228
Views
2
CrossRef citations to date
0
Altmetric
Research articles

Whole genome analysis and homology modeling of SARS-CoV-2 Indian isolate reveals potent FDA approved drug choice for treating COVID-19

, ORCID Icon, ORCID Icon, ORCID Icon, , , & show all
Pages 2772-2788 | Received 16 Jul 2021, Accepted 30 Jan 2022, Published online: 09 Feb 2022

References

  • Adedeji, A. O., Singh, K., Kassim, A., Coleman, C. M., Elliott, R., Weiss, S. R., Frieman, M. B., & Sarafianos, S. G. (2014). Evaluation of SSYA10-001 as a replication inhibitor of severe acute respiratory syndrome, mouse hepatitis, and Middle East respiratory syndrome coronaviruses. Antimicrobial Agents and Chemotherapy, 58(8), 4894–4898. https://doi.org/10.1128/AAC.02994-14
  • Ananthula,  H. K., Parker, S., Touchette, E., Buller, R. M., Patel, G., Kalman, D., Salzer, J. S., Gallardo-Romero, N., Olson, V., Damon, I. K., Moir-Savitz, T., Sallans, L., Werner, M. H., Sherwin, C. M., & Desai, P. B. (2018). Preclinical pharmacokinetic evaluation to facilitate repurposing of tyrosine kinase inhibitors nilotinib and imatinib as antiviral agents. BMC Pharmacology and Toxicology, 19(80),1-11. https://doi.org/10.1186/s40360-018-0270-x
  • Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., Shindyalov, I. N., & Bourne, P. E. (2000). The Protein Data Bank. Nucleic Acids Research, 28(1), 235-242. https://doi.org/10.1093/nar/28.1.235
  • Biovia, D. S. (2017). Discovery studio modeling environment.
  • Bowers, K. J., Chow, D. E., Xu, H., Dror, R. O., Eastwood, M. P., Gregersen, B. A., & Shaw, D. E. (2006). Scalable algorithms for molecular dynamics simulations on commodity clusters. In SC’06: Proceedings of the 2006 ACM/IEEE Conference on Supercomputing (pp. 43–43). IEEE.
  • Cheng, V. C. C.,Wong, S.-C.,Chen, J. H. K.,Yip, C. C. Y.,Chuang, V. W. M.,Tsang, O. T. Y.,Sridhar, S.,Chan, J. F. W.,Ho, P.-L., &Yuen, K.-Y. (2020). Escalating infection control response to the rapidly evolving epidemiology of the coronavirus disease 2019 (COVID-19) due to SARS-CoV-2 in Hong Kong. Infection Control & Hospital Epidemiology, 41(5), 493–498. https://doi.org/10.1017/ice.2020.58
  • Cheng, F., Istvan, I., Kovacskovacs, A., Laszlo, A.-L., & Lászlóbarabási, L. (2019). Network-based prediction of drug combinations. Nature Communications, 10(1197), 1-11. https://doi.org/10.1038/s41467-019-09186-x
  • Choudhary, M. I.,Shaikh, M.,Tul-Wahab, Atia., &Ur-Rahman, Atta. (2020). In silico identification of potential inhibitors of key SARS-CoV-2 3CL hydrolase (Mpro) via molecular docking, MMGBSA predictive binding energy calculations, and molecular dynamics simulation. PloS One, 15(7), e0235030. https://doi.org/10.1371/journal.pone.0235030 32706783
  • Colovos, C., & Yeates, T. O. (1993). (No title). In Prorein science (Vol. 2). Cambridge University Press.
  • de Lima, W. A., Pereira, A. F., de Castro, A. A., da Cunha, E. F. F., & Ramalho, T. C. (2016). Flexibility in the molecular design of acetylcholinesterase reactivators: Probing representative conformations by chemometric techniques and docking/QM calculations. Letters in Drug Design & Discovery, 13 (5), 360–371. https://doi.org/10.2174/1570180812666150918191550
  • Eisenberg, D., Lüthy, R., & Bowie, J. U. (1997). VERIFY3D: Assessment of protein models with three-dimensional profiles. Methods in Enzymology, 277, 396–404. https://doi.org/10.1016/S0076-6879(97)77022-8
  • Fairman-Williams, M. E., Guenther, U. P., & Jankowsky, E. (2010). SF1 and SF2 helicases: family matters. Current Opinion in Structural Biology, 20(3), 313–324. https://doi.org/10.1016/j.sbi.2010.03.011
  • Genheden, S., & Ryde, U. (2015). The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. Expert Opinion on Drug Discovery, 10(5), 449–461. https://doi.org/10.1517/17460441.2015.1032936
  • Ghosh, A., Chakraborty, M., Chandra, A., & Alam, M. P. (2021). Structure-activity relationship (SAR) and molecular dynamics study of withaferin-A fragment derivatives as potential therapeutic lead against main protease (M pro) of SARS-CoV-2. Journal of Molecular Modeling, 27(3), 97. https://doi.org/10.1007/s00894-021-04703-6/Published
  • Gorbalenya, A. E., Baker, S. C., Baric, R. S., de Groot, R. J., Drosten, C., Gulyaeva, A. A., Haagmans, B. L., Lauber, C., Leontovich, A. M., Neuman, B. W., Penzar, D., Perlman, S., Poon, L. L., Samborskiy, D., Sidorov, I. A., Sola, I., & Ziebuhr, J. (2020). Severe acute respiratory syndrome-related coronavirus: The species and its viruses—A statement of the Coronavirus Study Group. bioRxiv preprint. https://doi.org/10.1101/2020.02.07.937862
  • Graham, R. L., Sparks, J. S., Eckerle, L. D., Sims, A. C., & Denison, M. R. (2008). SARS coronavirus replicase proteins in pathogenesis. Virus Research, 133(1), 88–100. https://doi.org/10.1016/j.virusres.2007.02.017
  • Gurung, A. B. (2020). In silico structure modelling of SARS-CoV-2 Nsp13 helicase and Nsp14 and repurposing of FDA approved antiviral drugs as dual inhibitors. Gene Reports, 21, 100860. https://doi.org/10.1016/j.genrep.2020.100860
  • Hetenyi, C., & Van der Spoel, D. (2002). Efficient docking of peptides to proteins without prior knowledge of the binding site. Protein Science, 11(7), 1729–1737. https://doi.org/10.1110/ps.0202302
  • Hillen, H. S., Kokic, G., Farnung, L., Dienemann, C., Tegunov, D., & Cramer, P. (2020). Structure of replicating SARS-CoV-2 polymerase. Nature, 584(7819), 154–156. https://doi.org/10.1038/s41586-020-2368-8
  • Hosseini, F. S., & Amanlou, M. (2020). Anti-HCV and anti-malaria agent, potential candidates to repurpose for coronavirus infection: Virtual screening, molecular docking, and molecular dynamics simulation study. Life Sciences, 258, 118205. https://doi.org/10.1016/j.lfs.2020.118205
  • Huang, Y., Yang, C., Xu, X.-F., Xu, W., & Liu, S.-W. (2020). Structural and functional properties of SARS-CoV-2 spike protein: potential antivirus drug development for COVID-19. Acta Pharmacologica Sinica, 41, 1141–1149. https://doi.org/10.1038/s41401-020-0485-4
  • Irwin, J. K., & Shoichet, B. (2016). Docking screens for novel ligands conferring new biology. Journal of Medicinal Chemistry, 59(9), 4103–4120. https://doi.org/10.1021/acs.jmedchem.5b02008
  • Jia, Z.,Yan, L.,Ren, Z.,Wu, L.,Wang, J.,Guo, J.,Zheng, L.,Ming, Z.,Zhang, L.,Lou, Z., &Rao, Z. (2019). Delicate structural coordination of the Severe Acute Respiratory Syndrome coronavirus Nsp13 upon ATP hydrolysis. Nucleic Acids Research, 47(12), 6538–6550. https://doi.org/10.1093/nar/gkz409 31131400
  • Jin, Z., Du, X., Xu, Y., Deng, Y., Liu, M., Zhao, Y., Zhang, B., Li, X., Zhang, L., Peng, C., Duan, Y., Yu, J., Wang, L., Yang, K., Liu, F., Jiang, R., Yang, X., You, T., Liu, X., … Yang, H. (2020). Structure of M pro from SARS-CoV-2 and discovery of its inhibitors. Nature, 582(7811), 289–293. https://doi.org/10.1038/s41586-020-2223-y
  • Kalbhor, M. S.,Bhowmick, S.,Alanazi, A. M.,Patil, P. C., &Islam, M. A. (2021). Multi-step molecular docking and dynamics simulation-based screening of large antiviral specific chemical libraries for identification of Nipah virus glycoprotein inhibitors. Biophysical Chemistry, 270, 106537.https://doi.org/10.1016/j.bpc.2020.106537.
  • Kumar, B. K., Faheem, Sekhar, K., Ojha, R., Prajapati, V. K., Pai, A., & Murugesan, S. (2020). Pharmacophore based virtual screening, molecular docking, molecular dynamics and MM-GBSA approach for identification of prospective SARS-CoV-2 inhibitor from natural product databases. Journal of Biomolecular Structure and Dynamics, 2020, 1–24. https://doi.org/10.1080/07391102.2020.1824814
  • Kumar, S., Sharma, P. P., Shankar, U., Kumar, D., Joshi, S. K., Pena, L., Durvasula, R., Kumar, A., Kempaiah, P., & Rathi, B. (2020). Discovery of new hydroxyethylamine analogs against 3CL pro protein target of SARS-CoV-2: Molecular docking, molecular dynamics simulation, and structure − activity relationship studies. Journal of Chemical Information and Modeling, 60, 5754–5770. https://doi.org/10.1021/acs.jcim.0c00326
  • Kumar, S., Stecher, G., Li, M., Knyaz, C., & Tamura, K. (2008). MEGA X: Molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution, 35, 1547–1549. https://doi.org/10.1093/molbev/msy096
  • Lepelletier, D., Grandbastien, B., Michael., & Smart, R B N. (2020). Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID. Annals of Oncology, 2020, 19–21.
  • Li, J., Abel, R., Zhu, K., Cao, Y., Zhao, S., & Friesner, R. A. (2011). The VSGB 2.0 model: A next generation energy model for high resolution protein structure modeling. Proteins: Structure, Function and Bioinformatics, 79(10), 2794–2812. https://doi.org/10.1002/prot.23106
  • Lokhande, K. B., Doiphode, S., Vyas, R., & Swamy, K. V. (2021). Molecular docking and simulation studies on SARS-CoV-2 Mpro reveals Mitoxantrone, Leucovorin, Birinapant, and Dynasore as potent drugs against COVID-19. Journal of Biomolecular Structure & Dynamics, 39(18), 7294–7305. https://doi.org/10.1080/07391102.2020.1805019
  • Meanwell, N. A. (2011). Improving drug candidates by design: A focus on physicochemical properties as a means of improving compound disposition and safety. Chemical Research in Toxicology, 24(9), 1420–1456. https://doi.org/10.1021/tx200211v
  • Merrill, J. T., Erkan, D., Winakur, J., & James, J. A. (2020). Emerging evidence of a COVID-19 thrombotic syndrome has treatment implications. Nature Reviews Rheumatology, 16, 581–589. https://doi.org/10.1038/s41584-020-0474-5
  • Molavi, Z., Razi, S., Mirmotalebisohi, S. A., Adibi, A., Sameni, M., Karami, F., Niazi, V., Niknam, Z., Aliashrafi, M., Taheri, M., Ghafouri-Fard, S., Jeibouei, S., Mahdian, S., Zali, H., Ranjbar, M. M., & Yazdani, M. (2021). Identification of FDA approved drugs against SARS-CoV-2 RNA dependent RNA polymerase (RdRp) and 3-chymotrypsin-like protease (3CLpro), drug repurposing approach. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie, 138, 111544. https://doi.org/10.1016/j.biopha.2021.111544
  • Noor, H., Ikram, A., Rathinavel, T., Kumarasamy, S., Nasir Iqbal, M., & Bashir, Z. (2021). Immunomodulatory and anti-cytokine therapeutic potential of curcumin and its derivatives for treating COVID-19–A computational modeling. Journal of Biomolecular Structure and Dynamics, 2021, 1–16. https://doi.org/10.1080/07391102.2021.1873190
  • Oellien, F., & Nicklaus, M. C. (2004). Online SMILES translator and structure file generator.
  • Oude Munnink, B. B., Nieuwenhuijse, D. F., Stein, M., O'Toole, Á., Haverkate, M., Mollers, M., Kamga, S. K., Schapendonk, C., Pronk, M., Lexmond, P., van der Linden, A., Bestebroer, T., Chestakova, I., Overmars, R. J., van Nieuwkoop, S., Molenkamp, R., van der Eijk, A. A., GeurtsvanKessel, C., Vennema, H., … Koopmans, M. (2020). Rapid SARS-CoV-2 whole-genome sequencing and analysis for informed public health decision-making in the Netherlands. Nature Medicine, 26(9), 1405–1410. https://doi.org/10.1038/s41591-020-0997-y
  • Perlman, S., & Netland, J. (2009). Coronaviruses post-SARS: Update on replication and pathogenesis. Nature Reviews. Microbiology, 7(6), 439–450. https://doi.org/10.1038/nrmicro2147
  • Prajapati, L., Khandelwal, R., Yogalakshmi, K. N., Munshi, A., & Nayarisseri, A. (2020). Computer-aided structure prediction of bluetongue virus coat protein VP2 assisted by optimized potential for liquid simulations (OPLS). Current Topics in Medicinal Chemistry, 20(19), 1720–1732. https://doi.org/10.2174/1568026620666200516153753
  • Santiago, E., & Caballero, A. (2020). The value of targeting recombination as a strategy against coronavirus diseases. Heredity, 125(4), 169–172. https://doi.org/10.1038/s41437-020-0337-5
  • Schwede, T., Rgen Kopp, J., Guex, N., & Peitsch, M. C. (2003). SWISS-MODEL: An automated protein homology-modeling server. Nucleic Acids Research, 31(13), 3381–3385. https://doi.org/10.1093/nar/gkg520
  • Scott, W. R., Hünenberger, P. H., Tironi, I. G., Mark, A. E., Billeter, S. R., Fennen, J., Torda, A. E., Huber, T., Krüger, P., & van Gunsteren, W. F. (1999). The GROMOS biomolecular simulation program package. The Journal of Physical Chemistry A, 103(19), 3596–3607. https://doi.org/10.1021/jp984217f
  • Shanker, A. K., Bhanu, D., Alluri, A., & Gupta, S. (2020). Whole-genome sequence analysis and homology modelling of the main protease and non-structural protein 3 of SARS-CoV-2 reveal an aza-peptide and a lead inhibitor with possible antiviral properties. New Journal of Chemistry, 44(22), 9202–9212. https://doi.org/10.1039/D0NJ00974A
  • Thirumalaisamy, R., Aroulmoji, V., Iqbal, M. N., Deepa, M., Sivasankar, C., Khan, R., & Selvankumar, T. (2021). Molecular insights of hyaluronic acid-hydroxychloroquine conjugate as a promising drug in targeting SARS-CoV-2 viral proteins. Journal of Molecular Structure, 1238, 130457. https://doi.org/10.1016/j.molstruc.2021.130457
  • Toyoshima, Y., Nemoto, K., Matsumoto, S., Nakamura, Y., & Kiyotani, K. (2020). SARS-CoV-2 genomic variations associated with mortality rate of COVID-19. Journal of Human Genetics, 65(12), 1075–1082. https://doi.org/10.1038/s10038-020-0808-9
  • Trott, O., & Olson, A. J. (2009). AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31(2), NA–NA. https://doi.org/10.1002/jcc.21334
  • Wakchaure, P., Ghosh, S., & Ganguly, B. (2020). Revealing the inhibition mechanism of RNA-dependent RNA polymerase (RdRp) of SARS-CoV-2 by remdesivir and nucleotide analogues: A molecular dynamics simulation study. The Journal of Physical Chemistry. B, 124(47), 10641–10652. https://doi.org/10.1021/acs.jpcb.0c06747
  • Wheeler, D. L., Barrett, T., Benson, D. A., Bryant, S. H., Canese, K., Chetvernin, V., Church, D. M., DiCuccio, M., Edgar, R., Federhen, S., Feolo, M., Geer, L. Y., Helmberg, W., Kapustin, Y., Khovayko, O., Landsman, D., Lipman, D. J., Madden, T. L., Maglott, D. R., … Yaschenko, E. (2007). Database resources of the National Center for Biotechnology Information. Nucleic Acids Research, 36(Database), D13–D21. https://doi.org/10.1093/nar/gkm1000
  • Yadav, P. D., Potdar, V. A., Choudhary, M. L., Nyayanit, D. A., Agrawal, M., Jadhav, S. M., Majumdar, T. D., Shete-Aich, A., Basu, A., Abraham, P., & Cherian, S. S. (2020). Full-genome sequences of the first two SARS-CoV-2 viruses from India. The Indian Journal of Medical Research, 151(2–3), 200–209.
  • Yoshino, R., Yasuo, N., & Sekijima, M. (2020). Identification of key interactions between SARS-CoV-2 main protease and inhibitor drug candidates. Scientific Reports, 10, 12493. https://doi.org/10.1038/s41598-020-69337-9
  • Zhou, Y., Hou, Y., Shen, J., Huang, Y., Martin, W., & Cheng, F. (2020). Cell Discovery Network-based drug repurposing for novel coronavirus 2019-nCoV/SARS-CoV-2. Cell Discovery, 6, 14. https://doi.org/10.1038/s41421-020-0153-3
  • Zirui Tay, M., Meng Poh, C., Rénia, L., MacAry, P. A., P., & Ng, L. F. (2019). The trinity of COVID-19: Immunity, inflammation and intervention. Nature Reviews. Immunology, 20(6), 363–374. https://doi.org/10.1038/s41577-020-0311-8

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.