathogens. Toxins, 11(11), 656. https://doi.org/10.3390/toxins11110656
  • Thompson, R. J., Bobay, B. G., Stowe, S. D., Olson, A. L., Peng, L., Su, Z., Actis, L. A., Melander, C., & Cavanagh, J. (2012). Identification of BfmR, a response regulator involved in biofilm development, as a target for a 2-Aminoimidazole-based antibiofilm agent. Biochemistry, 51(49), 9776–9778. https://doi.org/10.1021/bi3015289
  • Tiwari, M., Kumar, P., Tejavath, K. K., & Tiwari, V. (2020). Assessment of molecular mechanism of gallate-polyvinylpyrrolidone-capped hybrid silver nanoparticles against carbapenem-resistant Acinetobacter baumannii. ACS Omega, 5(2), 1206–1213. https://doi.org/10.1021/acsomega.9b03644
  • Tiwari, V., Tiwari, D., Patel, V., & Tiwari, M. (2017). Effect of secondary metabolite of Actinidia deliciosa on the biofilm and extra-cellular matrix components of Acinetobacter baumannii. Microbial Pathogenesis, 110, 345–351. https://doi.org/10.1016/j.micpath.2017.07.013
  • Tomaras, A. P., Flagler, M. J., Dorsey, C. W., Gaddy, J. A., & Actis, L. A. (2008). Characterization of a two-component regulatory system from Acinetobacter baumannii that controls biofilm formation and cellular morphology. Microbiology (Reading, England), 154(Pt 11), 3398–3409. https://doi.org/10.1099/mic.0.2008/019471-0
  • Tripathi, P. K., & Jain, C. K. (2019). Computational drug discovery based on natural products against Acinetobacter Baumannii. Journal of Materials Science & Surface Engineering, 6(6), 895–898. ISSN (Online. 2348-8956; 10.jmsse. /2348, –8956. /(6)6.4
  • Tropea, J. E., Molyneux, R. J., Kaushal, G. P., Pan, Y. T., Mitchell, M., & Elbein, A. D. (1989). Australine, a pyrrolizidine alkaloid that inhibits amyloglucosidase and glycoprotein processing. Biochemistry, 28(5), 2027–2034. https://doi.org/10.1021/bi00431a010
  • Vijayakumar, K., & Thirunanasambandham, R. (2021). 5-Hydroxymethylfurfural inhibits Acinetobacter baumannii biofilms: an in vitro study. Archives of Microbiology, 203(2), 673–682. https://doi.org/10.1007/s00203-020-02061-0
  • Watson, A. A., Fleet, G. W., Asano, N., Molyneux, R. J., & Nash, R. J. (2001). Polyhydroxylated alkaloids - natural occurrence and therapeutic applications. Phytochemistry, 56(3), 265–295. https://doi.org/10.1016/S0031-9422(00)00451-9
  • Zhou, Y. X., Xin, H. L., Rahman, K., Wang, S. J., Peng, C., & Zhang, H. (2015). Portulaca oleracea L.: a review of phytochemistry and pharmacological effects. BioMed Research International, 2015, 925631. https://doi.org/10.1155/2015/925631

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.