259
Views
0
CrossRef citations to date
0
Altmetric
Research articles

Unraveling the possible inhibitors for Chorismate synthase to combat tuberculosis using in silico approach

, ORCID Icon, ORCID Icon, &
Pages 2823-2830 | Received 20 Nov 2021, Accepted 02 Feb 2022, Published online: 15 Feb 2022

References

  • Ahmed, B. (2021). Exploring multi-target inhibitors using in silico approach targeting cell cycle dysregulator–CDK proteins. Journal of Biomolecular Structure and Dynamics, 1–15.
  • Andres, S., Merker, M., Heyckendorf, J., Kalsdorf, B., Rumetshofer, R., Indra, A., Hofmann-Thiel, S., Hoffmann, H., Lange, C., Niemann, S., & Maurer, F. P. (2020). Bedaquiline-resistant tuberculosis: dark clouds on the horizon. American Journal of Respiratory and Critical Care Medicine, 201(12), 1564–1568. https://doi.org/10.1164/rccm.201909-1819LE
  • Arcuri, H. A., & Palma, M. S. (2011). Understanding the structure, activity and inhibition of chorismate synthase from Mycobacterium tuberculosis. Current Medicinal Chemistry, 18(9), 1311–1317. https://doi.org/10.2174/092986711795029528
  • Cambau, E., & Drancourt, M. (2014). Steps towards the discovery of Mycobacterium tuberculosis by Robert Koch, 1882. Clinical Microbiology and Infection : The Official Publication of the European Society of Clinical Microbiology and Infectious Diseases, 20(3), 196–201. https://doi.org/10.1111/1469-0691.12555
  • Case, D. A. (2021). Amber, 2021. University of California Press.
  • Chakaya, J., Khan, M., Ntoumi, F., Aklillu, E., Fatima, R., Mwaba, P., Kapata, N., Mfinanga, S., Hasnain, S. E., Katoto, P. D. M. C., Bulabula, A. N. H., Sam-Agudu, N. A., Nachega, J. B., Tiberi, S., McHugh, T. D., Abubakar, I., & Zumla, A. (2021). Global Tuberculosis Report 2020–Reflections on the Global TB burden, treatment and prevention efforts. International Journal of Infectious Diseases, 113, S7–S12. https://doi.org/10.1016/j.ijid.2021.02.107
  • de Oliveira, M. D., Araújo, J. d O., Galúcio, J. M. P., Santana, K., & Lima, A. H. (2020). Targeting shikimate pathway: In silico analysis of phosphoenolpyruvate derivatives as inhibitors of EPSP synthase and DAHP synthase. Journal of Molecular Graphics & Modelling, 101, 107735.
  • Dias, M. V. B., Borges, J. C., Ely, F., Pereira, J. H., Canduri, F., Ramos, C. H. I., Frazzon, J., Palma, M. S., Basso, L. A., Santos, D. S., & de Azevedo, W. F. (2006). Structure of chorismate synthase from Mycobacterium tuberculosis. Journal of Structural Biology, 154(2), 130–143.
  • Eberhardt, J., Santos-Martins, D., Tillack, A. F., & Forli, S. (2021). AutoDock Vina 1.2.0: New docking methods, expanded force field, and python bindings. Journal of Chemical Information and Modeling, 61(8), 3891–3898.
  • Eswar, N., Webb, B., Marti‐Renom, M. A., Madhusudhan, M. S., Eramian, D., Shen, M‐y., Pieper, U., & Sali, A. (2007). Comparative protein structure modeling using MODELLER. Current Protocols in Protein Science, 15(1), 931. https://doi.org/10.1002/0471140864.ps0209s50
  • Finn, J. (2012). Application of SBDD to the discovery of new antibacterial drugs. Structure-Based Drug Discovery, 291–319.
  • Frisch, M. J. (2016). Gaussian 16 Rev. C.01.
  • Harding, E. (2020). WHO global progress report on tuberculosis elimination. The Lancet. Respiratory Medicine, 8(1), 19. https://doi.org/10.1016/S2213-2600(19)30418-7
  • Khan, S., Farooq, U., & Kurnikova, M. (2016). Exploring protein stability by comparative molecular dynamics simulations of homologous hyperthermophilic, mesophilic, and psychrophilic proteins. Journal of Chemical Information and Modeling, 56(11), 2129–2139.
  • Larroude, M., Nicaud, J. ‐M., & Rossignol, T. (2021). Yarrowia lipolytica chassis strains engineered to produce aromatic amino acids via the shikimate pathway. Microbial Biotechnology, 14(6), 2420–2434. https://doi.org/10.1111/1751-7915.13745
  • Leão, R. P., Cruz, J. V., da Costa, G. V., Cruz, J. N., Ferreira, E. F. B., Silva, R. C., de Lima, L. R., Borges, R. S., dos Santos, G. B., & Santos, C. B. R. (2020). Identification of new rofecoxib-based cyclooxygenase-2 inhibitors: A bioinformatics approach. Pharmaceuticals, 13(9), 209. https://doi.org/10.3390/ph13090209
  • Manjelievskaia, J., Erck, D., Piracha, S., & Schrager, L. (2016). Drug-resistant TB: deadly, costly and in need of a vaccine. Transactions of the Royal Society of Tropical Medicine and Hygiene, 110(3), 186–191. https://doi.org/10.1093/trstmh/trw006
  • Mdluli, K., Kaneko, T., & Upton, A. (2015). The tuberculosis drug discovery and development pipeline and emerging drug targets. Cold Spring Harb Perspect Med, 5(6),a021154.
  • Neto, R. D. A. M., Santos, C. B. R., Henriques, S. V. C., Machado, L. D. O., Cruz, J. N., da Silva, C. H. T. D. P., Federico, L. B., Oliveira, E. H. C. D., de Souza, M. P. C., da Silva, P. N. B., Taft, C. A., Ferreira, I. M., & Gomes, M. R. F. (2020). Novel chalcones derivatives with potential antineoplastic activity investigated by docking and molecular dynamics simulations. Journal of Biomolecular Structure and Dynamics, 1–13. https://doi.org/10.1080/07391102.2020.1839562
  • Nunes, J. E. S., Duque, M. A., de Freitas, T. F., Galina, L., Timmers, L. F. S. M., Bizarro, C. V., Machado, P., Basso, L. A., & Ducati, R. G. (2020). Mycobacterium tuberculosis shikimate pathway enzymes as targets for the rational design of anti-tuberculosis drugs. Molecules, 25(6), 1259. https://doi.org/10.3390/molecules25061259
  • Roe, D. R., & Cheatham, T. E. (2013). PTRAJ and CPPTRAJ: Software for processing and analysis of molecular dynamics trajectory data. Journal of Chemical Theory and Computation, 9(7), 3084–3095.
  • Vambe, D., Kay, A. W., Furin, J., Howard, A. A., Dlamini, T., Dlamini, N., Shabangu, A., Hassen, F., Masuku, S., Maha, O., Wawa, C., Mafukidze, A., Altaye, K., Sikhondze, W., Gwitima, T., Keus, K., Simelane, T., & Kerschberger, B. (2020). Bedaquiline and delamanid result in low rates of unfavourable outcomes among TB patients in Eswatini. The International Journal of Tuberculosis and Lung Disease : The Official Journal of the International Union against Tuberculosis and Lung Disease, 24(10), 1095–1102. https://doi.org/10.5588/ijtld.20.0082
  • Zaman, Z., Khan, S., Nouroz, F., Farooq, U., & Urooj, A. (2021). Targeting protein tyrosine phosphatase to unravel possible inhibitors for Streptococcus pneumoniae using molecular docking, molecular dynamics simulations coupled with free energy calculations. Life Sciences, 264, 118621.
  • Zhong, S., Chen, Z., Han, J., Zhao, H., Liu, J., & Yu, Y. (2020). Suppression of chorismate synthase, which is localized in chloroplasts and peroxisomes, results in abnormal flower development and anthocyanin reduction in petunia. Scientific Reports, 10(1), 1–15. https://doi.org/10.1038/s41598-020-67671-6

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.